Neetha John 1, Mohandas R 2, Suja C Rajappan 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road,Coimbatore-62,

Size: px
Start display at page:

Download "Neetha John 1, Mohandas R 2, Suja C Rajappan 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road,Coimbatore-62,"

Transcription

1 Energy Saving Mechanism Using Variable Frequency Drives Neetha John 1, Mohandas R 2, Suja C Rajappan 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road,Coimbatore-62, Affiliated to Anna University of Chennai. 2 Assistant Professor/Department of EEE, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road, Coimbatore-62, Affiliated to Anna University of Chennai. Abstract Many industrial applications require variable flow control of fluid (air, chemical gases, water and liquid chemicals). The traditional method of such flow control is to use an induction motor at constant speed with 50-Hz power supply and then control the flow by means of a throttle. Many fixed-speed motor load applications that are supplied direct from AC line power can save energy when they are operated at variable-speed, by means of VFD. Such energy cost savings are especially used in variable-torque centrifugal fan and pump applications, where the load s torque and power vary with the square and cube, respectively of the speed. This change gives a large power reduction compared to fixed-speed operation for a relatively small reduction in speed. Also by Using a variable frequency drive to control the fluid flow with a fully open throttle saves a considerable amount of power. As most of the drives operate at part load most of the time, the accumulated energy saving or the corresponding financial benefit, may be substantial over a prolonged period of time. Because this type of fluid flow control is common in industry, widespread application of variable-frequency drives with power electronics area can help in large energy conservation. The main aim of this paper is to reduce the energy consumption by the implementation of VFD and hence the proper control of fluid flows. Keywords Variable frequency drive, Adjustable speed drive, Variable voltage variable frequency drive, Energy conservation, Affinity law I. INTRODUCTION Energy in its different form is the basic input for life. It is equally essential for the improvement quality of life. Energy crisis has a bearing on all socioeconomic development of a country and its sovereignty. There has been an enormous increase in the global demand for energy in recent years as a result of industrial development and population growth. Since, our conventional sources of energy or fossil fuels are running short; it is now the cry of the day to work harder for the development, improvement and up gradation of renewable sources of energy with protection, conservation and existing conventional sources. The reduction in the amount of energy consumed in a process or system, or by an organization or society through economy and elimination of wastage is called as energy conservation. 784 Energy conservation is necessary because with the ever increasing demand, need for electrical power can only be meet by conserving electrical power in addition to installation of new generating units. A major proportion of electrical power in a plant is consumed by electrical derives. Significant amount of electrical energy can be saved by the use of efficient and rigid type of electrical drives. Variable frequency drive is one of the many wellknown energy efficient drives. Within the industry, a variable frequency drive is commonly referred to as inverter. The speed controller is also known by other names such as, Variable Speed Drive (VSD), Adjustable Speed Drive (ASD), and Variable Voltage Variable Frequency Drive (VVVF). The growing popularity of variable frequency drives is due to its ability to control the speed of induction motors, which are the most commonly, used motors in industries. Traditionally, an induction motor is used for constant speed and constant torque applications and when variable speed or torque is required, a DC motor or wound ac motor is used. But now AC induction motors with Variable Frequency Drives are used for variable speed applications. Such drives reduce the energy consumption of motors and increase the energy efficiency of plants.. Energy crisis has a bearing on all socioeconomic development of a country and its sovereignty. Energy conservation is necessary because with the ever increasing demand, need for electrical power can only be meet by conserving electrical power in addition to installation of new generating units. Variable frequency drive is applicable for the air flow control to boiler of thermal power plants. At present, the air flow to boiler is controlled by a control vane mechanism associated with Forced Draft fan and induction motor. The replacement of control vane mechanism by means of a variable frequency drive or variable speed drive reduces the energy consumption of motor. A variable-frequency drive is a system for controlling the rotational speed of an alternating current electric motor by controlling the frequency of the electrical power supplied to the motor. It is a specific type of adjustable-speed drive. Variable-frequency drives are also known as AC drives or inverter drives.

