Incenter and Circumcenter Quiz
|
|
|
- Cynthia Shelton
- 9 years ago
- Views:
Transcription
1 Name: lass: ate: I: Incenter and ircumcenter Quiz Multiple hoice Identify the choice that best completes the statement or answers the question.. The diagram below shows the construction of the center of the circle circumscribed about. This construction represents how to find the intersection of a. the angle bisectors of b. the medians to the sides of c. the altitudes to the sides of d. the perpendicular bisectors of the sides of 2. Which geometric principle is used in the construction shown below? a. The intersection of the angle bisectors of a triangle is the center of the inscribed circle. b. The intersection of the angle bisectors of a triangle is the center of the circumscribed circle. c. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle. d. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.
2 Name: I: 3. Three towns, Maybury, Junesville, and yanna, will create one sports center. Where should the center be placed so that it is the same distance from all three towns? a. Treat the towns as vertices of a triangle. The center must be placed at the triangle s b. Treat the towns as vertices of a triangle. The center must be placed at the triangle s c. Treat the towns as sides of a triangle. The center must be placed at the triangle s d. Treat the towns as sides of a triangle. The center must be placed at the triangle s 4. In the diagram below of, is the bisector of, E is the bisector of, and G is drawn. Which statement must be true? a. G = EG c. E E b. G = G d. G EG 5. ZO, YO, and XO are the perpendicular bisectors of. Find O. a. O = 4.2 c. O = 7.4 b. O = 3.4 d. O = 4.8 2
3 I: Incenter and ircumcenter Quiz nswer Section MULTIPLE HOIE. NS: PTS: 2 REF: ge ST: G.G.2 2. NS: PTS: 2 REF: 08028ge ST: G.G.2 3. NS: Let the three towns be vertices of a triangle. y the ircumcenter Theorem, the circumcenter of the triangle is equidistant from the vertices. To find the circumcenter, find the perpendicular bisectors of each side. Their intersection is the The center must be placed at the triangle's Treat the towns as vertices of a triangle. Treat the towns as vertices of a triangle. The center must be placed at the triangle's PTS: IF: verage REF: ad9a29e-4683-df-9c7d-0085f0d2ea OJ: pplication ST: NY.NYLES.MTH.05.GEO.G.G.2 KEY: circumcenter OK: OK 2 4. NS: G is also an angle bisector since it intersects the concurrence of and E PTS: 2 REF: 06025ge ST: G.G.2 KEY: entroid, Orthocenter, Incenter and ircumcenter 5. NS: O is the circumcenter of. y the ircumcenter Theorem, O is equidistant from the vertices of. O = O ircumcenter Theorem O = 4.2 Substitute 4.2 for O. PTS: IF: verage REF: ad df-9c7d-0085f0d2ea OJ: 5-2. Using Properties of Perpendicular isectors ST: NY.NYLES.MTH.05.GEO.G.G.2 KEY: perpendicular bisector circumcenter OK: OK
4 Name: lass: ate: I: Incenter and ircumcenter Quiz Multiple hoice Identify the choice that best completes the statement or answers the question.. The diagram below shows the construction of the center of the circle circumscribed about. This construction represents how to find the intersection of a. the altitudes to the sides of b. the perpendicular bisectors of the sides of c. the angle bisectors of d. the medians to the sides of 2. Which geometric principle is used in the construction shown below? a. The intersection of the angle bisectors of a triangle is the center of the inscribed circle. b. The intersection of the angle bisectors of a triangle is the center of the circumscribed circle. c. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle. d. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
5 Name: I: 3. Three towns, Maybury, Junesville, and yanna, will create one sports center. Where should the center be placed so that it is the same distance from all three towns? a. Treat the towns as vertices of a triangle. The center must be placed at the triangle s b. Treat the towns as sides of a triangle. The center must be placed at the triangle s c. Treat the towns as vertices of a triangle. The center must be placed at the triangle s d. Treat the towns as sides of a triangle. The center must be placed at the triangle s 4. In the diagram below of, is the bisector of, E is the bisector of, and G is drawn. Which statement must be true? a. G = G c. G = EG b. G EG d. E E 5. ZO, YO, and XO are the perpendicular bisectors of. Find O. a. O = 4.2 c. O = 4.8 b. O = 3.4 d. O = 7.4 2
