Analysis and Comparison of Norms and Standards for the Application of Electric Vehicles and Vehicle Batteries in China and Germany/Europe

Size: px
Start display at page:

Download "Analysis and Comparison of Norms and Standards for the Application of Electric Vehicles and Vehicle Batteries in China and Germany/Europe"

Transcription

1

2 A Study on: Analysis and Comparison of Norms and Standards for the Application of Electric Vehicles and Vehicle Batteries in China and Germany/Europe Commissioned as part of the German Chinese Sustainable Fuel Partnership (GCSFP) Date: Project participants German project leader: Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University Prof. Sauer German project partners: Centre for Solar Energy and Hydrogen Research (ZSW) Dr. Döring Institute of Automotive Engineering (ika), RWTH Aachen University Prof. Eckstein Institute for High Voltage Technology (IfHT), RWTH Aachen University Prof. Schnettler MIMI Tech UG, Aachen Prof. Friedrich Fuel Cell and Battery Consulting (FCBAT), Ulm Prof. Garche Chinese project leader: China Automotive Technology & Research Center (CATARC) Mr. Rong Zhou

3 Table of Content 0. Introduction of the study General relevance of standards for electric vehicles and vehicle batteries Relevance of standardization Terminology, measurement and validation standards Interface standards Compatibility standards Quality, product and service standards Procedure of standardization in China The management of Chinese standards Brief Introduction of SAC The classes and system of Chinese standards Procedure of standardization in Germany and the European Union and Germany Introduction Institutes and committees for standardization with relevance in the European Union Standardization of electric vehicles and vehicle batteries in China Existing standards of electric vehicles and vehicle batteries in China Accreditation of electric vehicles Electric vehicle component safety Transporting and storage of lithium-ion batteries Battery abuse and safety Battery charging, exchange stations and grid connection Battery recycling and disposal Standards under development in China Standardization of electric vehicles and vehicle batteries in Germany and in the European Union Existing standards of electric vehicles and vehicle batteries in Germany and EU Accreditation of electric vehicles... 29

4 3.1.2 Electric vehicle component safety Transporting and storage of lithium-ion batteries Battery abuse and safety Battery charging, exchange stations and grid connection Battery recycling and disposal Standards under development in Germany and EU Comparison of standards in China and in Germany/EU for vehicle batteries Introduction of standards for vehicle batteries in China Introduction of standards for vehicle batteries in Germany and EU Comparison of vehicle battery standards Results and conclusions Demand for the further coordination of standards in Germany / EU and China Exchange of standard drafts in an early stage Coordination of proposals in international standardization working groups Mutual recognition of test results Harmonization of key components for electric mobility Summary and conclusion Appendix List of CENELEC members [cen] List of full IEC members [iec] List of relevant standards in China List of relevant standards in Germany/EU Bibliography

5 Tables Table 1 Codes of Chinese standards... 7 Table 2 International and European standardization organizations [Nie00] Table 3 Different DIN documents Table 4 Existing standards of electric vehicles and vehicle batteries in China Table 5 Standards for accreditation of electric vehicles in China Table 6 Standards for battery abuse and safety in China Table 7 Standards for battery charging, exchange stations and grid connection in China Table 8 Standards under development in China Table 9 List of CENELEC members Table 10 List of full IEC members Table 11 List of relevant standards in China Table 12 List of relevant standards in Germany/EU sorted by standard number Table 13 List of relevant standards in Germany/EU sorted by subject

6 Figures Figure 1 Standardization for EVs in China... 9 Figure 2 Structure of TC11 4/SC27 in China... 9 Figure 3 Overview of test procedures in ISO/DIS (2008) Figure 4 Test overview in ISO/DIS Draft Figure 5 High energy battery test cycle(x-axis: time (min); y-axis: discharge current (I3)) Figure 6 High power battery test cycle(x-axis: time (s); y-axis: current (I3)) Figure 7 Overview on test procedures in ISO Figure 8 Lifetime cycles defined in ISO Figure 9 Mechanical shock definition in ISO Figure 10 Assignment of tests to systems and pack in ISO Figure 11 Classification Criteria and Efffect in ISO Figure 12 Test cycle in ISO Figure 13: Shock test in ISO Figure 14 Test matrix in ISO Figure 15 Overview of test procedures Figure 16 Crush test textured platen surface Figure 17 Drop test impact Figure 18 Shock test matrix Figure 19 Heat-up rates and durations Figure 20 SOCs and ambient environments for elevated temperature storage tests Figure 21 Number and type devices to be shorted Figure 22 Hazard levels