2 Variable-frequency motors on fans save energy by allowing the volume of air moved to match the system demand. In variable speed applications, power required varies roughly with the cube of the speed. This is referred to as the Affinity laws, which define the relationships between speed and power. The implementation of Variable Frequency Drive helps the captive power plant to save about 23% of electrical energy consumption. Industrial processes are characterized by the necessity for variation and optimization of the process to achieve satisfactory products and to achieve the most efficient and economic method of production. This calls for the need to Fig 1: Comparison between power and flow for different fan control control the flow rates of materials throughout the plant so types that the most satisfactory condition can be achieved against the many plant variables. A variable frequency drive (VFD) is a type of adjustable speed drive used to control the rotational speed of an alternating current electric motor by adjusting the frequency and voltage applied to the motor. Electric motors drive many types of equipment, including fans, pumps, and air compressors. Although equipment can generally operate at velocities less than the maximum design speed, motors typically drive equipment at a constant rate. Flow and pressure are regulated through the use of a throttling device, such as a valve, damper, or bypass. A variable frequency drive provides a more efficient way to control varying flow rates and pressures. II. BENEFITS OF VFD The use of variable frequency drive control offers several advantages. The most significant benefit is its potential to reduce electrical energy consumption and demand from motor-driven processes. Figure 1 below compares the relative power requirements of a fan at different flow rates, using three types of throttling control: outlet damper control, variable inlet vane control, and VFD control. Although VFDs save far more energy than throttling, the technology has not yet achieved widespread adoption. According to the Bonneville Power Administration, throttling continues as one of the most common and inefficient methods to control a fan or pump. Variable frequency drives also have the potential to reduce system maintenance and related costs. Control with a VFD affords the capability to soft start a motor, which means the motor, can be brought up to its running speed slowly rather than abruptly starting and stopping. Similarly, running the motor at lower speeds extends the lifetime of other equipment components, including shafts and bearings. In addition to enabling precise speed control of applications such as conveyors or winders, other parameters such as pressure, flow and even temperature may be accurately controlled. The efficiency of the electrical supply is increased and more of the electrical current drawn is used to drive the load. Hence the implementation of VFD improves the power factor of the system. In addition to this VFD provides good dynamic response. This can be achieved by rapid adjustment of speed, torque and power and hence gives better control in high speed applications. In some applications it is also possible to operate motors at higher speeds than their nominal speeds. The other advantage of VFD is that it is possible to interface VFDs to wider process control systems such as supervisory control, data acquisition (SCADA) systems and building management systems (BMS). Hence VFD is able to compute intelligence and communication systems. III. VFDS OPERATION AND ENERGY SAVING PRINCIPLES A VFD can reduce energy consumption of a motor by as much as 60%. This is due to the fact that they control the speed of the motor by altering the frequency and therefore the power supplied to it. 785

3 Even a small reduction in the rotational speed can give At 50% speed for 20% of time; significant saving in the energy consumed by the motor. In = 50% ³ order to do so we take a closer look to the so called affinity laws which are used in hydraulics to express relationships = 20* (50/100) ³ between the variables involved in the operation and = 2.5 hp performance of rotary machines such as pumps and fans. = 2.5 * * (20% *8760 hr) * 5/kWh Most HVAC equipment is designed to perform during peak = Rs.16337/- loads. These loads occur rarely during the operating year. At 80% speed for 50% of time; To control flow during off-max load conditions, flow = 80% ³ control devices such as dampers, valves, inlet guide vanes and bypass systems are used.these throttling devices are effective, but not energy efficient. Using variable frequency = 20* (80/100) ³ drives (VFD) varies the speed of fans and pumps, referred = hp to as the affinity laws, allows the equipment to meet the = * * (50% *8760 hr)* 5/kWh partial load requirement and save energy. Affinity Laws are = Rs /- used in hydraulic and HVAC system to express the relation At 100% speed for 30% of time; between several variables involved in pump and fan = 20 hp performance such as (such as, shaft speed, and power). = 20 * * (30%*8760 hr)*5/kwh They apply to pumps, fans, and hydraulic turbines. = Rs /- Flow is directly proportional to speed; Q2/Q1 = Annual cost savings from installing a VFD on this N2/N1 motor is, Torque required is proportional to speed squared; = ( ) T2/T1 = (N2/N1)² = Rs / Power is proportional to the cube of the shaft speed; = 42% of the cost P2/P1 = (N2/N1)³ IV. HOW MUCH ENERGY CAN SAVE? The potential energy savings from installing a VFD is illustrated in the following example. Consider a 20- horsepower motor that drives a centrifugal pump. The pump operates at full speed for 365 days annually, 24 hours each day. The operational cost is calculated with the following formula: Cost = Power (kw) * Running Time *Cost/kwh So, when constantly running at 100% speed (and assuming Rs.5/kWh), the cost is: 100% = 20 hp *.746 kw/hp *365 *24 *5/kWh = Rs /- Since this particular pump accommodates a varying load, the pump does not need to be run at full speed throughout the day and therefore, a variable frequency drive can be employed to reduce the pump motor speed. The pump load schedule is: 20% of the time at 50% full speed; 50% of the time at 80% full speed; and 30% of the time at 100% full speed. The savings from the installation of a VFD to control a motor are estimated using the pump affinity laws, which estimate that the power required by a motor is proportional to the cube of the speed. V. HOW DOES A VFD WORK? As we know, the induction motors are the workhorse of industry, which will rotate at a fixed speed that is determined by the frequency of the supply voltage. Alternating current applied to the stator windings produces a magnetic field that rotates at synchronous speed. This speed may be calculated by dividing line frequency by the number of magnetic pole pairs in the motor winding. A four-pole motor, for example, has two pole pairs, and therefore the magnetic field will rotate 60 Hz / 2 = 30 revolutions per second, or 1800 rpm. The rotor of an induction motor will attempt to follow this rotating magnetic field, and, under load, the rotor speed "slips" slightly behind the rotating field. This small slip speed generates an induced current, and the resulting magnetic field in the rotor produces torque. Since an induction motor rotates near synchronous speed, the most effective and energy-efficient way to change the motor speed is to change the frequency of the applied voltage. VFDs convert the fixed-frequency supply voltage to a continuously variable frequency, thereby allowing adjustable motor speed. A VFD converts 50 Hz power, for example, to a new frequency in two stages: the rectifier stage and the inverter stage. The conversion process incorporates three functions: 786