6 I: Incenter and ircumcenter Quiz nswer Section MULTIPLE HOIE. NS: PTS: 2 REF: ge ST: G.G.2 2. NS: PTS: 2 REF: 08028ge ST: G.G.2 3. NS: Let the three towns be vertices of a triangle. y the ircumcenter Theorem, the circumcenter of the triangle is equidistant from the vertices. To find the circumcenter, find the perpendicular bisectors of each side. Their intersection is the The center must be placed at the triangle's Treat the towns as vertices of a triangle. The center must be placed at the triangle's Treat the towns as vertices of a triangle. PTS: IF: verage REF: ad9a29e-4683-df-9c7d-0085f0d2ea OJ: pplication ST: NY.NYLES.MTH.05.GEO.G.G.2 KEY: circumcenter OK: OK 2 4. NS: G is also an angle bisector since it intersects the concurrence of and E PTS: 2 REF: 06025ge ST: G.G.2 KEY: entroid, Orthocenter, Incenter and ircumcenter 5. NS: O is the circumcenter of. y the ircumcenter Theorem, O is equidistant from the vertices of. O = O ircumcenter Theorem O = 4.2 Substitute 4.2 for O. PTS: IF: verage REF: ad df-9c7d-0085f0d2ea OJ: 5-2. Using Properties of Perpendicular isectors ST: NY.NYLES.MTH.05.GEO.G.G.2 KEY: perpendicular bisector circumcenter OK: OK
7 Name: lass: ate: I: Incenter and ircumcenter Quiz Multiple hoice Identify the choice that best completes the statement or answers the question.. The diagram below shows the construction of the center of the circle circumscribed about. This construction represents how to find the intersection of a. the angle bisectors of b. the perpendicular bisectors of the sides of c. the medians to the sides of d. the altitudes to the sides of 2. Which geometric principle is used in the construction shown below? a. The intersection of the angle bisectors of a triangle is the center of the circumscribed circle. b. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle. c. The intersection of the angle bisectors of a triangle is the center of the inscribed circle. d. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.
8 Name: I: 3. Three towns, Maybury, Junesville, and yanna, will create one sports center. Where should the center be placed so that it is the same distance from all three towns? a. Treat the towns as vertices of a triangle. The center must be placed at the triangle s b. Treat the towns as vertices of a triangle. The center must be placed at the triangle s c. Treat the towns as sides of a triangle. The center must be placed at the triangle s d. Treat the towns as sides of a triangle. The center must be placed at the triangle s 4. In the diagram below of, is the bisector of, E is the bisector of, and G is drawn. Which statement must be true? a. G = EG c. E E b. G = G d. G EG 5. ZO, YO, and XO are the perpendicular bisectors of. Find O. a. O = 7.4 c. O = 3.4 b. O = 4.2 d. O = 4.8 2
9 I: Incenter and ircumcenter Quiz nswer Section MULTIPLE HOIE. NS: PTS: 2 REF: ge ST: G.G.2 2. NS: PTS: 2 REF: 08028ge ST: G.G.2 3. NS: Let the three towns be vertices of a triangle. y the ircumcenter Theorem, the circumcenter of the triangle is equidistant from the vertices. To find the circumcenter, find the perpendicular bisectors of each side. Their intersection is the The center must be placed at the triangle's Treat the towns as vertices of a triangle. The center must be placed at the triangle's Treat the towns as vertices of a triangle. PTS: IF: verage REF: ad9a29e-4683-df-9c7d-0085f0d2ea OJ: pplication ST: NY.NYLES.MTH.05.GEO.G.G.2 KEY: circumcenter OK: OK 2 4. NS: G is also an angle bisector since it intersects the concurrence of and E PTS: 2 REF: 06025ge ST: G.G.2 KEY: entroid, Orthocenter, Incenter and ircumcenter 5. NS: O is the circumcenter of. y the ircumcenter Theorem, O is equidistant from the vertices of. O = O ircumcenter Theorem O = 4.2 Substitute 4.2 for O. PTS: IF: verage REF: ad df-9c7d-0085f0d2ea OJ: 5-2. Using Properties of Perpendicular isectors ST: NY.NYLES.MTH.05.GEO.G.G.2 KEY: perpendicular bisector circumcenter OK: OK
Lesson 5-3: Concurrent Lines, Medians and Altitudes
Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special
Perpendicular and Angle Bisectors Quiz
Name: lass: ate: I: Perpendicular and ngle isectors Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the measures and. a. = 6.4, = 4.6 b. = 4.6,
Triangle Similarity: AA, SSS, SAS Quiz
Name: lass: ate: I: Triangle Similarity:, SSS, SS Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Explain why the triangles are similar and write a
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
Chapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
11.3 Sectors and Arcs Quiz
Name: lass: ate: I:.3 Sectors and rcs Quiz Multiple hoice Identify the choice that best completes the statement or answers the question.. ( point) Jenny s birthday cake is circular and has a 30 cm radius.
