2 KEV FILTERS OF QUASI-MONOCHROMATIC EPITHERMAL NEUTRONS

Size: px
Start display at page:

Download "2 KEV FILTERS OF QUASI-MONOCHROMATIC EPITHERMAL NEUTRONS"

Transcription

1 Journal of Nuclear and Radiation Physics, Vol. 6, No. 1&2, pp KEV FILTERS OF QUASI-MONOCHROMATIC EPITHERMAL NEUTRONS H. N. Morcos and M. Adib Reactor Department, Nuclear Research Center, EAEA, Cairo, Egypt Rec. 18/10/2010 Accept. 29/11/2011 A simulation study of monochromatic beam filters based on selecting suitable materials for the production of quasi-monochromatic neutron beams in the energy range of 2 KeV are given. The simulation allows estimating the purity of the filtered neutron beam versus its intensity. Calculation shows that filters based on 54 Sc can produce a quasi monochromatic neutron beam at 2 KeV at low background. The main parameters of the suggested filtered quasi-monochromatic neutron beam were compared with those available in literature. For the same incident neutron flux, the present neutron filters are found to have higher intensity at low accompanying background than the others. Keywords: quasi-monochromatic beams: neutron filters. INTRODUCTION Filtered neutron monochromatic beams in KeV region nowadays have wide applications. Such beam is required for high precision measurements of the total and partial cross-sections for fundamental neutron-nuclear investigations and for precise determination of average nuclear parameters [1, 2]. It is also used in Boron-Neutron Capture Therapy (BNCT) [3, 4] and more recently in Gadolinium Neutron Capture Therapy (GdNCT) [5]. The main idea of neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasi-monochromatic neutron lines instead of white reactor spectrum. To select only

2 70 H. N. Morcos etal one quasi-monochromatic line (neutron filter) with high purity, a composition filter of some selected elements is usually used. The composition filter consists of the "main filter material", and additional materials, for which resonance maxima in their total neutron cross-sections coincide with interference minima for filter material, with the exception of the selected line producing the quasi-monochromatic beam. Recently Gritzay [1] reported a neutron technique and components selected for forming filtered neutron beams at 2 KeV. The main filter material for 2 KeV was 45 Sc and the additional materials were 60 Ni, 54 Fe, 59 Co, 10 B, S and 27 Al. The results reported by Gritzay [1] showed that the filter beam at 2 KeV is strongly disturbed at KeV and at KeV. These may be due to the selected additional elements by Gritzay. Therefore in the present work, the additional elements for filtered beam at 2 KeV, reported by Gritzay are replaced by other ones to obtain higher intensity of the main peak at low background from the accompanying neutrons at higher neutron energies. MODELING CALCULATION OF NEUTRON FILTERED SPECTRA A computer code QMENF (Quasi Monochromatic Epithermal Neutron Filter) in the FORTRAN language was developed to calculate the neutron spectra formed by filters. The filter components and their amounts are optimized to get highest possible intensity without disturbed lines of the main energy line and the lowest one of the parasitic energy lines in filtered neutron spectrum. It is a complete system with input preparation, running calculations and output results. The input preparation contains the total cross-section data for different materials calculated by the PrePro2007 code using the JENDL-3.3 and ENDF/B-6 libraries [ 6 ]. The incident neutron spectrum is also considered as input and can be taken either constant, 1/E or reactor spectrum. The reactor spectrum is considered as Maxwellian for thermal neutrons, 1/E- dependence for resonance one and at high energies as a fission spectrum. The main running function of the QMENF code is to search for the elements of the required neutron filter energy, by fixing the energy E within range of ΔE. The result of such search is a list of all elements having a deep interference minimum in the total cross-section at the given neutron energy range. Then, the most promising filter elements are chosen from this list as they have the lowest value of the cross-section at interference minimum within the given energy width. Moreover the accompanying other minima at energies not equal to E+ΔE is not so pronounced. Consequently, each such element is considered as the "main element" of the filter.