4 Rectifier stage: A full-wave, solid-state rectifier convert TABLE I three- phase 50 Hz power from a standard 208, 460, 575 or Air Flow Control Using VFD higher utility supply to either fixed or adjustable DC voltage. The system may include transformers if higher Time Air Speed Power supply voltages are used. Inverter stage: Electronic switches - power transistors or thyristors - switch the rectified DC on and off, and produce a current or voltage waveform at the desired new frequency. The amount of distortion depends on the design of the inverter and filter. Control system: An electronic circuit receives feedback information from the driven motor and adjusts the output voltage or frequency to the selected values. Usually the output voltage is regulated to produce a constant ratio of voltage to frequency (V/Hz). Controllers may incorporate many complex control functions. Converting DC to variable frequency AC is accomplished using an inverter. Most currently available inverters use pulse width modulation (PWM) because the output current waveform closely approximates a sine wave. Fig 2: Circuit Diagram of VFD Steam load (ton/hr) (ton/hr) (rpm) (kw) Energy (kwh)

5 VI. CALCULATIONS Average energy consumed per day with VFD (E1) = 1791 kwh Average energy consumed per day without VFD (E2) = power * time = 3*3.3*1000*24*0.89*24 = 2930 kwh Energy savings per day with VFD = E2-E1 = = 1139 kwh Energy savings per year with VFD =365*(E2-E1) = kwh Profit = Energy savings per year with VFD* Unit cost of Energy Unit cost of Energy can be calculated based on the cost of the captive power. Let us take the unit cost of captive power =Rs.12.49/- Profit =Energy savings per year * Unit cost of Energy =416000*12.49 = 52 lakhs The table I describes the air flow control using variable frequency drive. Without using variable frequency drive, the air flow can be controlled by some control vane mechanism. But the energy consumption will be very high, since the motor is running at running at fixed speed. Hence by using variable frequency drive, we can control the speed of motor and hence the flow can be fully regulated. According to affinity law we can say that reducing the speed of motor reduces the power consumption also. VII. SIMULATION RESULTS The computer simulation result of the variable frequency drive fed induction motor is done by Matlab/simulink and the results are presented. The induction motor is fed by a current-controlled PWM inverter. The speed control loop uses a proportional-integral controller to produce the quadrature-axis current reference which controls the motor torque. Here the controlled switch used is IGBT. The speed control can be done by using v/f control. Fig 3: Open Loop speed control of induction motor using VFD The circuit diagram for Open loop speed control of Induction Motor using variable frequency drive is shown in Fig. 3. The specifications used for simulation are phasephase rms voltage = 311V, input line frequency=50hz, the induction motor machine parameter is about 215 hp (160kw), 400 V, 50 Hz, 1487 rpm and 50 Nm The gating signals are shown in fig 4.Fig 5 shows the simulation result for the applied frequency is about 120 Hz. Here 120 degree mode of conduction is applied. In this type of control, each switch conducts for 120. Only two switches remain on at any instant of time. The conduction sequence of switches is 61, 12, 23, 34, 45, 56, & 61. For 120 mode of operation, the duration of pulse width will be 33.33% (120/360). 788

6 Fig 4: Gating Signals for 120 Mode of Conduction Fig 5b : Power Waveform The above fig 5a& 5b represents the speed and the power waveform of the three phase induction motor respectively. The frequency given to the motor is about 120 Hz. Hence the time period will be T=1/120 = 8.33ms. When supplying this frequency, in accordance with the motor specifications, the motor is assumed to be held constant at 1373 rpm and the power consumption is nearly about 161 kw. Fig 5a : Speed Waveform 789 Fig 6: Closed Loop speed control of induction motor using VFD

7 The circuit diagram for closed loop speed control of Apart from speed control and energy savings, the uses of Induction Motor using variable frequency drive is shown in Variable Frequency Drives provide soft start, reduction in Fig. 6. In closed loop method, the motor running speed and starting current, and also reduce tear and wear. Also a VFD the reference speed are compared and it is given to a fed induction motor is modeled using open loop and closed controller circuit. So that the motor can always run at the loop and simulated using Matlab. reference speed. Here the reference speed given is 1400 rpm and the waveform shows that the motor running speed REFERENCES is also 1400 rpm. [1] W. Leonhard, Control of electrical drives, 2-nd Ed, Springer, [2] Sergelen B., Electric drive with two parallel synchronous motors Supplied by one current type frequency converter, Prague, [3] F.A.Toliyat, S.G.Campbell, DSP-based electromechanical Motion control, CRC Press, [4] Andreev B.F., Sabinin A., Electric drive. Leningrad, 1983 [5] Dombrovski B.B., Zaichik B.M Asynchronous machine, Leningrad [6] Ilinskii N.F, Fundamental Electric drive, MEI, Moskva, Fig 7: Speed Waveform VIII. CONCLUSIONS In this study it is found that, the speed control of induction motor using variable frequency drive can save energy according to affinity law. According to this assumption a small reduction in speed can save a large amount of energy. [7] A. de Almeida, P. Fonseca, F. Ferreira, F. Guisse, A. Diop, A. Previ S. Russo, H. Falkner, J. Reichert, and K. Malmose, Improving the penetration of energy-efficient motors and drives. [8] A. de Almeida, F. Ferreira, and D. Both, Technical and economical considerations in the application of variable-speed drives with electric motor systems, IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 18. [9] Andreev B.F., Sabinin A., Electric drive., Leningrad, [10] Handbook on Energy Audits and Management,Tata Energy Res. Inst (TERI) New Delhi [11] B.Wu, High Power Converters and AC Drives. Piscataway NJ:IEEE Press [12] F. J. Shinskey, Energy Conservation Through Control. New York: Academic [13] R. J. Kenney, Fans and blowers, Machine Design, Mar. 14, [14] M. K. Langfeldt, Economic considerations of variable speed drives, presented at ASME Energy Technology Conference and Exhibition, Feb. 4, [15] DOE, AMCA: Improving Fan System performance, A SourceBook for Industry, CML Northern Blower Inc

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive

More information

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

FREQUENCY CONTROLLED AC MOTOR DRIVE

FREQUENCY CONTROLLED AC MOTOR DRIVE FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly

More information

Centrifugal Fans and Pumps are sized to meet the maximum

Centrifugal Fans and Pumps are sized to meet the maximum Fans and Pumps are sized to meet the maximum flow rate required by the system. System conditions frequently require reducing the flow rate. Throttling and bypass devices dampers and valves are installed

More information

WIND TURBINE TECHNOLOGY

WIND TURBINE TECHNOLOGY Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems

More information

AC Induction Motor Slip What It Is And How To Minimize It

AC Induction Motor Slip What It Is And How To Minimize It AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because

More information

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,

More information

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial

More information

New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar

New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar Abstract In this paper, various types of speed control methods for the three

More information

Discover the power of e-learning! The Quick Guide to AC Variable Frequency

Discover the power of e-learning! The Quick Guide to AC Variable Frequency The Quick Guide to AC Variable Frequency This ebook is meant as an easy guide to any electrical or electronic engineer or technician, who would like to know how modern ac variable frequency drives work.

More information

Specifying a Variable Frequency Drive s

Specifying a Variable Frequency Drive s Specifying a Variable Frequency Drive s Put on by Bruce Reeves and Jeremy Gonzales Dykman Electrical Covering the Western US For all of your VFD and Soft Start and Motor Needs How To Specify a Variable

More information

Chapter 4.5: Electric Motors, Variable Speed Drives

Chapter 4.5: Electric Motors, Variable Speed Drives Short type questions Chapter 4.5: Electric Motors, Variable Speed Drives 1. The resistance of a motor stator winding at 30 C is 0.264 ohms per phase. What will be the resistance of the stator winding per

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 2, March-April, 2016, pp.19-28, Article ID: IJEET_07_02_003 Available online at http:// http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=2

More information

Rotating Machinery Diagnostics & Instrumentation Solutions for Maintenance That Matters www.mbesi.com

Rotating Machinery Diagnostics & Instrumentation Solutions for Maintenance That Matters www.mbesi.com 13 Aberdeen Way Elgin, SC 29045 Cell (803) 427-0791 VFD Fundamentals & Troubleshooting 19-Feb-2010 By: Timothy S. Irwin, P.E. Sr. Engineer tsi@mbesi.com Rotating Machinery Diagnostics & Instrumentation

More information

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive

More information

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement American Journal of Applied Sciences 3 (1): 1649-1654, 2006 ISSN 1546-9239 2006 Science Publications Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

