On an antiramsey type result


 Neil Collins
 1 years ago
 Views:
Transcription
1 On an antiramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider antiramsey type results. For a given coloring of the kelement subsets of an nelement set X, where two kelement sets with nonempty intersection are colored differently, let inj (k, n) be the largest size of a subset Y X, such that the kelement subsets of Y are colored pairwise differently. Taking the minimum over all colorings, i.e. inj(k, n) = min {inj (k, n)}, it is shown that for every positive integer k there exist positive constants c k, c k > 0 such that for all integers n, n large, the following inequality holds c k (ln n) k 2k n 2k inj(k, n) c k (ln n) k 2k n 2k. Introduction In recent years some interest was drawn towards the study of antiramsey type results, cf. for example [ESS 75], [Ra 75], [Al 83], [SS 84], [GRS 89]. In particular, they include topics like Canonical Ramsey Theory and spectra of colorings. Some of these results show a close connection to the theory of Sidonsequences, cf. [BS 85], [So 90], and recently they turned out to be also fruitful in determining bounds for canonical Ramsey numbers, cf. [LR 90]. The general problem is: given a graph or hypergraph, where the edges are colored with certain restrictions on the coloring like, for example, edges of the same color cannot intersect nontrivially, one is interested in the largest size of some totally multicolored subgraph of a given type. In this paper we study this question for colorings of complete uniform hypergraphs. Let : [X] k ω, where ω = {0,,...}, be a coloring of the kelement subsets of X. A subset Y X is called totally multicolored if the restriction of to [Y ] k is a onetoone coloring. For coloring edges in complete graphs, where the coloring is such that edges of the same color are not incident, Babai gave bounds for the largest totally multicolored complete subgraph K k : Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel Fakultät für Mathematik, SFB 343, Universität Bielefeld, W Bielefeld, Germany Emory University, Department of Mathematics and Computer Science, Atlanta, Georgia 30322, USA
2 Theorem [Ba 85] Let n be a positive integer. Let X be an nelement set and let : E(K n ) ω, where ω = {0,, 2,...}, be a coloring of the edges of the complete graph K n on n vertices, such that incident edges get different colors. Then there exists a totally multicolored complete subgraph K k, which satisfies k (2 n) 3. () Moreover, for n large, there exists a coloring : E(K n ) ω, where incident edges are colored differently, such that the largest totally multicolored complete subgraph K k satisfies k 8 (n ln n) 3. (2) Here we improve the lower bound in Theorem () and show that the upper bound is tight, up to a constant factor. Moreover, we generalize Babai s result to colorings of kuniform complete hypergraphs. Specifically, we prove Theorem 2 Let k be a positive integer with k 2. Then there exist positive constants c k, c k > 0 such that for all positive integers n with n n 0 (k) the following holds. Let X be a set with X = n and let : [X] k ω be a coloring, where (S) (T ) for all sets S, T [X] k with S T and S T. Then there exists a totally multicolored set Y X of size Y c k (ln n) 2k n k 2k. (3) Moreover, there exists a coloring : [X] k ω, where (S) (T ) for all different S, T [X] k with S T, such that every totally multicolored subset Y X satisfies Y c k (ln n) 2k n k 2k. (4) The proof relies heavily on probabilistic arguments. The lower bound is proved is Section 2 and the upper bound is established in Section 3. 2 The proof of the lower bound Let F = (V, E) be a hypergraph with vertex set V and edge set E. For a vertex x V let deg F (x) denote the degree of x in F, i.e. the number of edges e E containing x, and let 2
3 (F) = max {deg F (x) x V}. Komlós, Pintz, Spencer and Szemerédi: Our lower bound is based on the following result of Ajtai, Theorem 3 [AKPSS 82] Let F be an (r + )uniform hypergraph on N vertices. Assume that (i) F is uncrowded ( i.e. contains no cycles of length 2, 3 or 4 ) and (ii) (F) t r, where t t 0 (r), and (iii) N N 0 (r, t), then the maximum independent set of F has size α(f) 0.98 e 0 5 r N t (ln t) r. (5) We want to apply this Theorem with the parameters r+ = 2 k and t = N δ, where δ r (2r ). The proof given in [AKPSS 82] suggests that N 0 (r, t) should be at least t 4r+O(). Indeed, these calculations can be avoided, as the statement of Theorem (3) is strong enough to imply the same statement, where condition (iii) is dropped. Theorem 3 Let G be an (r + )uniform hypergraph on n vertices. Assume that (i) G is uncrowded and (ii) (G) t r, where t t 0 (r), then α(g) 0.98 e 0 5 r n t (ln t) r. (6) To see that Theorem (3) implies (the seemingly stronger) Theorem (3 ) consider a hypergraph G on n vertices, which satisfies the assumptions of Theorem (3 ). Let m be a positive integer with m > N 0(r, t) n and consider the hypergraph F m consisting of m vertex disjoint copies of G. Then F m has N = m n vertices and satisfies the assumptions (i), (ii) and (iii) of Theorem (3). We infer that m α(g) = α(f m ) 0.98 e r N t (ln t) r
4 and thus α(g) 0.98 e 0 5 r n t (ln t) r. We can now prove the lower bound in Theorem (2). The basic idea is to define a hypergraph on the set of vertices X whose edges are all unions of pairs of members of [X] k which have the same color. Then we choose an appropriate random subset of the set of vertices and show that with positive probability the induced hypergraph on this set does not contain too many edges, and contains only a small number of cycles of length 2,3 or 4. We can then delete these cycles and apply Theorem (3 ) to obtain the desired result. The actual calculations are somewhat complicated and are described below. A similar application of Theorem (3 ) is given in [RS 9]. Proof: Let : [X] k ω be a coloring, which satisfies the assumptions in Theorem (2). We may assume that X = n is divisible by k. This will not change the calculations asymptotically. Put r + = 2 k and consider an (r + )uniform hypergraph H with vertex set X and with U E(H), where E [X] r+, being an edge of H if and only if there exist different kelement subsets S, T U with (S) = (T ). Indeed, by assumption on the coloring the sets S and T are disjoint. Note that if Z X is an independent set of H, then Z is totally multicolored. Our aim is to find a large independent set in H. As there are at most n k of H satisfies kelement subsets of the same color, we infer that the number of edges E(H) ( n k) n k ( n k 2 For i = 2, 3, 4 we will further bound the number µ i of icycles in H. ) 2 k 2 (k )! nk+. (7) For distinct vertices x, y of H let deg H (x, y) be the number of edges of H containing both vertices x and y. Let {x, y} U E(H) (8) for some set U. Let S, T [X] k be such that S T = U and (S) = (T ). As S and T are by assumption disjoint sets, we may assume without loss of generality that one of the following possibilities happens: (i) either x S and y T 4
5 (ii) or {x, y} S. ( n 2 k The number of edges U E(H) satisfying (8) and (i) ((8) and (ii)) is bounded from above by ) (n 2 ( ( n k ) k 2) respectively). Summing, we obtain that n 2 deg H (x, y) k Using (9) one easily sees that n + k µ 3 c 3 n 3k µ 4 c 4 n 4k. n 2 < 2 k n k. (9) k 2 k! We will now discuss the 2cycles: for j = 2, 3,..., 2k let ν j be the number of (unordered) pairs of edges of H intersecting in a jelement set. We clearly have µ 2 = 2k j=2 ν j. Set p = n 2 4k. Let Y be a random subset of X with vertices chosen independently, each with probability p. Then P rob ( Y p n) > 0.9. (0) For i = 3, 4 let µ i (Y ) be the random variable counting the number of icycles no two of whose edges form a two cycle of the subgraph of H induced on a set Y. Similarily, for j = 2, 3,..., 2k let ν j (Y ) be the random variable counting the number of (unordered) pairs of edges of H induced on Y, which intersect in j vertices. Let E(µ i (Y )) and E(ν j (Y )) be the corresponding expected values. It is easy to see that for i = 3, 4 (and k 2). E(µ i (Y )) p (2k ) i c i n ki = o(p n) () In order to give an upper bound on E(ν j (Y )) we will first estimate ν j. Fix an edge S E(H) [X] 2k and fix nonnegative integers j 0 and j with j 0, j k. We will count the number of unordered pairs {T 0, T }, which satisfy (T 0 ) = (T ) (2) 5
6 and j 0 = S T 0, j = S T. (3) Assume first that j 0, j. Fixing the set T 0, there are at most 2k j0 j sets T satisfying (2) and (3). If we apply the same argument also when T is fixed we infer that the number of pairs {T 0, T }, which satisfy (2) and (3), is bounded from above by { } 2k 2k j0 n 2k 2k j n min, j 0 j k j 0 j j 0 k j Assume now that j 0 = 0 and j. Having fixed the set T there are at most ( n k 2) sets T 0, which satisfy (2) and (3). Therefore, the number of such pairs {T 0, T } is bounded from above by most 2k n j k j Setting j = j 0 + j 2 and summing this means, that for every edge S E(H) there are at n k. c j,k n k j 2 + c j,k n k j+. c j,k n k j 2 edges T E(H) such that S T = j, and hence with (7) we have ν j c j,k n k j 2 E(H) c j,k n 2k+ j 2, where c j,k is a constant depending on j and k only. Thus, for j = 2, 3,..., 2k it follows that E(µ 2 (Y )) = 2k j=2 2k j=2 E(ν j (Y )) p 4k j c j,k n 2k+ j 2 = o(p n). (4) 6
7 Summarizing (0), () and (4) and the fact that E( E(H) [Y ] 2k ) = p 2k E(H), (5) we infer that there exists a subset Y 0 X with Y 0 p n, µ i (Y 0 ) = o(p n) and ν j (Y 0 ) = o(p n) for i = 3, 4 and j = 2, 3,..., 2k and with E(H) [Y 0 ] 2k 2 p 2k E(H). We delete from Y 0 all vertices, which are contained in icycles of length i = 2, 3, 4 to obtain a subset Y Y 0 with Y p n, such that the subgraph induced on Y is uncrowded and has at most 2 p 2k E(H) edges. Finally, delete all vertices Y with degree bigger than 8 k p 2k E(H) p n. We obtain a subset Z Y with at least p n 2 ( o()) vertices such that the subgraph G of H induced on the set Z satisfies the assumptions of Theorem (3 ) with (G) t 2k = 8 k p2k E(H) p n 4 k! p2k n k, hence, t ( 4 k!) 2k p n k 2k. We apply Theorem (3 ) to the hypergraph G and obtain α(h) α(g) 0.98 e 0 5 r Z t ( o()) 0.49 e (ln t) r ( k! 2k This completes the proof of the lower bound. (4k ) (4k 2) ) 2k n k 2k (ln n) 2k. 3 The proof of the upper bound Let k, n be positive integers, where n is divisible by k. Let X be a set of vertices with X = n. A perfect kmatching on X is a collection of n k pairwise disjoint kelement subsets of X. 7
8 The number of perfect kmatchings of an nelement set, n divisible by k, is given by = ( n k) ( n k k n! (k!) n k n k!. ) ( n 2k ) (... k k) k n k! In the following we prove the upper bound given in Theorem (2). The basic idea is similar to the one used by Babai in [Ba 85], but there are several complications. Proof: Let X be a set with X = n, and assume that n is divisible by k. As long as k is fixed, this will not change the calculations asymptotically. Let m = cn k, where c = (k )! 8. Let M, M 2,..., M m be random perfect kmatchings, chosen uniformly randomly and independently from the set of all perfect kmatchings. Put H j = i<j M i, hence H j is the set of all kelement subsets occurring in one of the first (j ) perfect kmatchings M i, i < j. Define a coloring : [X] k ω in the following way: for j =, 2,..., m color the sets in M j \ H j with color j, and, in order to complete the coloring, color those sets in [X] k \ H m+ with new colors in an arbitrary way, compatible with the assumptions. (E.g., using a different color for each edge). Now let Y X be a subset of X with Y = l, where l > n k k+ but l = o(n k ). Our objective is to estimate the probability that Y is totally multicolored. Very roughly, this is done as follows. We show that with a high probability Y does not contain too many edges of any single matching, and hence it does not contain too many edges of H j for every j. If this occurs, then for each j, with a reasonably high probability Y does contain two edges of M j that do not lie in H j (and thus have the same color). This implies that with extremely high probability such two edges exist for some j, and hence Y is not totally multicolored. The actual proof is rather complicated, and is described in the following sequence of lemmas. Lemma For all integers j, t, j m and t 0, the following inequality holds Proof: l k Prob ( M j [Y ] k t) ( k n k )t. (6) The kmatchings M j above have been chosen at random and the set Y was fixed. In order to give an upper bound for the probability Prob ( M j [Y ] k t), view it the other way around: Let M j be fixed and let Y be chosen at random. This does not change the corresponding probabilities. Now, Y can be chosen in ( n) l ways. From Mj we can choose t kelement sets in ( n ) k t 8
9 ways and the remaining elements of Y in at most ( n kt l kt ) ways. This implies Prob ( M j [Y ] k t) ( n ) ( k t n kt ) l kt ( n ) l = n t ( l kt k n) l k t k n k. Let E i denote the event H i [Y ] k 6c k lk = 3 4 (k!) lk. (7) Notice, that Prob (E i ) Prob (E i+ ) for every i, i m. The following Lemma gives a lower bound for the probability that E m+ occurs: Lemma 2 For n large, Prob (E m+ ) 2 6c k lk. Proof: For i =, 2,..., m define random variables x i by x i = M i [Y ] k. Thus E m+ [Y ] k mi= x i. As the kmatchings are chosen independently, the x i s are independent random variables too. Therefore, m Prob ( H m+ [Y ] k t) Prob ( x i t) i= (t i ) m i=,t i 0, t i =t m Prob (x i t i ). (8) i= The number of sequences (t i ) m i= with t i 0 and m i= t i = t is given by the binomial coefficient ). By Lemma we know ( t+m t l k Prob (x i t i ) ( k n k )t i, hence with (8) we have Prob ( H m+ [Y ] k t) t + m l k ( t k n k )t e(t + m) t t t k nk e(t + m)lk ( tkn k ) t (9) l k 9
10 For t = 6c k lk and l = o(n k k ) the quotient e(t+m) lk tkn k Hence Prob (E m+ ) 2 6c k lk. occurring in (9) is less than /2 for n large. Next, define another random variable y j by y j = [M j ] 2 [[Y ] k \ H j ] 2. (20) Clearly, y j counts the number of those pairs of disjoint kelement sets i [Y ] k \ H j which have both elements in the kmatching M j (and hence have the same color). Let E(y j M) denote the conditional expected value of y j given M. Lemma 3 For positive integers n, n large, E(y j E j, M, M 2,..., M j ) > 30 k 2 l 2k. (2) n2k 2 Proof: As E j holds, (7) implies for n large that [Y ] k \ H j l 6c k k lk c l k, (22) where, say, c = 8 (k!). For every set S [Y ] at most k( l k ) kelement subsets of Y, which are not disjoint from S, hence the the number of sets {S, T } [[Y ] k \ H j ] 2, where S and T are disjoint, is for n large at least l 2 c l k (c l k k k ) > 30 (k!) 2 l2k. (23) Now, for given disjoint kelement sets S, T, the probability that both are in M j is given by Prob (S, T M j ) = = ( n k ( n k ( ) n ( k) n k ) k ) ( n k ) ( n k ( n k ) 2 k (k )! n k ) 2. 0
11 Therefore, E(y j E j, M, M 2,..., M j ) 30 k 2 l 2k n 2k 2. Lemma 4 For every positive integer j, j m, and n large Prob (y j = E j, M, M 2,..., M j ) > 3 k 2 l 2k. (24) n2k 2 Proof: First we claim that Prob (y j t E j, M, M 2,..., M j ) ( k n l k 2t+ ) (25) k for every positive integer t. This follows from the fact that t pairwise different twoelement sets imply that the underlying set has cardinality at least 2t +. Hence, y j t implies M j [Y ] k 2t +. By Lemma this gives Prob (y j t E j, M, M 2,..., M j ) Prob ( M j [Y ] k 2t + ) ( k n l k 2t+ ), k proving (25). For every positive integer i put p i = Prob (y j = i E j, M, M 2,..., M j ). Clearly, we have E(y j E j, M, M 2,..., M j ) = i<ω i p i and by (25) this implies E(y j E j, M, M 2,..., M j ) p + i ( k n i 2 l k 2i+ ) k p + O(( lk n k )3 ) l 2k p + o. (26) n 2k 2 The last inequality (26) follows from the fact that l = o(n k k ). By Lemma 3 this implies that, say, p > 3 k 2 l 2k n 2k 2 for n large. Let F j denote the event (y j = 0 and E j+ ). Then F F 2... F j is the event that E j and y i = 0 for i =, 2,..., j.
12 Let M be the set of all mutually exclusive events (E j, M, M 2,..., M j ) for which y i = 0, i =, 2,..., j, holds. Then clearly and thus Hence, by Lemma 4 we infer that Now we are ready to prove F F 2... F j = M(E j, M, M 2,..., M j ) Prob (y j = F F 2... F j ) M = Prob (y j = (E j, M M 2... M j )) M Prob (E j, M, M 2,..., M j ) Prob (y j = (E j, M, M 2,..., M j )) min M Prob (E j, M, M 2,..., M j ) = min M Prob (y j = E j, M, M 2,..., M j ). Prob (y j = F F 2... F j ) > Lemma 5 For every positive integer n, n large, Proof: we infer that 3 k 2 l 2k. (27) n2k 2 Prob (F F 2... F m ) < exp( 048 k (k!) l 2k ). (28) nk As m Prob (F F 2... F m ) = Prob (F ) Prob (F j F F 2... F j ), (29) j=2 Prob (F j F F 2... F j )) Prob (y j = 0 F F 2... F j ) Prob (y j F F 2... F j ) With (29) it follows that Prob (F F 2... F m ) < ( 3 k 2 l 2k )m n2k 2 exp( 3 k 2 m l 2k n 2k 2 ) = Prob (y j = F F 2... F j ) < 3 k 2 l 2k n 2k 2 by (27). exp( 048 k (k!) l 2k n k ) as m = 8 ((k )!) nk. 2
13 We finish the proof of Theorem 2 by bounding the probability that there exists a totally multicolored subset Y X with Y = l. If a fixed subset Y X is totally multicolored, then either F F 2... F m is true or for some j, j m, the event E j+ does not occur and therefore by (7) also not the event E m+. With Lemma 2 and Lemma 5 we infer that Prob (Y is totally multicolored ) < 2 6c k lk + exp( 048 k (k!) l 2k n k ), and doing this for all ( n l ) lelement subsets Y X implies < Prob (there exists Y X with Y = l and Y is totally multicolored ) n (exp( l 048 k (k!) l 2k 6c ) + 2 k lk ). (30) nk For l (049 k (k!)) 2k n k 2k (ln n) 2k (where the constant can be easily improved) expression (30) goes to 0 with n going to infinity. Thus for X = n and n large there exists a coloring : [X] k ω such that every totally multicolored subset Y X has size Y (049 k (k!)) 2k n k 2k (ln n) 2k. References [AKPSS 82] [Al 83] M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal uncrowded hypergraphs, Journal of Combinatorial Theory Ser. A 32, 982, N. Alon, On a conjecture of Erdös, Simonovits and Sós concerning AntiRamsey Theorems, J. Graph Theory 7, 983, [Ba 85] L. Babai, An antiramsey Theorem, Graphs and Combinatorics, 985, [BS 85] [ESS 75] L. Babai and V. T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, Europ. J. Combinatorics 6, 985, 04. P. Erdös, M. Simonovits and V. T. Sós, AntiRamsey theorems, in: Infinite and Finite Sets, ed. by Hajnal, Rado, Sós, Coll. Math. Soc. Janos Bolyai, NorthHolland, Amsterdam, 975,
14 [GRS 89] [LR 90] [Ra 75] [RS 9] R. L. Graham, B. L. Rothschild and J. Spencer, Ramsey theory, 2nd edition, John Wiley, New York, 989. H. Lefmann and V. Rödl, On canonical Ramsey numbers for complete graphs versus paths, 990, to appear in J. Comb. Theory (Series B). R. Rado, AntiRamsey theorems, in: Infinite and Finite Sets, ed. by Hajnal, Rado, Sós, Coll. Math. Soc. Janos Bolyai, NorthHolland, Amsterdam, 975, V. Rödl and E. Si najová, Note on independent sets of Steiner systems, preprint, 99. [SS 84] M. Simonovits and V. T. Sós, On restricted colorings of K n, Combinatorica 4, 984, 00. [So 90] V. T. Sós, An additive problem in different structures, 990, preprint. 4
Regular Languages are Testable with a Constant Number of Queries
Regular Languages are Testable with a Constant Number of Queries Noga Alon Michael Krivelevich Ilan Newman Mario Szegedy Abstract We continue the study of combinatorial property testing, initiated by Goldreich,
More informationShort Cycles make Whard problems hard: FPT algorithms for Whard Problems in Graphs with no short Cycles
Short Cycles make Whard problems hard: FPT algorithms for Whard Problems in Graphs with no short Cycles Venkatesh Raman and Saket Saurabh The Institute of Mathematical Sciences, Chennai 600 113. {vraman
More informationRandom matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs
Random matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs Jeong Han Kim Microsoft Research One Microsoft Way Redmond, WA 9805 USA jehkim@microsoft.com Nicholas
More informationA mini course on additive combinatorics
A mini course on additive combinatorics 1 First draft. Dated Oct 24th, 2007 These are notes from a mini course on additive combinatorics given in Princeton University on August 2324, 2007. The lectures
More informationOn the Locality of Codeword Symbols
On the Locality of Codeword Symbols Parikshit Gopalan Microsoft Research parik@microsoft.com Cheng Huang Microsoft Research chengh@microsoft.com Sergey Yekhanin Microsoft Research yekhanin@microsoft.com
More informationA 2factor in which each cycle has long length in clawfree graphs
A factor in which each cycle has long length in clawfree graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science
More informationMaximizing the Spread of Influence through a Social Network
Maximizing the Spread of Influence through a Social Network David Kempe Dept. of Computer Science Cornell University, Ithaca NY kempe@cs.cornell.edu Jon Kleinberg Dept. of Computer Science Cornell University,
More informationThe Two Cultures of Mathematics. W. T. Gowers
The Two Cultures of Mathematics. W. T. Gowers In his famous Rede lecture of 1959, entitled The Two Cultures, C. P. Snow argued that the lack of communication between the humanities and the sciences was
More informationWhich graphs are determined by their spectrum?
Linear Algebra and its Applications 373 (2003) 241 272 www.elsevier.com/locate/laa Which graphs are determined by their spectrum? Edwin R. van Dam 1, Willem H. Haemers Department of Econometrics and O.R.,
More informationSome Applications of Laplace Eigenvalues of Graphs
Some Applications of Laplace Eigenvalues of Graphs Bojan MOHAR Department of Mathematics University of Ljubljana Jadranska 19 1111 Ljubljana, Slovenia Notes taken by Martin Juvan Abstract In the last decade
More informationHow to Use Expert Advice
NICOLÒ CESABIANCHI Università di Milano, Milan, Italy YOAV FREUND AT&T Labs, Florham Park, New Jersey DAVID HAUSSLER AND DAVID P. HELMBOLD University of California, Santa Cruz, Santa Cruz, California
More informationWHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? 1. Introduction
WHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER Abstract. Consider an election in which each of the n voters casts a vote consisting of
More informationAn efficient reconciliation algorithm for social networks
An efficient reconciliation algorithm for social networks Nitish Korula Google Inc. 76 Ninth Ave, 4th Floor New York, NY nitish@google.com Silvio Lattanzi Google Inc. 76 Ninth Ave, 4th Floor New York,
More informationSome Sharp Performance Bounds for Least Squares Regression with L 1 Regularization
Some Sharp Performance Bounds for Least Squares Regression with L 1 Regularization Tong Zhang Statistics Department Rutgers University, NJ tzhang@stat.rutgers.edu Abstract We derive sharp performance bounds
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationNotes on Richard Dedekind s Was sind und was sollen die Zahlen?
Notes on Richard Dedekind s Was sind und was sollen die Zahlen? David E. Joyce, Clark University December 2005 Contents Introduction 2 I. Sets and their elements. 2 II. Functions on a set. 5 III. Onetoone
More informationTHe area of sublineartime algorithms is a new rapidly emerging area of computer science. It
Sublineartime algorithms Artur Czumaj Christian Sohler Abstract In this paper we survey recent advances in the area of sublineartime algorithms. Introduction THe area of sublineartime algorithms is
More informationConstant Thresholds Can Make Target Set Selection Tractable
Constant Thresholds Can Make Target Set Selection Tractable Morgan Chopin 1, André Nichterlein 2, Rolf Niedermeier 2, and Mathias Weller 2 1 LAMSADE, Université ParisDauphine, France chopin@lamsade.dauphine.fr
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289. Compressed Sensing. David L. Donoho, Member, IEEE
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289 Compressed Sensing David L. Donoho, Member, IEEE Abstract Suppose is an unknown vector in (a digital image or signal); we plan to
More informationSome Basic Techniques of Group Theory
Chapter 5 Some Basic Techniques of Group Theory 5.1 Groups Acting on Sets In this chapter we are going to analyze and classify groups, and, if possible, break down complicated groups into simpler components.
More informationLAGUERRE POLYNOMIALS WITH GALOIS GROUP A m FOR EACH m
LAGUERRE POLYNOMIALS WITH GALOIS GROUP A m FOR EACH m Michael Filaseta Mathematics Department University of South Carolina Columbia, SC 29208 Ognian Trifonov Mathematics Department University of South
More informationGeneralized Compact Knapsacks are Collision Resistant
Generalized Compact Knapsacks are Collision Resistant Vadim Lyubashevsky Daniele Micciancio University of California, San Diego 9500 Gilman Drive, La Jolla, CA 920930404, USA {vlyubash,daniele}@cs.ucsd.edu
More informationCOMPUTING EQUILIBRIA FOR TWOPERSON GAMES
COMPUTING EQUILIBRIA FOR TWOPERSON GAMES Appeared as Chapter 45, Handbook of Game Theory with Economic Applications, Vol. 3 (2002), eds. R. J. Aumann and S. Hart, Elsevier, Amsterdam, pages 1723 1759.
More informationHow Bad is Forming Your Own Opinion?
How Bad is Forming Your Own Opinion? David Bindel Jon Kleinberg Sigal Oren August, 0 Abstract A longstanding line of work in economic theory has studied models by which a group of people in a social network,
More informationThe SmallWorld Phenomenon: An Algorithmic Perspective
The SmallWorld Phenomenon: An Algorithmic Perspective Jon Kleinberg Abstract Long a matter of folklore, the smallworld phenomenon the principle that we are all linked by short chains of acquaintances
More informationAn Impossibility Theorem for Clustering
An Impossibility Theorem for Clustering Jon Kleinberg Department of Computer Science Cornell University Ithaca NY 14853 Abstract Although the study of clustering is centered around an intuitively compelling
More informationHow many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural
More informationA GRAPHTHEORETIC DEFINITION OF A SOCIOMETRIC CLIQUE *
Journal of Mathematical Sociology Gordon and Breach Science Publishers 1973 Vol. 3, pp 113126 Printed in Birkenhead, England A GRAPHTHEORETIC DEFINITION OF A SOCIOMETRIC CLIQUE * RICHARD D. ALBA Columbia
More informationDiscovering All Most Specific Sentences
Discovering All Most Specific Sentences DIMITRIOS GUNOPULOS Computer Science and Engineering Department, University of California, Riverside RONI KHARDON EECS Department, Tufts University, Medford, MA
More information