3 2 KEV FILTERS OF QUASI-MONOCHROMATIC 71 Then the program searches for other elements which have resonance maxima in their total cross-section coincide with all interference minima for chosen filter material with the exception of the line producing the quasi-mono-energetic beam at energy E, in order to eliminate the parasitic energy lines. The result of the search is a list of elements. Such list may contain several elements, since it may be not available for one element, to have resonance maxima at all minima of the main filter element. These elements are called "additional elements" of the filter. The output results are the transmitted neutron spectrum through the filter. The spectrum was normalized to unity in the energy range from 10-5 ev to 20 MeV. The result of calculation includes transmitted flux versus energy and material thickness. Moreover the program can calculate the area under the main peak and other parasitic ones, and determine the ratio which corresponds to the purity of the filter. The purity versus intensity can be defined as required. More details of the computer code are given elsewhere [7]. RESULTS AND DISCUSSION The composition of 2 KeV filter consists of the 45 Sc as the main filter material and additional materials, for which resonance maxima in their total neutron cross sections coincide with interference minima for filter material, with the exception of the most deep interference minimum energy. Fig. 1 shows the calculated total cross-section of 45 Sc versus neutron energy at temperature 300 K. From Fig. 1 one can see that the main wide dip is at 2KeV, while other narrow dips are at higher energies. Such dips limited the use of 45 Sc as a neutron filter. Therefore, other filter components must be added to eliminate these dips. The selected components for forming the filtered neutron beam at 2 KeV along with those reported by Gritzay [1] are listed in Table 1.

4 72 H. N. Morcos etal Figure Sc total neutron cross-section. Table 1: Components of selected filters. Element Components gm/cm 2 Gritzay [ 1 ] Present work Filter 1 Present work Filter 2 45 Sc Fe Ni Co V (natural) Ti (natural) B 0.2 (85%) 0.2 (85%) 0.2 (85%) S (natural) Al

5 2 KEV FILTERS OF QUASI-MONOCHROMATIC 73 Using the computer code QMENF the intensity of the filtered beam at 2KeV for the composition reported by Gritzay [1] and assuming that the reactor spectrum at KeV region follows the 1/E law is calculated and displayed in Fig 2. Figure 2: Neutron transmission Gritzay [1] filter. Fig. 2 shows that the main peak at 2 KeV is strongly disturbed by dips at KeV and KeV. These dips are caused due to neutron resonances of 59 Co and 60 Ni respectively. While the two small disturbing dips at 1.06 KeV and KeV are due to the neutron resonances of 45 Sc at these energies. To eliminate such disturbing dips in the main peak at 2 KeV in the present work, the components 60 Ni and 59 Co are replaced by natural vanadium (filter I). Fig. 3 shows the filtered neutron beam at 2 KeV when replacing 60 Ni and 59 Co elements by only natural V.

6 74 H. N. Morcos etal Figure 3: Neutron transmission (Filter I). One can see that the dips due to 60 Ni and 59 Co are eliminated. Moreover the intensity of the peak at 2 KeV is two and half times than that by Gritzay filter [1]. However, the contribution of parasitic peaks is slightly higher than that by Gritzay. To improve the quality of the filtered beam at 2 KeV, another composition was suggested by replacing natural V by natural Ti (Filter II). Moreover, the amount of 54 Fe is taken ten times less than that given by Gritzay. The composition of (filter II) is also listed in Table 1. Using QMENF code the filtered neutron beam was calculated for this case and the result of calculation is displayed in Fig. 4.

7 2 KEV FILTERS OF QUASI-MONOCHROMATIC 75 Figure 4: Neutron transmission (Filter II). From the figure one can see that the intensity of the main peak is increased at lower background than that with vanadium. For comparison the parameters of the main peak along with the parasitic ones for different filter components are listed in Table 2. Table 2. The parameters of the main and parasitic peaks. Filter Energy KeV of main peak FWHM KeV Main peak Parasitic peaks Relative intensity % Gritzay[1] , Filter I Filter II *) I intensity of main peak present work I o intensity of main peak Gritzay [ 1 ]