More information

An Efficient AC/DC Converter with Power Factor Correction

An Efficient AC/DC Converter with Power Factor Correction An Efficient AC/DC Converter with Power Factor Correction Suja C Rajappan 1, K. Sarabose 2, Neetha John 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road, Coimbatore-62,

More information

THIS paper reports some results of a research, which aims to investigate the

THIS paper reports some results of a research, which aims to investigate the FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 2009, 227-234 Determination of Rotor Slot Number of an Induction Motor Using an External Search Coil Ozan Keysan and H. Bülent Ertan

More information

Understanding Variable Speed Drives

Understanding Variable Speed Drives Understanding Variable Speed Drives April 1, 1997 Solomon S. Turkel, Solomon S. When applied properly, the variable frequency drive (VFD) is the most effective motor controller in the industry today. Modern

More information

VARIABLE FREQUENCY DRIVE OPERATION AND APPLICATION OF VARIABLE FREQUENCY DRIVE (VFD) TECHNOLOGY

VARIABLE FREQUENCY DRIVE OPERATION AND APPLICATION OF VARIABLE FREQUENCY DRIVE (VFD) TECHNOLOGY VARIABLE FREQUENCY DRIVE OPERATION AND APPLICATION OF VARIABLE FREQUENCY DRIVE (VFD) TECHNOLOGY Carrier Corporation Syracuse, New York October 2005 TABLE OF CONTENTS INTRODUCTION..........................2

More information

Unidrive M Energy Savings

Unidrive M Energy Savings Unidrive M Energy Savings Why is this important? Some Data: Money, Lots of Money >13.5m electric motors 1Hp or greater installed in US industrial process operations. Industry spends >$33b annually on electricity

More information

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique B.Hemanth Kumar 1, Dr.G.V.Marutheshwar 2 PG Student,EEE S.V. College of Engineering Tirupati Senior Professor,EEE dept.

More information

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. 1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has

More information

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines 36 Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines KEIICHI SHIRAISHI *1 YOSHIHISA ONO *2 YUKIO YAMASHITA *3 MUSASHI SAKAMOTO *3 The extremely slow steaming of ships has become

More information

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Padma Chaturvedi 1, Amarish Dubey 2 1 Department of Electrical Engineering, Maharana Pratap Engineering College,

More information

Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter

Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter Archana.P 1, Karthick.R 2 Pg Scholar [PED], Department of EEE, CSI College of Engineering, Ketti, Tamilnadu, India

More information

Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation

Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation Jigar Vaidya 1, Vatsal Shukla 2, Darshan Kale 3 1 UG Student, Electrical Department,jdv27993@gmail.com, +91-9662532919

More information

IV. Three-Phase Induction Machines. Induction Machines

IV. Three-Phase Induction Machines. Induction Machines IV. Three-Phase Induction Machines Induction Machines 1 2 3 4 5 6 7 8 9 10 11 12 13 Example 1: A 480V, 60 Hz, 6-pole, three-phase, delta-connected induction motor has the following parameters: R 1 =0.461

More information

Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques

Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques Drives AC Drives Using PWM Techniques Power Conversion Unit The block diagram below shows the power conversion unit in Pulse Width Modulated (PWM) drives. In this type of drive, a diode bridge rectifier

More information

Control of a Three Phase Induction Motor using Single Phase Supply

Control of a Three Phase Induction Motor using Single Phase Supply Control of a Three Phase Induction Motor using Single Phase Supply G. R. Sreehitha #1, A. Krishna Teja *2, Kondenti. P. Prasad Rao #3 Department of Electrical & Electronics Engineering, K L University,

More information

ABB drives. Technical guide No. 4 Guide to variable speed drives

ABB drives. Technical guide No. 4 Guide to variable speed drives ABB drives Technical guide No. 4 Guide to variable speed drives 2 Guide to variable speed drives Technical guide No. 4 Technical guide No. 4 Guide to variable speed drives Copyright 2011 ABB. All rights

More information

Synchronous motor. Type. Non-excited motors

Synchronous motor. Type. Non-excited motors Synchronous motor A synchronous electric motor is an AC motor in which the rotation rate of the shaft is synchronized with the frequency of the AC supply current; the rotation period is exactly equal to

More information

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

Variable Frequency Drives - a Comparison of VSI versus LCI Systems Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been

More information

Pulse Width Modulated (PWM)

Pulse Width Modulated (PWM) Control Technologies Manual PWM AC Drives Revision 1.0 Pulse Width Modulated (PWM) Figure 1.8 shows a block diagram of the power conversion unit in a PWM drive. In this type of drive, a diode bridge rectifier