11-1 Lines that Intersect Circles Quiz
Name: lass: ate: I: 11-1 Lines that Intersect ircles Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Identify the secant that intersects ñ. a. c. b.
Centers of Triangles Learning Task. Unit 3
Centers of Triangles Learning Task Unit 3 Course Mathematics I: Algebra, Geometry, Statistics Overview This task provides a guided discovery and investigation of the points of concurrency in triangles.
Lesson 3.1 Duplicating Segments and Angles
Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each
Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: _ ate: _ I: SSS Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Given the lengths marked on the figure and that bisects E, use SSS to explain
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
The Euler Line in Hyperbolic Geometry
The Euler Line in Hyperbolic Geometry Jeffrey R. Klus Abstract- In Euclidean geometry, the most commonly known system of geometry, a very interesting property has been proven to be common among all triangles.
Duplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem
Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems
5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
Incenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
Geometry. Relationships in Triangles. Unit 5. Name:
Geometry Unit 5 Relationships in Triangles Name: 1 Geometry Chapter 5 Relationships in Triangles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK.
Unit 2 - Triangles. Equilateral Triangles
Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics
5-1 Perpendicular and Angle Bisectors
5-1 Perpendicular and Angle Bisectors Equidistant Distance and Perpendicular Bisectors Theorem Hypothesis Conclusion Perpendicular Bisector Theorem Converse of the Perp. Bisector Theorem Locus Applying
Geometry Final Exam Review Worksheet
Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.
Visualizing Triangle Centers Using Geogebra
Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ [email protected] ABSTRACT. In this paper, we will
8.2 Angle Bisectors of Triangles
Name lass Date 8.2 ngle isectors of Triangles Essential uestion: How can you use angle bisectors to find the point that is equidistant from all the sides of a triangle? Explore Investigating Distance from
Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find
GEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
GEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
Pre-Algebra Lesson 6-1 to 6-3 Quiz
Pre-lgebra Lesson 6-1 to 6-3 Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the area of the triangle. 17 ft 74 ft Not drawn to scale a. 629 ft
Conjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.
efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center
Advanced Euclidean Geometry
dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line
Ceva s Theorem. Ceva s Theorem. Ceva s Theorem 9/20/2011. MA 341 Topics in Geometry Lecture 11
MA 341 Topics in Geometry Lecture 11 The three lines containing the vertices A, B, and C of ABC and intersecting opposite sides at points L, M, and N, respectively, are concurrent if and only if 2 3 1
Geometer s Sketchpad. Discovering the incenter of a triangle
Geometer s Sketchpad Discovering the incenter of a triangle Name: Date: 1.) Open Geometer s Sketchpad (GSP 4.02) by double clicking the icon in the Start menu. The icon looks like this: 2.) Once the program
Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.
Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,
Analytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
Definitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
GeoGebra Workshop for the Initial Teacher Training in Primary Education
GeoGebra Workshop for the Initial Teacher Training in Primary Education N. Ruiz [email protected] Facultad de Formación de Profesorado y Educación (Faculty of Education) Universidad Autónoma de Madrid
4.3 Congruent Triangles Quiz
Name: Class: Date: ID: A 4.3 Congruent Triangles Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given: ABC MNO Identify all pairs of congruent corresponding
NAME DATE PERIOD. Study Guide and Intervention
opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector
Unit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
Lesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and
IMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao.
ircles Yufei Zhao [email protected] 1 Warm up problems 1. Let and be two segments, and let lines and meet at X. Let the circumcircles of X and X meet again at O. Prove that triangles O and O are similar.