8 76 H. N. Morcos etal The filter is usually installed at the exit of the horizontal reactor channel, consequently neutrons emerging from a steady state reactor with energies less than 1 ev obey the Maxwellian energy distribution and their intensities are higher than the 1/E spectrum. Such neutrons are parasitic for the filter at 2 KeV. To remove their contribution 10 B (85%) with thickness 0.2 gm/cm 2 was added to the filter material. Such addition decreases the intensity of the main peak by a factor 8%. Gritzay added natural S with thickness 56 gm/cm 2 to the filter component. However, our calculation shows that such thickness decreases the intensity of the main peak by a factor 65% while the decrease of the parasitic peaks 48%. Therefore, S was not added to our filter composition. Since the selected elements for the filter composition are chemically active, therefore they were packed in an aluminum container. It was found that an 27 Al thickness of 0.54 gm/cm 2 satisfies the safety of the filter elements. In the same time such thickness almost has no effect on altering the main peak (less than 1 %). However, in the present work the thickness of 27 Al is increased to be gm/cm 2 and gm/cm 2 for composition of (Filter I) and (Filter II) respectively. Such increase was found to decrease the parasitic background at energies from KeV without noticeable decrease of the intensity of the main peak at 2 KeV. CONCLUSION The developed computer code QMENF was found to be sufficient for calculating the quasi-monochromatic neutron beam at 2 KeV. Based on 45 Sc and V (filter I) and 45 Sc and Ti (filter II), the obtained quasi-monochromatic beams were found free from the disturbing dips at KeV and KeV. Moreover, the intensity of the main peak is about three times higher than that calculated from Gritzay s filter. Moreover, the advantages of the selected additional elements in the present work are natural elements. Consequently, they are cheaper. However, the contribution of parasitic peaks is slightly lower than our filters. REFERENCES [1] O. Gritzay, V. Kolotyi, V. Psheniehnyi, M. Gnidak, O. Kalchenko, N. Klimova, V. Libman, V. Razbudeyi, A. Kyslytskyi, V. Venediktov, O. Korol, "Neutron Filter technique and its use for Fundamental and applied investigations." 6 th conference on Nuclear and particle physics NUPPAC'07, Luxor, Egypt, Nov (2007). [2] R. Moreh, R. C. Block, Y. Danon; "Generating a multi-line neutron beam using an electron Linac and a U-filter." Nuclear Instruments and Methods in Physics Research A, 562, pp , (2006).

9 2 KEV FILTERS OF QUASI-MONOCHROMATIC 77 [3] M. Viaggi, M. A. Dagresa, J. Longhino, H. Blaumann, O. Caletta, S. B. Kahl, G. J. Juvenal, M. A. Pisarev; "Boron neutron capture therapy for undifferentiated thyroid, carcinoma: Preliminary results with the combined use of BPA and BOPP." Applied Radiation and Isotopes 61, pp , (2004). [4] E. Bisceglie, P. Colangelo, N. Colonna, P. Santorelli and V. Variale; "On the optimal energy of epithermal neutron beams for BNCT. Phys. Med. Biol. 45, pp , (2000). [5] Gelsomina Detasio etal; "Are gadolinium contrast agents suitable for gadolinium neutron capture therapy " Neurological Research, Volume 27, pp , June (2005). [6] Cullen D. E.; "PREPRO2007 (2007 ENDF/B Pre-Processing codes". IAEA-NDS- 39, Rev. 13 March 17, (2007). [7] H. N. Morcos and K. Naguib" QMENF- A computer package for Quasi- Monochromatic Epithermal Neutron Filter calculations." Under publication (2010). مرشح ٢ ك.إ.ف للنیوترونات فوق الحراریة شبھ وحیدة الطاقة حنان نحیب مرقص و ممدوح أدیب شحاتھ شعبة المفاعلات مركز البحوث النوویة ھیي ة الطاقة الذریة القاھرة مصر دراسة تشبیھیة معطاه لموحد فیض مرشح نیوترونى على أساس اختیار المواد المناسبة لتكوین فیض نیوترونى شبة موحد الطاقة فى حدود طاقة ٢ ك.إ.ف. التشبیة یسمح بتحدید نقاوة الفیض النیوترونى للمرشح فى علاقة مع شدتھ. الحسابات أظھرت أن المرشح على أساس سكاندیوم- ٥٤ یمكن أن ینتج فیض شبة موحد للطاقة عند ٢ ك.إ.ف. بخلفیة صغیرة.أھم البارامترات المقترحة للمرشح شبة وحید الطاقة قورنت بالمتاح فى النشر. و قد وجد أنھ لنفس الفیض النیوترونى الساقط. المرشح النیوترونى المعطى فى البحث لھ فیض أعلى عند خلفیة مصاحبة أصغر من المرشحات الا خرى.

IN REACTOR PHYSICS ANALYSIS

IN REACTOR PHYSICS ANALYSIS BARILOCHE, ARGENTINA HUMAN RESOURCES TRAINING AND QUALIFICATION IN REACTOR PHYSICS ANALYSIS By: Eduardo Villarino / men@invap.com.ar Nuclear Engineering Department / Nuclear Projects Division Introduction

More information

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I A.S. Gerasimov, G.V. Kiselev, L.A. Myrtsymova State Scientific Centre of the Russian Federation Institute of Theoretical

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1) Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the

More information

Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems

Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems Ronald M. Keyser, Timothy R. Twomey, Sam Hitch ORTEC 801 South Illinois Avenue Oak Ridge, TN, 37831

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

The coherence length of black-body radiation

The coherence length of black-body radiation Eur. J. Phys. 19 (1998) 245 249. Printed in the UK PII: S143-87(98)86653-1 The coherence length of black-body radiation Axel Donges Fachhochschule und Berufskollegs NTA Prof. Dr Grübler, Seidenstrasse

More information

Tutorial 4.6 Gamma Spectrum Analysis

Tutorial 4.6 Gamma Spectrum Analysis Tutorial 4.6 Gamma Spectrum Analysis Slide 1. Gamma Spectrum Analysis In this module, we will apply the concepts that were discussed in Tutorial 4.1, Interactions of Radiation with Matter. Slide 2. Learning

More information

Chapter 4 COATINGS Full Reflective Coatings:

Chapter 4 COATINGS Full Reflective Coatings: Chapter 4 COATINGS Technical developments in coatings for plastic optics have resulted in optical and durability characteristics once believed possible only with glass. These advances in coating technology

More information

Experimental studies and simulations of spallation neutron production on a thick lead target

Experimental studies and simulations of spallation neutron production on a thick lead target Institute of Physics Publishing Journal of Physics: Conference Series 41 (2006) 331 339 doi:10.1088/1742-6596/41/1/036 EPS Euroconference XIX Nuclear Physics Divisional Conference Experimental studies

More information

ENERGY LOSS OF ALPHA PARTICLES IN GASES

ENERGY LOSS OF ALPHA PARTICLES IN GASES Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Applied Nuclear Physics Experiment No. ENERGY LOSS OF ALPHA PARTICLES IN GASES by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

More information

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND:

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND: Gamma Rays OBJECT: To understand the various interactions of gamma rays with matter. To calibrate a gamma ray scintillation spectrometer, using gamma rays of known energy, and use it to measure the energy

More information

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Gamma Ray Detection at RIA

Gamma Ray Detection at RIA Gamma Ray Detection at RIA Summary Report: Physics & Functional Requirements Cyrus Baktash Physics goals Experimental tools: Techniques & Reactions Functional Requirements Physics Questions (Discussed

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

EDXRF of Used Automotive Catalytic Converters

EDXRF of Used Automotive Catalytic Converters EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,

More information

Neutron Resonance Spectroscopy for the Characterisation of Materials and Objects

Neutron Resonance Spectroscopy for the Characterisation of Materials and Objects Neutron Resonance Spectroscopy for the Characterisation of Materials and Objects P. Schillebeeckx B. Becker H. Harada S. Kopecky 2014 Report EUR 26848 EN European Commission Joint Research Centre Institute

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP

More information

Nuclear Information Services at the National Nuclear Data Center

Nuclear Information Services at the National Nuclear Data Center BNL-73536-2005-CP Nuclear Information Services at the National Nuclear Data Center Thomas W. Burrows and Charles L. Dunford National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000,

More information

Nuclear Reaction and Structure Databases of the National Nuclear Data Center

Nuclear Reaction and Structure Databases of the National Nuclear Data Center BNL-76738-2006-CP Nuclear Reaction and Structure Databases of the National Nuclear Data Center B. Pritychenko E-mail: pritychenko@bnl.gov M.W. Herman E-mail: mwherman@bnl.gov S.F. Mughabghab E-mail: mugabgab@bnl.gov

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM João Antônio Palma Setti, j.setti@pucpr.br Pontifícia Universidade Católica do Paraná / Rua Imaculada

More information

MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

More information

An Innovative Method for Dead Time Correction in Nuclear Spectroscopy

An Innovative Method for Dead Time Correction in Nuclear Spectroscopy An Innovative Method for Dead Time Correction in Nuclear Spectroscopy Upp, Daniel L.; Keyser, Ronald M.; Gedcke, Dale A.; Twomey, Timothy R.; and Bingham, Russell D. PerkinElmer Instruments, Inc. ORTEC,

More information

A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY

A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY I. BIBICU 1, G. NICOLESCU 2, L. CIOLACU 2, L. SERBINA 2 1 National Institute for Materials Physics, Bucharest 77125, Romania, bibicu@infim.ro 2

More information

The design and performance of Static Var Compensators for particle accelerators

The design and performance of Static Var Compensators for particle accelerators CERN-ACC-2015-0104 Karsten.Kahle@cern.ch The design and performance of Static Var Compensators for particle accelerators Karsten Kahle, Francisco R. Blánquez, Charles-Mathieu Genton CERN, Geneva, Switzerland,

More information

A SHORT HISTORY OF CSISRS

A SHORT HISTORY OF CSISRS BNL-75288-2005-IR A SHORT HISTORY OF CSISRS At the Cutting Edge of Nuclear Data Information Storage and Retrieval Systems and its Relationship to CINDA, EXFOR and ENDF Norman E. Holden December 2005 Energy

More information

. Space-time Analysis code for AHWR

. Space-time Analysis code for AHWR 1.2 ADVANCED COMPUTATIONAL TOOLS FOR PHYSICS DESIGN. Space-time Analysis code for AHWR The knowledge of the space and time dependent behaviour of the neutron flux is important for the reactor safety analysis

More information

Nuclear ZPE Tapping. Horace Heffner May 2007

Nuclear ZPE Tapping. Horace Heffner May 2007 ENERGY FROM UNCERTAINTY The uncertainty of momentum for a particle constrained by distance Δx is given, according to Heisenberg, by: Δmv = h/(2 π Δx) but since KE = (1/2) m v 2 = (1/(2 m) ) (Δmv) 2 ΔKE

More information

Physics 111 Homework Solutions Week #9 - Tuesday

Physics 111 Homework Solutions Week #9 - Tuesday Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator R. Gupta and M.Harrison, Brookhaven National Laboratory A. Zeller, Michigan State University

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics 16th International Toki Conference on Advanced Imaging and Plasma Diagnostics Temperature Diagnostics for Field-Reversed Configuration Plasmas on the Pulsed High Density (PHD) Experiment Hiroshi Gota,

More information

Laue lens for Nuclear Medicine

Laue lens for Nuclear Medicine Laue lens for Nuclear Medicine PhD in Physics Gianfranco Paternò Ferrara, 6-11-013 Supervisor: prof. Vincenzo Guidi Sensors and Semiconductors Lab, Department of Physics and Earth Science, University of

More information

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging Quantitative analysis Ceramics sample Peak deconvolution EDS map Phase analysis Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Effect of Gamma Ray Energies and Addition of Iron Slag by weight to Portland Cements on Mass Attenuation Coefficient

Effect of Gamma Ray Energies and Addition of Iron Slag by weight to Portland Cements on Mass Attenuation Coefficient Journal of Materials Science and Engineering A 3 (12) (2013) 838-842 D DAVID PUBLISHING Effect of Gamma Ray Energies and Addition of Iron Slag by weight to Portland s on Mass Attenuation Coefficient Abd

More information

Improved dosimetry for BNCT by activation foils, modified thermoluminescent detectors and recombination chambers

Improved dosimetry for BNCT by activation foils, modified thermoluminescent detectors and recombination chambers NUKLEONIKA 2004;49(2):51 56 ORIGINAL PAPER Improved dosimetry for BNCT by activation foils, modified thermoluminescent detectors and recombination chambers Paweł Bilski, Natalia Golnik, Paweł Olko, Krzysztof

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

REEVALUATING ELEMENTAL ABUNDANCE ON THE MOON. Kenneth E. Dobbs Department of Political Science University of Hawai i at Mānoa Honolulu, HI 96822

REEVALUATING ELEMENTAL ABUNDANCE ON THE MOON. Kenneth E. Dobbs Department of Political Science University of Hawai i at Mānoa Honolulu, HI 96822 REEVALUATING ELEMENTAL ABUNDANCE ON THE MOON Kenneth E. Dobbs Department of Political Science University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Gamma ray spectrometry is important for chemical

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2

GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2 GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2 WARNING: Store below 25ºC Store away from radiation sources Do not expose film to sunlight Handle film carefully, creasing may cause damage Do not expose to temperatures

More information

Rec. ITU-R F.699-5 1 RECOMMENDATION ITU-R F.699-5 *

Rec. ITU-R F.699-5 1 RECOMMENDATION ITU-R F.699-5 * Rec. ITU-R F.699-5 1 RECOMMENATION ITU-R F.699-5 * REFERENCE RAIATION PATTERNS FOR LINE-OF-SIGHT RAIO-RELAY SYSTEM ANTENNAS FOR USE IN COORINATION STUIES AN INTERFERENCE ASSESSMENT IN THE FREQUENCY RANGE

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING

X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING Brian L. Riise and Michael B. Biddle MBA Polymers, Inc., Richmond, CA, USA Michael M. Fisher American Plastics Council, Arlington, VA, USA X-Ray Fluorescence

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

The interaction of Cu(100)-Fe surfaces with oxygen studied with photoelectron spectroscopy. I

The interaction of Cu(100)-Fe surfaces with oxygen studied with photoelectron spectroscopy. I 5 The interaction of Cu(100)-Fe surfaces with oxygen studied with photoelectron spectroscopy. I Mg Kα excited photoemission. Abstract The oxidation of Cu(100)-Fe surfaces was studied using XPS. Surfaces

More information

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE 2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE In this chapter the principles and systematics of atomic and nuclear physics are summarised briefly, in order to introduce the existence and characteristics of

More information

Network Analysis of Nuclear Databases

Network Analysis of Nuclear Databases Network Analysis of Nuclear Databases John Anthony Hirdt 1 1 Department of Mathematics and Computer Science, St. Joseph s College, Patchogue, NY 11772, USA (Dated: April 15, 2014) The EXFOR database contains

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics

Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics PIERS ONLINE, VOL. 4, NO. 8, 2008 846 Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics K. Sakai, Y. Wada, and S. Yoshikado

More information

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser V.Nassisi #, G.Caretto #, A. Lorusso #, D.Manno %, L.Famà %, G.Buccolieri %, A.Buccolieri %, U.Mastromatteo* # Laboratory of Applied

More information

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1

More information

HADRON THERAPY FOR CANCER TREATMENT

HADRON THERAPY FOR CANCER TREATMENT HADRON THERAPY FOR CANCER TREATMENT Seminar presented by Arlene Lennox at Fermilab on Nov 21, 2003 CANCER STAGES LOCAL TUMOR REGIONAL METASTASIS SYSTEMIC DISEASE CANCER TREATMENT SURGERY RADIATION THERAPY

More information

Monte Carlo Simulations in Proton Dosimetry with Geant4

Monte Carlo Simulations in Proton Dosimetry with Geant4 Monte Carlo Simulations in Proton Dosimetry with Geant4 Zdenek Moravek, Ludwig Bogner Klinik und Poliklinik für Strahlentherapie Universität Regensburg Objectives of the Study what particles and how much

More information

The Physics of Energy sources Nuclear Reactor Practicalities

The Physics of Energy sources Nuclear Reactor Practicalities The Physics of Energy sources Nuclear Reactor Practicalities B. Maffei Bruno.maffei@manchester.ac.uk www.jb.man.ac.uk/~bm Nuclear Reactor 1 Commonalities between reactors All reactors will have the same

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,

More information

Zero Width Glass Cutting with CO 2 Laser

Zero Width Glass Cutting with CO 2 Laser Zero Width Glass Cutting with CO 2 Laser Mohammed Naeem GSI Group, Laser Division Cosford Lane, Swift Valley Rugby mnaeem@gsig.com Introduction Laser cutting of glass in not a novel technique, excellent

More information

Overview of Nuclear Detection Needs for Homeland Security. Abstract

Overview of Nuclear Detection Needs for Homeland Security. Abstract Overview of Nuclear Detection Needs for Homeland Security Timothy E. Valentine * Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee, 37831, USA Abstract The need for advanced and improved

More information

ORTEC AN34 Experiment 7 High-Resolution Gamma-Ray Spectroscopy

ORTEC AN34 Experiment 7 High-Resolution Gamma-Ray Spectroscopy Equipment Needed from ORTEC GEM10P4/CFG-PV4/DWR-30 Coaxial Detector System (Includes detector, cryostat, dewar, preamplifier, and 12-ft. cable pack); typical specifications: 10% relative efficiency, 1.75

More information

ENDF-6 Formats Manual

ENDF-6 Formats Manual CSEWG Document ENDF-102 Report BNL-XXXXX-2009 ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII Written by the Members of the Cross Sections

More information

dissociation: projectile charge and Furthermore we have observed that with increasing impact energy the kinetic energy of the fragments

dissociation: projectile charge and Furthermore we have observed that with increasing impact energy the kinetic energy of the fragments Kinetic energy release in molecular dissociation: projectile charge and collision energy dependence Dissociation products of CO have been measured in coincidence with each other for collisions with He

More information

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11.

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11. QUANTITATIVE INFRARED SPECTROSCOPY Objective: The objectives of this experiment are: (1) to learn proper sample handling procedures for acquiring infrared spectra. (2) to determine the percentage composition

More information

World-first Proton Pencil Beam Scanning System with FDA Clearance

World-first Proton Pencil Beam Scanning System with FDA Clearance Hitachi Review Vol. 58 (29), No.5 225 World-first Proton Pencil Beam Scanning System with FDA Clearance Completion of Proton Therapy System for MDACC Koji Matsuda Hiroyuki Itami Daishun Chiba Kazuyoshi

More information

The Physics of Energy sources Nuclear Fusion

The Physics of Energy sources Nuclear Fusion The Physics of Energy sources Nuclear Fusion B. Maffei Bruno.maffei@manchester.ac.uk www.jb.man.ac.uk/~bm Nuclear Fusion 1 What is nuclear fusion? We have seen that fission is the fragmentation of a heavy

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Comparison of approximations to the transition rate in the DDHMS preequilibrium model

Comparison of approximations to the transition rate in the DDHMS preequilibrium model EPJ Web of Conferences 69, 0 00 24 (204) DOI: 0.05/ epjconf/ 2046900024 C Owned by the authors, published by EDP Sciences, 204 Comparison of approximations to the transition rate in the DDHMS preequilibrium

More information

Element Partitioning and Earth's Core Composition. Bernie J. Wood. Summary by: Dave Stegman

Element Partitioning and Earth's Core Composition. Bernie J. Wood. Summary by: Dave Stegman Element Partitioning and Earth's Core Composition Bernie J. Wood Summary by: Dave Stegman Determining the composition of the Earth's Core is essential for understanding the internal structure, evolution,

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

More information

JCAT Project: Monte Carlo Internal Charging Tool(MCICT) status report. Fan Lei (RadMod) & David Rodgers (ESA)

JCAT Project: Monte Carlo Internal Charging Tool(MCICT) status report. Fan Lei (RadMod) & David Rodgers (ESA) JCAT Project: Monte Carlo Internal Charging Tool(MCICT) status report Fan Lei (RadMod) & David Rodgers (ESA) 1 JUICE Charging Analysis Tools (JCAT) Involving: Kallisto Consultancy (UK) PM: Pete Truscott

More information

Appendix A. An Overview of Monte Carlo N-Particle Software

Appendix A. An Overview of Monte Carlo N-Particle Software Appendix A. An Overview of Monte Carlo N-Particle Software A.1 MCNP Input File The input to MCNP is an ASCII file containing command lines called "cards". The cards provide a description of the situation

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy

Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.176-180 (2011) ARTICLE Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy Fada

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy Information technology (IT) for teaching X- and gamma-ray transport: the computer codes MUPLOT and SHAPE, and the web site dedicated to photon transport Jorge E. Fernández Laboratory of Montecuccolino

More information

Broadband Slotted Coaxial Broadcast Antenna Technology

Broadband Slotted Coaxial Broadcast Antenna Technology Broadband Slotted Coaxial Broadcast Antenna Technology Summary Slotted coaxial antennas have many advantages over traditional broadband panel antennas including much smaller size and wind load, higher

More information

NEUTRON CROSS SECTIONS

NEUTRON CROSS SECTIONS NEUTRON CROSS SECTIONS M. Ragheb 11/15/14 INTRODUCTION Neutron interactions with matter can be either scattering or absorption reactions. Scattering can result in a change in the energy and direction of

More information

LA-UR- Title: Author(s): Submitted to: Approved for public release; distribution is unlimited.

LA-UR- Title: Author(s): Submitted to: Approved for public release; distribution is unlimited. LA-UR- Approved for public release; distribution is unlimited. Title: Author(s): Submitted to: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-rays have come a long way 1895 1993 10 cm 10 µm 100 nm Collaborators: SSRL Stanford:

More information

EXPERIMENTAL CONDITIONS FOR CROSS SECTION MEASUREMENTS FOR ANALYTICAL PURPOSES. L. Csedreki 1. Abstract. I. Introduction

EXPERIMENTAL CONDITIONS FOR CROSS SECTION MEASUREMENTS FOR ANALYTICAL PURPOSES. L. Csedreki 1. Abstract. I. Introduction ACTA PHYSICA DEBRECINA XLVI, 25 (2012) EXPERIMENTAL CONDITIONS FOR CROSS SECTION MEASUREMENTS FOR ANALYTICAL PURPOSES L. Csedreki 1 1 Institute of Nuclear Research of the Hungarian Academy of Sciences,

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

Current Engineering and Design Activities at Los Alamos National Laboratory Supporting Commercial U.S. Production of 99Mo without the Use of HEU

Current Engineering and Design Activities at Los Alamos National Laboratory Supporting Commercial U.S. Production of 99Mo without the Use of HEU Current Engineering and Design Activities at Los Alamos National Laboratory Supporting Commercial U.S. Production of 99Mo without the Use of HEU Gregory E. Dale Mo-99 Topical Meeting June 26, 2014 Outline

More information

INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING

INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING Helmut Jorke, Markus Fritz INFITEC GmbH, Lise-Meitner-Straße 9, 89081 Ulm info@infitec.net Phone +49 731 550299 56 Fax _

More information

Cargo Container X-ray Inspection Systems

Cargo Container X-ray Inspection Systems Hitachi Review Vol. 53 (2004), No. 2 97 Cargo Container X-ray Inspection Systems OVERVIEW: Container inspection is categorized into three stages. In the initial stage, large-size X-ray DR (digital radiography)

More information

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

Etudes in situ et ex situ de multicouches C/FePt

Etudes in situ et ex situ de multicouches C/FePt Etudes in situ et ex situ de multicouches C/FePt : influence de la température sur la structure et les propriétés s magnétiques D. Babonneau, G. Abadias, F. Pailloux Laboratoire de Physique des Matériaux

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Measurement of Germanium Detector Efficiency

Measurement of Germanium Detector Efficiency Measurement of Germanium Detector Efficiency Marcus H. Wiggs 2009 Notre Dame Physics REU Advisor: Dr. Philippe Collon Mentors: Matthew Bowers, Daniel Robertson, Chris Schmitt ABSTRACT: A possible discrepancy

More information