More information

Motors and Inverters for Environmentally Friendly Industrial Equipment

Motors and Inverters for Environmentally Friendly Industrial Equipment Motors and Inverters for Environmentally Friendly Industrial Equipment 238 Motors and Inverters for Environmentally Friendly Industrial Equipment Takatoshi Sakai Hideharu Tanaka Yuji Tanaka Katsuyuki Utatsu

More information

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 78 90, Article ID: IJARET_07_02_008 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Variable Frequency Drives and Energy Savings

Variable Frequency Drives and Energy Savings Variable Frequency Drives and Energy Savings It s more than just fan and pump applications www.sea.siemens.com by: Stephen Prachyl www.usa.siemens.com/energysavings When discussing energy savings and variable

More information

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER 1 KARUNYA CHRISTOBAL LYDIA. S, 2 SHANMUGASUNDARI. A, 3 ANANDHI.Y 1,2,3 Electrical

More information

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,

More information

Additional Benefits of VFDs In addition to energy savings and better process control, VFDs can provide other benefits:

Additional Benefits of VFDs In addition to energy savings and better process control, VFDs can provide other benefits: Variable Frequency Drives (or VFDs) are becoming almost standard part of aquatics equipment room packages. Most VFDs are fairly simple to install and operate however, they are quite complex with respect

More information

FOREST PRODUCTS. BestPractices Technical Case Study. Four Equipment Upgrade Projects Reduce System Energy Losses at Augusta Newsprint.

FOREST PRODUCTS. BestPractices Technical Case Study. Four Equipment Upgrade Projects Reduce System Energy Losses at Augusta Newsprint. FOREST PRODUCTS BestPractices Technical Case Study February 2002 OFFICE OF INDUSTRIAL TECHNOLOGIES ENERGY EFFICIENCY AND RENEWABLE ENERGY, U.S. DEPARTMENT OF ENERGY BENEFITS Estimated annual fuel cost

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

Advance Electronic Load Controller for Micro Hydro Power Plant

Advance Electronic Load Controller for Micro Hydro Power Plant Journal of Energy and Power Engineering 8 (2014) 1802-1810 D DAVID PUBLISHING Advance Electronic Load Controller for Micro Hydro Power Plant Dipesh Shrestha, Ankit Babu Rajbanshi, Kushal Shrestha and Indraman

More information

Inverter technology. bulletin

Inverter technology. bulletin Inverter technology application bulletin What is the inverter component? The inverter is an electronic power component that continuously varies the electricity supply frequency of an electric motor. The

More information

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE INTRODUCTION In all kinds of manufacturing, it is very common to have equipment that has three phase motors for doing different

More information

WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page

WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page DC Motors Explained: White Paper, Title Page DC Motors Explained By Joe Kimbrell, Product Manager, Drives, Motors & Motion, AutomationDirect DC Motors Explained: White Paper, pg. 2 How many types of DC

More information

EET272 Worksheet Week 9

EET272 Worksheet Week 9 EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming

More information

Unit 33 Three-Phase Motors

Unit 33 Three-Phase Motors Unit 33 Three-Phase Motors Objectives: Discuss the operation of wound rotor motors. Discuss the operation of selsyn motors. Discuss the operation of synchronous motors. Determine the direction of rotation

More information

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt. Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine

More information

Offshore Platform Powered With New Electrical Motor Drive System

Offshore Platform Powered With New Electrical Motor Drive System Offshore Platform Powered With New Electrical Motor Drive System Authors: Jan O. Lamell, M.Sc E.E. ABB Automation Technologies Presenters: Thomas Johansson, M.Sc E.E. ABB Automation Technologies Timothy

More information

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 10 (2014), pp. 1027-1035 International Research Publication House http://www.irphouse.com Simulation and

More information

Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION

Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions by Howard Abramowitz, Ph.D EE, President, AirCare Automation Inc. Abstract - Single Phase AC motors continue to be

More information

Fundamentals of Inverter Fed Motors

Fundamentals of Inverter Fed Motors Fundamentals of Inverter Fed Motors Technical Manual 10/02 MN780 Contents Page The Growing Use Of Inverters.................................................................. 1 How Inverters Affect Motors....................................................................

More information

Modified Cascaded Five Level Multilevel Inverter Using Hybrid Pulse Width Modulation

Modified Cascaded Five Level Multilevel Inverter Using Hybrid Pulse Width Modulation International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-2, April 2016 E-ISSN: 2347-2693 Modified Cascaded Five Level Multilevel Inverter Using Hybrid

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

How To Make A High Efficiency Thermostat

How To Make A High Efficiency Thermostat Zoning with Variable Speed Mini-Split Systems Fujitsu Service Training Welcome - Thank you for attending Did you know? In 1940 only 42% of homes in the US had central heating In 1970 20% of homes had central

More information

Mathematical Modelling of PMSM Vector Control System Based on SVPWM with PI Controller Using MATLAB

Mathematical Modelling of PMSM Vector Control System Based on SVPWM with PI Controller Using MATLAB Mathematical Modelling of PMSM Vector Control System Based on SVPWM with PI Controller Using MATLAB Kiran Boby 1, Prof.Acy M Kottalil 2, N.P.Ananthamoorthy 3 Assistant professor, Dept of EEE, M.A College

More information

Chapter 3.5: Fans and Blowers

Chapter 3.5: Fans and Blowers Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS)

Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Josep Pou Antoni Arias Page 1 Outline 1. Renewable Energy Perspectives 2. Solar Photovoltaic (PV) 3. Wind Generation

More information

Introduction to Process Control Actuators

Introduction to Process Control Actuators 1 Introduction to Process Control Actuators Actuators are the final elements in a control system. They receive a low power command signal and energy input to amplify the command signal as appropriate to

More information

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09.

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09. Pulse width modulation Pulse width modulation is a pulsed DC square wave, commonly used to control the on-off switching of a silicon controlled rectifier via the gate. There are many types of SCR s, most

More information

LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR

LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR Sergiu Ivanov Mihai Rdulescu University of Craiova, Romania INDA Craiova Faculty of Electrical Engineering 30, Mr#e#ti Street 107, Decebal

More information

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

More information

Basics of Electricity

Basics of Electricity Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components

More information

What Is Regeneration?

What Is Regeneration? What Is Regeneration? Braking / Regeneration Manual Regeneration Overview Revision 1.0 When the rotor of an induction motor turns slower than the speed set by the applied frequency, the motor is transforming

More information

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit K.Ranjith kumar kumar, Dr.S.Palaniswami K.Priyadharsini, Senior Senior Lecturer Lecturer Professor

More information

Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

More information

Design and Simulation of Soft Switched Converter Fed DC Servo Drive

Design and Simulation of Soft Switched Converter Fed DC Servo Drive International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.

More information

Induction Motor Theory

Induction Motor Theory PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Development of Power Supply System with Hybrid Turbocharger for Marine Application

Development of Power Supply System with Hybrid Turbocharger for Marine Application JFE TECHNICAL REPORT No. 19 (Mar. 2014) Development of Power Supply System with Hybrid Turbocharger for Marine Application SUTO Naonori*1 MINAMI Hiroki*2 Abstract: Hybrid turbocharger is a turbocharger

More information

PeakVue Analysis for Antifriction Bearing Fault Detection

PeakVue Analysis for Antifriction Bearing Fault Detection August 2011 PeakVue Analysis for Antifriction Bearing Fault Detection Peak values (PeakVue) are observed over sequential discrete time intervals, captured, and analyzed. The analyses are the (a) peak values

More information

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink Transient analysis of integrated solar/diesel hybrid power system using ATLAB Simulink Takyin Taky Chan School of Electrical Engineering Victoria University PO Box 14428 C, elbourne 81, Australia. Taky.Chan@vu.edu.au

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

How To Improve A Variable Frequency Drive

How To Improve A Variable Frequency Drive VARIABLE FREQUENCY DRIVES ROLF LINDEBORG ROLF LINDEBORG ITT Flygt AB, Sweden Rolf Lindeborg, 52, grew up in Älvdalen, a small city in the county of Dalecarlia, Sweden. In 1963, he moved to Stockholm. From

More information

Energy Savings With Adjustable Frequency Drives. for Centrifugal Fans

Energy Savings With Adjustable Frequency Drives. for Centrifugal Fans Energy Savings With Adjustable Frequency Drives for Centrifugal Fans 2 Centrifugal Fans Centrifugal Fan Fans are designed to be capable of meeting the maximum demand of the system in which they are installed.

More information

BIG SAVINGS FOR A LOT MORE APPLICATIONS

BIG SAVINGS FOR A LOT MORE APPLICATIONS MSF SOFT STARTERS BIG SAVINGS FOR A LOT MORE APPLICATIONS Soft Starters from Emotron Unique features built into Emotron MSF Soft Starters reduce costs significantly for many more applications when compared

More information

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt. Lab 9: Synchronous motor. Objective: to examine the design of a 3-phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the full-load characteristic of

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE ADVANCED ENGINEERING 3(2009)1, ISSN 1846-5900 KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE Cibulka, J. Abstract: This paper deals with the design of Kinetic Energy Recovery Systems

More information

Power Quality Paper #3

Power Quality Paper #3 The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

Data Center. Ultra-Efficient chilled water system optimization. White paper. File No: 9.236 Date: december 03, 2015 Supersedes: new Date: new

Data Center. Ultra-Efficient chilled water system optimization. White paper. File No: 9.236 Date: december 03, 2015 Supersedes: new Date: new Data Center Ultra-Efficient chilled water system optimization White paper File No: 9.236 Date: december 03, 2015 Supersedes: new Date: new Data Center - Ultra-Efficient white paper 3 abstract The primary

More information

Drives and motors. A guide to using variable-speed drives and motors in data centres

Drives and motors. A guide to using variable-speed drives and motors in data centres Drives motors A guide to using variable-speed drives motors in data centres The power behind the data Private public businesses, from banks to supermarkets, to telecommunications companies internet providers

More information

UNIVERSITY OF NAIROBI FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING SIMULATION AND ANALYSIS OF A VARIABLE SPEED DRIVE

UNIVERSITY OF NAIROBI FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING SIMULATION AND ANALYSIS OF A VARIABLE SPEED DRIVE UNIVERSITY OF NAIROBI FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING SIMULATION AND ANALYSIS OF A VARIABLE SPEED DRIVE MATLAB/SIMULINK METHOD PROJECT INDEX: 109 BY NANDWA FRIDAH

More information

We will discuss common industrial applications with guides for the proper use of electric motors on these.

We will discuss common industrial applications with guides for the proper use of electric motors on these. INTRODUCTION: Baldor Electric Company has prepared this Specifiers Guide to help you cover all the bases when you are specifying electric motors. It will cover in a generic way most of the subjects which

More information

OJ L 191, 23.7.2009, p. 26. OJ L 2, 7.1.2014, p. 1.

OJ L 191, 23.7.2009, p. 26. OJ L 2, 7.1.2014, p. 1. Table of Contents 1. Purpose of the guidelines and disclaimer... 2 1.1. The Regulations... 2 2. Scope... 2 3. Historic developments... 4 4. Scope and Requirements... 5 4.1. Scope... 5 4.2. Requirements...

More information

E N E R G Y S AV I N G S

E N E R G Y S AV I N G S ENERGY SAVINGS METALS INDUSTRY The steel industry is energy intensive with many opportunities to apply advanced controls to save energy. Some of the possible energy saving applications in a steel mill

More information

Paper ID: 149 Increasing efficiency of the conventional auxiliary systems of power plants (Reduction of Life Cycle Cost by operational excellence)

Paper ID: 149 Increasing efficiency of the conventional auxiliary systems of power plants (Reduction of Life Cycle Cost by operational excellence) Paper ID: 149 Increasing efficiency of the conventional auxiliary systems of power plants (Reduction of Life Cycle Cost by operational excellence) Thomas Schmager Pasi Mannistö Per Wikström ABB Switzerland

More information

Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives

Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives G.C. Stone, I. Culbert, H.G. Sedding Qualitrol-Iris Power Mississauga, Ontario, Canada Abstract On-line partial discharge

More information

VARIABLE FREQUENCY DRIVES. Energy Efficiency Reference Guide

VARIABLE FREQUENCY DRIVES. Energy Efficiency Reference Guide VARIABLE FREQUENCY DRIVES Energy Efficiency Reference Guide DISCLAIMER: Neither CEATI International, the authors, nor any of the organizations providing funding support for this work (including any persons

More information

Drivetech, Inc. Innovations in Motor Control, Drives, and Power Electronics

Drivetech, Inc. Innovations in Motor Control, Drives, and Power Electronics Drivetech, Inc. Innovations in Motor Control, Drives, and Power Electronics Dal Y. Ohm, Ph.D. - President 25492 Carrington Drive, South Riding, Virginia 20152 Ph: (703) 327-2797 Fax: (703) 327-2747 ohm@drivetechinc.com

More information

Understanding the Alternator

Understanding the Alternator http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED

More information

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE Karl M. Hink, Executive Vice President Originally presented at the Power Quality 99 Conference ABSTRACT Motor protection

More information

Torque motors. direct drive technology

Torque motors. direct drive technology Torque motors direct drive technology Why Direct Drive Motors? Fast and effective Direct-drive technology in mechanical engineering is defined as the use of actuators which transfer their power directly

More information

Power Analysis of PWM Motor Drives

Power Analysis of PWM Motor Drives Power Analysis of PWM Motor Drives Application Note 1. Introduction Three-phase ac motors have been the workhorse of industry since the earliest days of electrical engineering. They are reliable, efficient,

More information

Speed Control and Power factor Correction using Bridgeless Buck Boost Converter for BLDC Motor Drive

Speed Control and Power factor Correction using Bridgeless Buck Boost Converter for BLDC Motor Drive Speed Control and Power factor Correction using Bridgeless Buck Boost Converter for BLDC Motor Drive R.shanthini 1 Dr.K.Boopathy 2 1 Mtech, EEE, B.S.Abdur Rahman University,Chennai 2 Associate professor,

More information

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS *ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS Jay Vaidya, President Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 and Earl Gregory,

More information