TIgeometry.com. Geometry. Angle Bisectors in a Triangle
Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
11 th Annual Harvard-MIT Mathematics Tournament
11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit
For each Circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1. x = 2. x =
Name: ate: Period: Homework - Tangents For each ircle, find the value of. ssume that segments that appear to be tangent are tangent. 1. =. = ( 5) 1 30 0 0 3. =. = (Leave as simplified radical!) 3 8 In
Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter
Heron s Formula Lesson Summary: Students will investigate the Heron s formula for finding the area of a triangle. The lab has students find the area using three different methods: Heron s, the basic formula,
CHAPTER 1 CEVA S THEOREM AND MENELAUS S THEOREM
HTR 1 V S THOR N NLUS S THOR The purpose of this chapter is to develop a few results that may be used in later chapters. We will begin with a simple but useful theorem concerning the area ratio of two
Geometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
Cevians, Symmedians, and Excircles. MA 341 Topics in Geometry Lecture 16
Cevians, Symmedians, and Excircles MA 341 Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian
Straight Line. Paper 1 Section A. O xy
PSf Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of
Three Lemmas in Geometry
Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology [email protected] 1 iameter of incircle T Lemma 1. Let the incircle of triangle
TImath.com. Geometry. Points on a Perpendicular Bisector
Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once
Objectives. Cabri Jr. Tools
^Åíáîáíó=NO Objectives To learn how to construct all types of triangles using the Cabri Jr. application To reinforce the difference between a construction and a drawing Cabri Jr. Tools fåíêççìåíáçå `çåëíêìåíáåö
A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment
Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
Unit 10 Geometry Circles. NAME Period
Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (10-1) Circles and Circumference
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.
1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides
CONGRUENCE BASED ON TRIANGLES
HTR 174 5 HTR TL O ONTNTS 5-1 Line Segments ssociated with Triangles 5-2 Using ongruent Triangles to rove Line Segments ongruent and ngles ongruent 5-3 Isosceles and quilateral Triangles 5-4 Using Two
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
We are going to investigate what happens when we draw the three angle bisectors of a triangle using Geometer s Sketchpad.
Krystin Wright Geometer s Sketchpad Assignment Name Date We are going to investigate what happens when we draw the three angle bisectors of a triangle using Geometer s Sketchpad. First, open up Geometer
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
Area. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
GEOMETRY B: CIRCLE TEST PRACTICE
Class: Date: GEOMETRY B: CIRCLE TEST PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measures of the indicated angles. Which statement
1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
[G.CO.2, G.CO.4, G.CO.5]
Name: Date: Geometric Transformations Multiple Choice Test Bank 1. A triangle has vertices at A (1, 3), B (4, 2), and C (3, 8). Which transformation would produce an image with vertices A (3, 1), B (2,
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
Calculate the circumference of a circle with radius 5 cm. Calculate the area of a circle with diameter 20 cm.
RERTIES F CIRCLE Revision. The terms Diameter, Radius, Circumference, rea of a circle should be revised along with the revision of circumference and area. Some straightforward examples should be gone over
Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
CAIU Geometry - Relationships with Triangles Cifarelli Jordan Shatto
CK-12 FOUNDATION CAIU Geometry - Relationships with Triangles Cifarelli Jordan Shatto CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12
CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships
Collinearity and concurrence
Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors
Special Segments in Triangles
HPTER 10 Special Segments in Triangles c GOL Identify the altitudes, medians, and angle bisectors in a triangle. You will need a protractor a ruler Learn about the Math Every triangle has three bases and
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
The Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
Intro to Circles Formulas Area: Circumference: Circle:
Intro to ircles Formulas rea: ircumference: ircle: Key oncepts ll radii are congruent If radii or diameter of 2 circles are congruent, then circles are congruent. Points with respect to ircle Interior
Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016
Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding
ON THE SIMSON WALLACE THEOREM
South Bohemia Mathematical Letters Volume 21, (2013), No. 1, 59 66. ON THE SIMSON WALLACE THEOREM PAVEL PECH 1, EMIL SKŘÍŠOVSKÝ2 Abstract. The paper deals with the well-known Simson Wallace theorem and
Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test
Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan
GEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
Mathematics Georgia Performance Standards
Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by
GPS GEOMETRY Study Guide
GPS GEOMETRY Study Guide Georgia End-Of-Course Tests TABLE OF CONTENTS INTRODUCTION...5 HOW TO USE THE STUDY GUIDE...6 OVERVIEW OF THE EOCT...8 PREPARING FOR THE EOCT...9 Study Skills...9 Time Management...10
Exploring Geometric Mean
Exploring Geometric Mean Lesson Summary: The students will explore the Geometric Mean through the use of Cabrii II software or TI 92 Calculators and inquiry based activities. Keywords: Geometric Mean,
Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013
Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius
