State of the Art on Fiber Reinforced Concrete

Size: px
Start display at page:

Download "State of the Art on Fiber Reinforced Concrete"

Transcription

1 State of the Art on Fiber Reinforced Concrete Recent Advances on the use of FRC for Pavement Design Presented to: 015 Concrete Pavements Plus Seminar Michael Mahoney, P.Eng. Director of Admixture and Fiber Marketing Past President, Fiber Reinforced Concrete Association The Euclid Chemical Company Cleveland, OH November 015 Presentation Topics Current Industry use of Fibers Technical Design Aspects More than just fibers. Case Studies 1

2 Why do we use Fibers? Short answer: To control cracks from forming in concrete during both the plastic and hardened state Concrete is strong in compression but weak in tension. Like the placement of steel rebar, fibers are placed in concrete to transfer stress, modify the cracking behavior and possibly increase strengths and long term performance. Quality Fiber Materials types of fibers shapes of fibers quantity of fibers The Lingo - Terms and Notes FRC SnFRC SFRC Microfibers Macrofibers Aspect Ratio Fiber Reinforced Concrete Synthetic Fiber Reinforced Concrete Steel Fiber Reinforced Concrete (replace the C with S for shotcrete ie: SnFRS) smaller fibers for plastic shrinkage protection - used as secondary reinforcement used to describe structural fibers ; larger coarse fibers like steel and macro-monofilaments ratio of length to equivalent diameter (L/d); - usually only used for macro-fibers Dosage Rates: 1 lb/yd 3 = 0.6 kg/m 3 1 kg/m 3 = 1.7 lbs/yd 3

3 How to Differentiate the Fiber Types micros & macros In general, the industry has accepted that steel macro-fibers and older microsynthetic fibers (fibrillated, monofils, etc) are not used under the same conditions. Micro-synthetics secondary reinforcement; plastic shrinkage only Steel fibers industrial floor design; replacement of heavier reinforcing configurations Synthetic macro-fibers can be thought of like steel fibers, but simply not made of steel. The physical characteristics of these fibers (length, tensile strength, diameter, etc.) are all different, when compared to traditional micro-synthetics. dosages of macro-fibers should be calculated by engineering requirements. Basic Concept The main subject matter is not Fibers; It is Fiber Reinforced Concrete Benefits to contractors, engineers, owners and RM producers: Significant time savings and reduced overall construction costs For floors, no steel and wire to layout and move for laser screed operations Ability to work with RM and fiber supplier to guarantee fiber requirements to Engineer Access to new design tools and CODE Approvals Successful Track Record 3

4 Designing with Fibers How do we know that the right fiber type and dosage has been specified in my concrete? Fibers for Pavements and Floors Concrete floors and pavements must resist dynamic wheel loads, static rack loads and uniformly distributed loads. They must also withstand the damaging effect of fork truck traffic and impact from falling loads or equipment Fiber reinforced concrete, which is designed as a homogeneous material, combines easy processing and high reliability Applications Factories & Warehouses Hangers Concrete overlays & pavements Bridge Decks Pavements and Parking areas Rehabilitation projects 4

5 Specification Support Not all fibers are created equal! Calculated fiber dosages force manufacturers to provide test data and documentation that a specific fiber type is suited for the application This will protect all parties involved fiber supplier, GC, RM Supplier & owner. Fiber specifications should not call out specific dosage rates but rather desired performance and required compliances (ASTM, etc.) - fiber alternate shall be macro-fiber (steel or synthetic) complying with ASTM C1116 and provide equivalent tensile and/or bending resistance to # 4 rebar (Grade 60) placed from top of a 6 slab or mid-depth in a 8 wall.. Standard Test Methods for FRC: ASTM C1609 ASTM C 1609 can be used to find the performance of FRC in terms of residual strength. Closed-loop four-point bending test is required for proper data collection in post peak. T (toughness) Flexural strength (psi) Residual Strength Ratio (%) f R r L P. bd e,3 or R T, T f bd r 100% Example: 600 psi Example: 35% psi Implies what % of the load can be carried by the fibers after cracking 5

6 Design Concept Temperature and Shrinkage Steel Subgrade friction equations have traditionally been used for the determination of the amount of distributed steel needed to control cracks in slabs/pavements. We need to calculate the fiber dosage to provide the same level of reinforcement ratio. Area of steel: Working stress of steel: Stress from temperature gradient: fa. L. w As f s s. As. F fs b. h C. E.. T T y Set the two equal (with safety factor) Residual strength of FRC: frc ARS or R f e, 3 r /100 Design Example Temperature and Shrinkage Steel Design an 8 slab (f c=4,000 psi with WxW - 6 x6 mesh at.5 depth. How much fiber do we need for the same performance (plastic shrinkage and temperature crack control) A s 0.04 in / ft ( 0.04%) s. As. Fy ,000 fs 3 b. h 18 psi Also check for stress from temperature gradient: 6 6 C. E.. T 0.8(410 ) (5.510 ) 10 T 88 With safety factors, we will need low volume macro-synthetics to match this performance psi ARS 88 psi or R R e,3 e,3 f r 88 psi 88 / % 6

7 Design Concept Bending Moments ACI 318 method for calculating moment capacity (in a cracked beam): If fibers are substituted for steel rebar, the flexural stress is carried by fibers, called residual stress. The residual strength capacity of fiber-reinforced concrete may be obtained using: a Bending moment: M. As. Fy. d M. y Bending (flexural) strength: b I Residual strength of FRC: frc ARS or R f e, 3 r /100 Set the two equal (with safety factor) Design Example Bending Moments Design a 6 slab (f c=4,000 psi with #4 o.c. at 3 depth. How much fiber do we need for the same flexural performance? A s in / ft ( 0.1%) As. f y a 0." ' 0.85 f. b c a 0. M. As. Fy. d ,000(3 ), 940 in lb M. y 6M b 318 psi I b. h 1 6 ARS 318 psi or R f 318 psi R e,3 e,3 r 318 / % Find appropriate fiber dosage for specific manufacturer to meet this performance 7

8 Design Potentials Potential reduction in slab thickness when macro fibers are used at higher dosages. (eliminates the minimum required cover) The thinner the slab, the higher the stress, so we will need more fibers to provide higher residual strength. This can be calculated using the beam equation or the drag/temperature equations. For unreinforced concrete, we can use micro fibers at lb/yd 3 for better performance in crack control and durability. Joints The most common question that comes up on floors and pavements designed with fiber reinforced concrete is the spacing of joints. While it is possible to increase joint spacings, it is still recommended to utilize current joint spacing and cutting practices as outlined with ACI and other technical documents for normal floors. R&D for fibers is happening now with some proprietary mixtures being used in the market. There are many other factors that control joint spacing recommendations: subgrade characteristics concrete quality (gradation, w/cm ratio, supplemental materials) site conditions (interior / exterior, curing, finishing) 8

9 Concrete Shrinkage must be considered Concrete shrinkage can affect (or be affected) by various characteristics of a slab on ground cracking - caused by subgrade restraint, curing, mix design, others. curling - long term serviceability issue load transfer - design, performance and maintenance joint spacing - mitigate cracking, design implications Theories of Shrinkage ACI 3 graphic curves dependent on many factors no influence from fibers importance of curing illustrated mix design can influence testing diligence is very important 9

10 Typical Pavement Failures new pavement, conventional sawcut w/wo dowel baskets tight crack with aggregate interlock shrinkage = wider joint opening; loss of aggregate interlock and load transfer more moisture accessibility to base additional cracking at joints, loss of ability to transfer load early stages of failure concrete loss and spall accelerated failure typical pavement deterioration Fiber Reinforced Advantage fibers provide crack control, improved durability and load re-distribution if shrinkage occurs, load transfer can still be maintained; 3D reinforcing is maintained throughout matrix If edge loading causes cracks along joints, concrete integrity is maintained preventing spalling and loss 10

11 Set Expectations define the role of fibers and mix design implications slump, etc. provide education on cracking mechanisms cracks may still occur! document problems types of cracks, widths, location, timing FRC cracks should maintain integrity much longer than unreinforced cracks FRC works! faster, cheaper, cleaner, greener Watch for evolving specifications the market is changing; get educated! Projects and Success Stories 11

12 Whitetopping RTA Park n Ride Medina, OH replacement of 4 x 1 W8.5 road mesh with 5.5 pcy of macro-fiber

13 Additional Case Study Cleveland area Parking Lot evaluate shrinkage and concrete properties for different combinations of admixtures and fibers plain concrete high performance macro-fiber macro-fiber and SRA macro-fiber and SCA macro-fiber, SRA and SCA evaluate possibility of extended joints on exterior concrete have a showcase project for R&D and promotional efforts educate the ready-mix and contracting community on successful FRC design Start to Finish An FRC Parking Lot 13

14 Parking Lot Research Project more photos. 14

15 Real world measurements each slab will have joint widths monitored over the next year with correlating temperatures measurements will be compared to actual shrinkage values as measured by ASTM C157 modified tests in lab anticipated that combination fiber, SRA, SCA slab will achieve best performance Thank you for your attention Questions and Comments? 15

ADVANTAGES OF STEEL FIBRE REINFORCED CONCRETE IN INDUSTRIAL FLOORS

ADVANTAGES OF STEEL FIBRE REINFORCED CONCRETE IN INDUSTRIAL FLOORS ADVANTAGES OF STEEL FIBRE REINFORCED CONCRETE IN INDUSTRIAL FLOORS Murugesan M 1, Dashrath Rajpurohit 2 1 Assistant General Manager, Civil & Structural, Larsen & Toubro Technology Services, Tamilnadu,

More information

Example Specification for Concrete using Current Building Code Requirements

Example Specification for Concrete using Current Building Code Requirements Example Specification for Concrete using Current Building Code Requirements DISCLAIMER: This specification is an example that accompanies a seminar titled The P2P Initiative: Performance-based Specs for

More information

C. Section 014510 TESTING LABORATORY SERVICE.

C. Section 014510 TESTING LABORATORY SERVICE. SECTION 014500 QUALITY CONTROL PART 1 GENERAL 1.01 RELATED REQUIREMENTS A. Drawings and General Provisions of Contract, including General and Special Conditions and other Division 1 Specification Sections,

More information

Assistant Professor of Civil Engineering, University of Texas at Arlington

Assistant Professor of Civil Engineering, University of Texas at Arlington FRC Performance Comparison: Direct Tensile Test, Beam Type Bending Test, and Round Panel Test Shih Ho Chao (Presenting Author) Assistant Professor of Civil Engineering, University of Texas at Arlington

More information

PROPERTIES AND MIX DESIGNATIONS 5-694.200

PROPERTIES AND MIX DESIGNATIONS 5-694.200 September 1, 2003 CONCRETE MANUAL 5-694.200 5-694.210 PROPERTIES OF CONCRETE PROPERTIES AND MIX DESIGNATIONS 5-694.200 Inspectors should familiarize themselves with the most important properties of concrete:

More information

The AASHO Road Test site (which eventually became part of I-80) at Ottawa, Illinois, was typical of northern climates (see Table 1).

The AASHO Road Test site (which eventually became part of I-80) at Ottawa, Illinois, was typical of northern climates (see Table 1). Página 1 de 12 AASHO Road Test The AASHO Road Test, a $27 million (1960 dollars) investment and the largest road experiment of its time, was conceived and sponsored by the American Association of State

More information

Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia

Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia Roller-Compacted Concrete Pavement: Design and Construction Pavement Thickness esign and RCC-Pave Software Gregory E. Halsted, P.E. Pavements Engineer Portland Cement Association October 24, 2006 Atlanta,

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Shotcrete Quality Control and Testing for an Underground Mine in Canada

Shotcrete Quality Control and Testing for an Underground Mine in Canada Shotcrete Quality Control and Testing for an Underground Mine in Canada By Dudley R. (Rusty) Morgan and Mazin Ezzet AMEC Earth & Environmental, a division of AMEC Americas Limited SHOTCRETE FOR AFRICA

More information

The Strength of Concrete

The Strength of Concrete Chapter The Strength of Concrete.1 The Importance of Strength.2 Strength Level Required KINDS OF STRENGTH. Compressive Strength.4 Flexural Strength.5 Tensile Strength.6 Shear, Torsion and Combined Stresses.7

More information

Formwork for Concrete

Formwork for Concrete UNIVERSITY OF WASHINGTON DEPARTMENT OF CONSTRUCTION MANAGEMENT CM 420 TEMPORARY STRUCTURES Winter Quarter 2007 Professor Kamran M. Nemati Formwork for Concrete Horizontal Formwork Design and Formwork Design

More information

PCI BIG BEAM COMPETITION

PCI BIG BEAM COMPETITION PCI BIG BEAM COMPETITION Official Rules for the PCI Engineering Design Competition Academic Year 2015-16 PROGRAM The PCI Student Education Committee is inviting entries from students to participate in

More information

The First Commandment for floor slabs:

The First Commandment for floor slabs: The First Commandment for floor slabs: P for the Practitioner Thou Shalt Not Curl Nor Crack...(hopefully) by Wayne W. Walker and Jerry A. Holland LL FLOOR SLABS CURL, except Aunder unusual conditions or

More information

1.5 Concrete (Part I)

1.5 Concrete (Part I) 1.5 Concrete (Part I) This section covers the following topics. Constituents of Concrete Properties of Hardened Concrete (Part I) 1.5.1 Constituents of Concrete Introduction Concrete is a composite material

More information

Bonding Agents: The Good, the Bad, and What Works. Bond with Your Concrete

Bonding Agents: The Good, the Bad, and What Works. Bond with Your Concrete Bonding Agents: The Good, the Bad, and What Works Bond with Your Concrete Jose DonJuan Graduate Research Assistant Kyle A. Riding, Ph.D., P.E. Associate Professor Department of Civil Engineering Kansas

More information

Rehabilitation Strategies for Bonded Concrete Overlays of Asphalt Pavements

Rehabilitation Strategies for Bonded Concrete Overlays of Asphalt Pavements University of Pittsburgh Rehabilitation Strategies for Bonded Concrete Overlays of Asphalt Pavements Authors: J. M Vandenbossche S. Sachs August 2013 1. Introduction Bonded concrete overlays of asphalt

More information

Quality Assurance Concepts. Outline

Quality Assurance Concepts. Outline Quality Assurance Concepts Peter C. Taylor Outline What is quality? Who cares? How do we get it? What is the important stuff? 1 Defining Quality Simple Definition (Philip Crosby) Quality: Conformance to

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

More information

SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION 623.10 CONCRETE BONDING COMPOUND.

SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION 623.10 CONCRETE BONDING COMPOUND. SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION 623.10 CONCRETE BONDING COMPOUND. 623.10.1 Description. This work shall consist of preparing the surface,

More information

Guidelines for Durable Driveways, Carports Patios, Walks, Garage Floors

Guidelines for Durable Driveways, Carports Patios, Walks, Garage Floors Guidelines for Durable Driveways, Carports Patios, Walks, Garage Floors The Right Concrete Mix Placing and Finishing Joints Correctly Spaced Curing for Durability "Concrete durability is the ability to

More information

Chapter 8. Flexural Analysis of T-Beams

Chapter 8. Flexural Analysis of T-Beams Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

Concrete for industrial floors

Concrete for industrial floors Published October 2000 Reprinted October 2004 One of a series of publications produced in conjunction with the following organizations, and part-funded by DETR. Association of Concrete Industrial Flooring

More information

RESEARCH PROJECT NO. 2005-053 EVALUATION OF TUF-STRAND FIBER CONCRETE ADDITIVE

RESEARCH PROJECT NO. 2005-053 EVALUATION OF TUF-STRAND FIBER CONCRETE ADDITIVE RESEARCH PROJECT NO. 2005-053 EVALUATION OF TUF-STRAND FIBER CONCRETE ADDITIVE FINAL REPORT DECEMBER 2009 Prepared by: Tyson R. Clouser, P.E. PENNSYLVANIA DEPARTMENT OF TRANSPORTATION BUREAU OF CONSTRUCTION

More information

Chapter 2 Basis of design and materials

Chapter 2 Basis of design and materials Chapter 2 Basis of design and materials 2.1 Structural action It is necessary to start a design by deciding on the type and layout of structure to be used. Tentative sizes must be allocated to each structural

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

Mass Concrete. Robert Moser CEE8813A Material Science of Concrete. Definitions & Standards, Thermal Cracking, and Temperature Rise

Mass Concrete. Robert Moser CEE8813A Material Science of Concrete. Definitions & Standards, Thermal Cracking, and Temperature Rise Mass Concrete Robert Moser CEE8813A Material Science of Concrete Lecture Overview General Overview Definitions & Standards, Thermal Cracking, and Temperature Rise Temperature & Stress Prediction Factors

More information

TABLE OF CONTENTS. Roof Decks 172 B, BA, BV Deck N, NA Deck. Form Decks 174.6 FD,.6 FDV Deck 1.0 FD, 1.0 FDV Deck 1.5 FD Deck 2.0 FD Deck 3.

TABLE OF CONTENTS. Roof Decks 172 B, BA, BV Deck N, NA Deck. Form Decks 174.6 FD,.6 FDV Deck 1.0 FD, 1.0 FDV Deck 1.5 FD Deck 2.0 FD Deck 3. Pages identified with the NMBS Logo as shown above, have been produced by NMBS to assist specifiers and consumers in the application of New Millennium Building Systems Deck products. Pages identified with

More information

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE SUDHEER JIROBE 1, BRIJBHUSHAN.S 2, MANEETH P D 3 1 M.Tech. Student, Department of Construction technology,

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

Joint Rehabilitation. Driving Forces for Concrete Pavement Joint Repairs

Joint Rehabilitation. Driving Forces for Concrete Pavement Joint Repairs Long Life Concrete Pavement Joint Performance Joint Rehabilitation Gary Fick, Trinity Construction Management Services, Inc. Representing the National CP Tech Center Driving Forces for Concrete Pavement

More information

September 1, 2003 CONCRETE MANUAL 5-694.900 CONCRETE PAVEMENT REHABILITATION 5-694.900

September 1, 2003 CONCRETE MANUAL 5-694.900 CONCRETE PAVEMENT REHABILITATION 5-694.900 September 1, 2003 CONCRETE MANUAL 5-694.900 5-694.901 GENERAL CONCRETE PAVEMENT REHABILITATION 5-694.900 Concrete Pavement Rehabilitation is an extremely valuable tool of the Minnesota Department of Transportation

More information

CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION

CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION General 7 www.meadowburke.com 877-518-7665 MB1109 CONCRETE FLOOR SLAB AND CASTING BED CONSTRUCTION Quality Construction Begins at Ground Level Everything

More information

738-B-297 POLYMERIC CONCRETE BRIDGE DECK OVERLAY. (Adopted 02-20-14)

738-B-297 POLYMERIC CONCRETE BRIDGE DECK OVERLAY. (Adopted 02-20-14) POLYMERIC CONCRETE BRIDGE DECK OVERLAY (Adopted 02-20-14) Description The polymeric concrete bridge deck overlay shall consist of an epoxy polymer that acts together with special aggregate to form an overlay

More information

FOAMULAR LT40, 400 and 600 insulations with minimum compressive strengths of

FOAMULAR LT40, 400 and 600 insulations with minimum compressive strengths of Technical Guide FOAMULAR Extruded Polystyrene Insulation For Cold Storage Applications FOAMULAR extruded polystyrene insulation is suitable for virtually all cold storage insulating needs, including floors,

More information

SPECIAL NOTE FOR ASPHALT WATERPROOFING MIX FOR BRIDGE-DECK OVERLAYS AND ADJACENT APPROACHES

SPECIAL NOTE FOR ASPHALT WATERPROOFING MIX FOR BRIDGE-DECK OVERLAYS AND ADJACENT APPROACHES SPECIAL NOTE FOR ASPHALT WATERPROOFING MIX FOR BRIDGE-DECK OVERLAYS AND ADJACENT APPROACHES 1. DESCRIPTION. Asphalt Waterproofing Mix (AWM) is a highly elastomeric, polymermodified, impermeable asphalt

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 93-103, Article ID: IJCIET_07_01_008 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Nur Yazdani, Ph.D., P.E. Professor. Lisa Spainhour, Ph.D. Associate Professor. Saif Haroon Research Assistant. FDOT Contract No. BC-386.

Nur Yazdani, Ph.D., P.E. Professor. Lisa Spainhour, Ph.D. Associate Professor. Saif Haroon Research Assistant. FDOT Contract No. BC-386. Florida A & M University - Florida State University College of Engineering Department of Civil & Environmental Engineering APPLICATION OF FIBER REINFORCED CONCRETE IN THE END ZONES OF PRECAST PRESTRESSED

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Sustainable Concrete: The Role of Performance-based Specifications

Sustainable Concrete: The Role of Performance-based Specifications Sustainable Concrete: The Role of Performance-based Specifications Lionel Lemay 1, Colin Lobo 2 and Karthik Obla 3 1 National Ready Mixed Concrete Association, 1244 Crane Blvd., Libertyville, IL, 60048;

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

Lab 1 Concrete Proportioning, Mixing, and Testing

Lab 1 Concrete Proportioning, Mixing, and Testing Lab 1 Concrete Proportioning, Mixing, and Testing Supplemental Lab manual Objectives Concepts Background Experimental Procedure Report Requirements Discussion Prepared By Mutlu Ozer Objectives Students

More information

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010 County: Any Hwy: Any Design: BRG Date: 7/2010 SLAB DESIGN EXAMPLE Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design

More information

Basics of Reinforced Concrete Design

Basics of Reinforced Concrete Design Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete

More information

REHABILITATION OF UNDERGROUND SEWER LATERAL PIPES WITH CURED-IN-PLACE-PIPE LINER SECTION 02542

REHABILITATION OF UNDERGROUND SEWER LATERAL PIPES WITH CURED-IN-PLACE-PIPE LINER SECTION 02542 1.0 INTENT REHABILITATION OF UNDERGROUND SEWER LATERAL PIPES 1.01 It is the intent of this specification to provide for the reconstruction of pipelines and conduits by the installation of a resin-impregnated

More information

Installation PowerPoint for Grasscrete Formers

Installation PowerPoint for Grasscrete Formers Installation PowerPoint for Grasscrete Formers 1 This document describes the two single-use tools utilized to create the Grasscrete product. The original Former is a vacuum formed light gauge plastic mold

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

Properties of Fresh Concrete

Properties of Fresh Concrete Properties of Fresh Concrete Introduction The potential strength and durability of concrete of a given mix proportion is very dependent on the degree of its compaction. It is vital, therefore, that the

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

HIGH-PERFORMANCE CONCRETE IN A BRIDGE IN RICHLANDS, VIRGINIA. Celik Ozyildirim, Ph.D. Principal Research Scientist

HIGH-PERFORMANCE CONCRETE IN A BRIDGE IN RICHLANDS, VIRGINIA. Celik Ozyildirim, Ph.D. Principal Research Scientist HIGH-PERFORMANCE CONCRETE IN A BRIDGE IN RICHLANDS, VIRGINIA Celik Ozyildirim, Ph.D. Principal Research Scientist José P. Gomez, Ph.D., P.E. Senior Research Scientist (The opinions, findings, and conclusions

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

Two-Way Post-Tensioned Design

Two-Way Post-Tensioned Design Page 1 of 9 The following example illustrates the design methods presented in ACI 318-05 and IBC 2003. Unless otherwise noted, all referenced table, figure, and equation numbers are from these books. The

More information

The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma

The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma Bart B. Barrett, B.S., P.E.1 Kerry S. Lee, M.B.A., P.E., M. ASCE2 Erik L. Nelson, Ph.D., P.E., M. ASCE3

More information

CAUSES, EVALUATION AND REPAIR OF CRACKS IN CONCRETE

CAUSES, EVALUATION AND REPAIR OF CRACKS IN CONCRETE 3.0 Causes and control of cracking: 3.1 Plastic Shrinkage Cracking: It occurs within 1 to 8 hours after placing, when subjected to a very rapid loss of moisture caused by a combination of factors, which

More information

Chapter - 3 Design of Rectangular Beams and One-way Slabs

Chapter - 3 Design of Rectangular Beams and One-way Slabs Rectangular Beams and One-way Slabs Page 1 of 9 Chapter - 3 Design of Rectangular Beams and One-way Slabs 12 h A 12 strip in a simply supported one-way slab h b=12 L Rectangular Beams and One-way Slabs

More information

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training Foundations 65 5 FOUNDATIONS by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. 66 Foundations Foundations 67 FOUNDATIONS Let's assume that the retrofit has been done correctly from the roofline

More information

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated. Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

More information

Construction Specifications for Keyhole Pavement Coring and Reinstatement

Construction Specifications for Keyhole Pavement Coring and Reinstatement F I N A L Construction Specifications for Keyhole Pavement Coring and Reinstatement Gas Technology Institute 1700 S. Mount Prospect Rd. Des Plaines, Illinois 60018 www.gastechnology.org Version 13 October

More information

Preservation, Repair and Rehabilitation of Concrete Bridges, Pavements and Tunnels in Virginia

Preservation, Repair and Rehabilitation of Concrete Bridges, Pavements and Tunnels in Virginia Preservation, Repair and Rehabilitation of Concrete Bridges, Pavements and Tunnels in Virginia International Concrete Repair Institute Spring Convention Reno, Nevada March 20, 2014 Michael Sprinkel, PE.,

More information

CA-48 TECHNICAL SPECIFICATION

CA-48 TECHNICAL SPECIFICATION CA-48 TECHNICAL SPECIFICATION SafeLane surface overlay Pavement Substrate A Cargill Deicing Technology Product Providing customers with deicing solutions that save lives and enhance commerce. Helping to

More information

The Concrete Life Cycle: Maintain to Sustain. Fred Goodwin BASF Construction Chemicals (EB-N) Beachwood OH

The Concrete Life Cycle: Maintain to Sustain. Fred Goodwin BASF Construction Chemicals (EB-N) Beachwood OH The Concrete Life Cycle: Maintain to Sustain Fred Goodwin BASF Construction Chemicals (EB-N) Beachwood OH What is Concrete? Concrete: Instant rock -just add water to make a hard wet sponge. A composite

More information

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS 8601 North Black Canyon Highway Suite 103 Phoenix, AZ 8501 For Professionals Engaged in Post-Tensioning Design Issue 14 December 004 DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS by James D. Rogers 1 1.0

More information

Cold Weather Concrete Practices

Cold Weather Concrete Practices Cold Weather Concrete Practices The Information below is an outline of common practice for residential foundation placement and winter construction utilize Edmonton and surrounding Area. Conditions in

More information

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

More information

CONCRETE REPAIR GUIDELINES. Concrete repairs can be broken down into four basic types, plus special repairs and planing.

CONCRETE REPAIR GUIDELINES. Concrete repairs can be broken down into four basic types, plus special repairs and planing. CONCRETE REPAIR GUIDELINES Concrete repairs can be broken down into four basic types, plus special repairs and planing. Note: It is recommended that investigation into soundness of pavement be performed

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information

Advancements in Permeable Pavements

Advancements in Permeable Pavements Advancements in Permeable Pavements Engineers Workshop Saint Vincent College March 14 & 15 2013 Permeable Pavements There are several different words that are used to describe a pavement that water drains

More information

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Ming-Gin Lee 1,a, Yi-Shuo Huang 1,b 1 Department of Construction Engineering, Chaoyang University of Technology,Taichung

More information

High Performance PSA in Sheet Membrane in Water Protection

High Performance PSA in Sheet Membrane in Water Protection High Performance PSA in Sheet Membrane in Water Protection Xia Cao, Senior R&D Chemist, W. R. Grace, Cambridge MA 02140 Jyoti Seth, Strategic Program Leader, W. R. Grace, Cambridge MA 02140 Concrete is

More information

The ACI 562 Repair Code

The ACI 562 Repair Code The ACI 562 Repair Code Code Requirements for Evaluation, Repair and Rehabilitation of Concrete Buildings by Keith Kesner 1 Chair ACI 562 Lawrence Kahn 2 Former Chair ACI 562 1. Associate WDP & Associates,

More information

Lessons 6 and 7 Foam Bridge Experiment- Forces and Stresses Lab

Lessons 6 and 7 Foam Bridge Experiment- Forces and Stresses Lab Lessons 6 and 7 Foam Bridge Experiment- Forces and Stresses Lab 1. Background All industrial and building materials undergo forces that they must withstand to function as designed. Concrete is strong under

More information

NAPCA BULLETIN 18-99 APPLICATION PROCEDURES FOR CONCRETE WEIGHT COATING APPLIED BY THE COMPRESSION METHOD TO STEEL PIPE

NAPCA BULLETIN 18-99 APPLICATION PROCEDURES FOR CONCRETE WEIGHT COATING APPLIED BY THE COMPRESSION METHOD TO STEEL PIPE NAPCA BULLETIN 18-99 APPLICATION PROCEDURES FOR CONCRETE WEIGHT COATING APPLIED BY THE COMPRESSION METHOD TO STEEL PIPE GENERAL a. These specifications may be used in whole or in part by any party without

More information

INTRODUCTION TO CONCRETE PAVEMENTS

INTRODUCTION TO CONCRETE PAVEMENTS INTRODUCTION TO CONCRETE PAVEMENTS Abstract Arvo Tinni Tinni Management Consulting February 2013 This paper describes the experiences and design methodologies for concrete pavements in Australia. It is

More information

FACT SHEET: HYDRATED LIME FOR MASONRY PURPOSES

FACT SHEET: HYDRATED LIME FOR MASONRY PURPOSES FACT SHEET: HYDRATED LIME FOR MASONRY PURPOSES Hydrated Masons Lime Characteristics Type S (Special) hydrated lime is a fine, white, high purity product which has been specially hydrated for convenient,

More information

APE T CFRP Aslan 500

APE T CFRP Aslan 500 Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP

More information

SPECIFICATIONS. INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP)

SPECIFICATIONS. INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP) SPECIFICATIONS INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP) Part 1 General 1.1 CONFORMITY Conforms to the requirements of the general conditions of the contract.

More information

Chapter 7: Pavement Rehabilitation 7-1 Asphalt Pavement Overlays 7-1 Surface Preparation Methods 7-2 Concrete Pavement Preparation 7-3 Recycling

Chapter 7: Pavement Rehabilitation 7-1 Asphalt Pavement Overlays 7-1 Surface Preparation Methods 7-2 Concrete Pavement Preparation 7-3 Recycling 7-1 Asphalt Pavement Overlays 7-1 Surface Preparation Methods 7-2 Concrete Pavement Preparation 7-3 Recycling Asphalt Pavements 7-7 Chapter 7 Pavement Rehabilitation Pavement rehabilitation can be accomplished

More information

Investigation of Foundation Failure. Step 1 - Data Collection. Investigation Steps

Investigation of Foundation Failure. Step 1 - Data Collection. Investigation Steps Foundations on Expansive Clay Soil Part 3 - Investigation of Failed Foundations Presented by: Eric Green, P.E. Structural Engineer Slide 1 Copyright Eric Green 2005 Investigation of Foundation Failure

More information

Section 5A: Guide to Designing with AAC

Section 5A: Guide to Designing with AAC Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...

More information

EXPANDED POLYSTYRENE (EPS) INSULATION BOARD SPECIFICATIONS

EXPANDED POLYSTYRENE (EPS) INSULATION BOARD SPECIFICATIONS EXPANDED POLYSTYRENE (EPS) INSULATION BOARD SPECIFICATIONS 1. SCOPE 1.1 This specification covers the type, physical properties and dimensions of Expanded Polystyrene Insulation Board intended for use

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 315 320, Article ID: IJCIET_07_02_027 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

SECTION 18 - CAST IN PLACE HIGH PERFORMANCE CONCRETE (HPC)

SECTION 18 - CAST IN PLACE HIGH PERFORMANCE CONCRETE (HPC) SECTION 18 - CAST IN PLACE HIGH PERFORMANCE CONCRETE (HPC) 1.0 DESCRIPTION This section details the requirements for materials and methods in the proportioning, mixing, transporting, placing, finishing

More information

Solutions Dufferin Concrete Newsletter June 2014 Fast Track Concrete Page 5

Solutions Dufferin Concrete Newsletter June 2014 Fast Track Concrete Page 5 Strength. Performance. Passion. 2 3 4 Low Carbon Concrete Winning in the water Structural Shotcrete Reducing CO2 emissions News from the Holcim A durable, affordable up to 50 % World solution 5 A specialized

More information

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance Abstract Testing and appraisal of polymer effect as an additive on asphalt mixture performance Hamid Sabbagh mollahosseini*,golazin Yadollahi**, Ershad Amoosoltani*** *, ***Executive of Engineering and

More information

Foundation Code compliance and Best Practices By Michael Coello

Foundation Code compliance and Best Practices By Michael Coello Foundation Code compliance and Best Practices By Michael Coello Background Graduated cum laude in 1992 with a Bachelor of Science degree in finance from University of Wisconsin - Parkside Started poured

More information

cement Masonry Cement Engineered for quality and reliability, Lafarge cements for masonry deliver consistent performance. page 2 Lafarge Cement

cement Masonry Cement Engineered for quality and reliability, Lafarge cements for masonry deliver consistent performance. page 2 Lafarge Cement cement Masonry Cement Engineered for quality and reliability, Lafarge cements for masonry deliver consistent performance. page 2 Lafarge Cement Lafarge in North America The Lafarge Group is the world leader

More information

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim. CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

More information

These recommendations generally follow the Construction Specifications Institute (CSI) Master Format.

These recommendations generally follow the Construction Specifications Institute (CSI) Master Format. TECHNICAL BULLETIN Suggested Specification for White Concrete Floors Specifier Notes: 1. The Architect or Engineer should review the contents and adopt the suggested language as appropriate, ensuring it

More information

SP-276 5 FRC PERFORMANCE COMPARISON: UNIAXIAL DIRECT TENSILE TEST, THIRD-POINT BENDING TEST, AND ROUND PANEL TEST

SP-276 5 FRC PERFORMANCE COMPARISON: UNIAXIAL DIRECT TENSILE TEST, THIRD-POINT BENDING TEST, AND ROUND PANEL TEST SP-276 5 FRC PERFORMANCE COMPARISON: UNIAXIAL DIRECT TENSILE TEST, THIRD-POINT BENDING TEST, AND ROUND PANEL TEST Shih-Ho Chao, Jae-Sung Cho, Netra B. Karki, Dipti R. Sahoo, and Nur Yazdani Synopsis: The

More information

SECTION 02795 UNI PERMEABLE INTERLOCKING CONCRETE PAVEMENT

SECTION 02795 UNI PERMEABLE INTERLOCKING CONCRETE PAVEMENT SECTION 02795 UNI PERMEABLE INTERLOCKING CONCRETE PAVEMENT Note: This guide specification is intended for use in the U.S. It describes construction of permeable interlocking concrete pavers on a permeable,

More information

Hilti KWIK HUS-EZ I (KH-EZ I) Internally Threaded Carbon Steel Screw Anchor

Hilti KWIK HUS-EZ I (KH-EZ I) Internally Threaded Carbon Steel Screw Anchor Hilti KWIK HUS-EZ I (KH-EZ I) Internally Threaded Carbon Steel Screw Anchor Supplement to Hilti North American Product Technical Guide Volume 2: Anchor Fastening Technical Guide 2011 Edition 3.3. KWIK

More information

A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures

A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures 1 P. Jyotsna Devi, 2 Dr. K. Srinivasa Rao 1,2 Dept. of Civil Engg, Andhra University, Visakhapatnam,

More information

Concrete Pavement Rehabilitation: Repairing Florida One Slab At A Time

Concrete Pavement Rehabilitation: Repairing Florida One Slab At A Time : Repairing Florida One Slab At A Time 2012 FTBA Conference Andre Sutherland, P.E. FDOT District 2 Jacksonville Construction Contents Describe Scope Characteristics Sequence of operation for slab removal

More information

NCMA TEK CONCRETE MASONRY FOUNDATION WALL DETAILS. TEK 5-3A Details (2003)

NCMA TEK CONCRETE MASONRY FOUNDATION WALL DETAILS. TEK 5-3A Details (2003) NCMA TEK National Concrete Masonry Association an information series from the national authority on concrete masonry technology CONCRETE MASONRY FOUNDATION WALL DETAILS TEK 5-3A Details (2003) Keywords:

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information