7 Abstracts of standards in China 1. GB/T : Electric vehicles - Symbols for controls, indicators and telltales GB/T : Electric vehicles - Safety specification Part1:On-board energy storage GB/T : Electric vehicles - Safety specification Part2 - Functional safety means and protection against failures GB/T : Electric vehicles - Safety specification Part3 - Protection of persons against electric hazards GB/T : The electrical machines and controllers for electric vehicles - Part 1 - General specification GB/T : Hybrid electric vehicles safety specification GB/T : Test methods for energy consumption of light-duty hybrid electric vehicles GB/T : Measurement methods for emission from light-duty hybrid electric vehicles QC/T QC/T QC/T GB/T : Electric vehicle conductive charging system - Part 1 - General requirements GB/T : Electric vehicle conductive charging system Electric vehicles requirements for Conductive connection to an A.C/D.C. supply GB/T : Electric vehicle conductive charging system A.C./D.C. Electric vehicle charging station GB/T : Plugs, socket-outlets, vehicle couples and vehicle inlets for conductive charging of electric vehicles General requirements... 26

8 Abstracts of standards in Germany/EU 1. EN 13447(2001): Electrically propelled road vehicles - Terminology ECE 101 Revision 2 Annex 7: Method of measuring the electric energy consumption of vehicles powered by an electric power train only ECE 101 Revision 2 Annex 9: Method of measuring the electric range of vehicles powered by an electric power train only or by a hybrid electric power train DIN EN (1997): Electrically propelled road vehicles - Measurement of energy performance - Part 1 - Pure electric vehicles DIN EN : Electrically propelled road vehicles - Measurement of road operating ability - Part 1 - Pure electric vehicles ECE 100: Uniform provisions concerning the approval of battery electric vehicles with regard to specific requirements for the construction and functional safety ISO/DIS 26262: Road vehicles - Functional safety ISO/DIS : Road vehicles - Functional safety - Part 2 - Management of functional safety ISO/DIS : Road vehicles - Functional safety - Part 3 - Concept phase ISO/DIS : Road vehicles - Functional safety - Part 8 - Supporting processes ISO/DIS : Road vehicles - Functional safety - Part 9 - ASIL-oriented and safety-oriented analyses DIN EN (1997): Electrically propelled road vehicles - Specific requirements for safety - Part 2 - Functional safety means and protection against failure DIN EN (1998): Electrically propelled road vehicles - Specific requirements for safety - Part 3 - Protection of users against electrical hazards DIN EN (2001): Electrically propelled road vehicles - Measurement of energy performance - Part 2 - Thermal electric hybrid vehicles DIN EN : Electrically propelled road vehicles - Measurement of road operating ability - Part 2 - Thermal electric hybrid vehicles DIN EN (2001): Electrically propelled road vehicles - Measurement of emissions of hybrid vehicles - Part 1- Thermal electrical hybrid vehicle DIN EN : Safety of industrial trucks - Electrical requirements - Part 1 - General requirements for battery powered trucks... 53

9 18. ISO : Electric road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 5 - Chemical loads DIN EN : High-voltage test techniques for low-voltage equipment - Part 1 - Definitions, test and procedure requirements DIN EN : High-voltage test techniques for low-voltage equipment - Part 2 - Test equipment ISO (1995): Road vehicles - Electrical disturbances by conduction and coupling - Part 3 - Vehicles with nominal 12 V or 24 V supply voltages - Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines DIN IEC : Low-voltage electrical installations - Part Protection for safety - Protection against thermal effects DIN IEC : Erection of low-voltage installations - Part Protection for safety - Protection against overcurrent DIN IEC : Low voltage electrical installations - Part protection against voltage disturbances and measures against electromagnetic influences, clause protection against temporary over voltages and faults between highvoltage systems and earth DIN VDE : Low-voltage electrical installations - Part Protection for safety - Protection against electric shock DIN VDE (German version of IEC 60364, modified): Low voltage electrical installations - Part Protection for safety - protection against voltage disturbances and electromagnetic disturbances (German version of part 4-44:2007, clause 444, modified DIN IEC : Low-voltage electrical installations - Part Selection and erection of electrical equipment - Earthing arrangements, protective conductors and protective bonding conductors DIN IEC A2: Erection of Low electrical installations - Part 5-55-A2 - Selection and erection of electrical equipment - low voltage generating sets IEC (2004): Rotating electrical machines - Part 1- Rating and performance DIN EN ISO (2007): Safety of machinery - Risk assessment IEC (1991): Semiconductor convertors, General requirements and line commutated convertors - Part Specifications of a basic requirements... 83

10 32. DIN VDE : Semiconductor convertors - Part 1 - General specifications and particular specifications for line-commutated convertors DIN EN (2006): Insulation coordination - Part 1 - Definitions, principles and rules DIN EN : Insulation coordination for equipment within low-voltage systems - Part 1 - Principles, requirements and tests DIN EN supplement-3: Insulation coordination for equipment within lowvoltage systems - Part 1 - Supplement 3 Interface considerations DIN VDE : Erection of low voltage installations - Part selection and erection of electrical equipment - switch gear and control gear DIN EN : Low-voltage switchgear and control gear - Part 3 - Switches, disconnectors, switch-disconnectors and fuse-combination units DIN EN : Low-voltage switchgear and control gear - Part Contactors and motor-starters - Electromechanical contactors and motor-starters DIN V VDE V : Automatic disconnection device between a generator and the public low-voltage grid ISO 14572(2001): Road vehicles - Round, unscreened 60 V and 600 V multicore sheathed cables - Test methods and requirements for basic and high performance cables DIN EN 60228: Conductors of insulated cables DIN EN : Low-voltage fuses - Part 1 - General requirements ISO 4165(2001): Road vehicles-electrical connections-double-pole connection IEC 62281(2004): Safety of primary and secondary lithium cells and batteries during transport IEC Ed. 1.0(2001): Secondary batteries for the propulsion of electric road vehicles - Part 3 - Performance and life testing (traffic compatible, urban use vehicles) SAE J1798(1997): Recommended Practice for Performance Rating of Electrical Vehicle Battery Modules SAE J2288(1997): Life Cycle Testing of Electric Vehicle Battery Modules SAE J 2380(2009): Vibration Testing of Electric Vehicle Batteries

11 49. IEC Ed. 1.0(2008): Secondary batteries for the propulsion of electric road vehicles - Part 1 - Performance testing for lithium-ion cells- 21/708/CDV IEC Ed. 1.0(2008): Secondary batteries for the propulsion of electric road vehicles - Part 2 - Reliability and abuse testing for lithium-ion cells21/709/cdv UL 1642(2005): Lithium Batteries UN Manual of Tests and Criteria Paragraph Lithium metal and lithium ion batteries(2009) - UN Manual of Tests and Criteria Part III - Classification Procedures, Test Methods and Criteria and Relating to Class 3, Class 4, Division 5.1 and Class 9; Section 38 - Classification Procedures, Test Methods and Criteria and Relating to Class 9; Paragraph Lithium metal and lithium ion batteries ISO : Electrically propelled road vehicles - Safety specifications - Part 1 - On-board rechargeable energy storage system (RESS) ISO : Electrically propelled road vehicles - Safety specifications - Part 2 - Vehicle operational safety means and protection against failures ISO : Electric road vehicles - Safety specifications - Part 3 - Protection of persons against electric hazards DIN EN (1997): Electrically propelled road vehicles - Specific requirements for safety - Part 1 - On board energy storage DIN V VDE V /VDE V (2008): Safety Requirements For Secondary Batteries And Battery Installations - Part 11 - Safety Requirements For Secondary Lithium Batteries For Hybrid Vehicles And Mobile Applications SAE J 2289(2008): Electric-Drive Battery Pack System: Functional Guidelines SAE J1797(1997): Recommended Practice for Packaging of Electric Vehicle Battery Modules SAE J1766(2005): Recommended Practice for Electric and Hybrid Electric Vehicle Battery Systems Crash Integrity Testing SAE J2464(2009): Electric and Hybrid Electric Vehicle Rechargeable Energy Storage System (RESS) Safety and Abuse Testing ISO/DIS (2008): Electrically propelled road vehicles - Test specification for lithium-ion traction battery systems - Part 1 - High power applications VDA - Test Specification for Li-Ion Battery Systems(2008): Test Specification for Li-Ion Battery Systems for HEVs

12 64. IEC : Electric vehicle conductive charging system - Part 1 - General Regulations DIN EN : Electric vehicle conductive charging system - Part 21 - Electric vehicle requirements for conductive connection to an A.C./D.C. supply DIN EN : Electric vehicle conductive charging system - Part 22 - A.C. electric vehicle charging station DIN VDE 0122: Electric equipment of electrical road vehicles DIN EN 12736: Electrically propelled road vehicles - Airborne acoustical noise of vehicle during charging with on-board chargers - Determination of sound power level DIN EN : Electromagnetic compatibility (EMC) - Part Environment - Compatibility levels for low-frequency conducted disturbances and signaling in public low-voltage power supply systems DIN EN : Electromagnetic compatibility (EMC) - Part Limits Limits for harmonic current emissions DIN EN : Electromagnetic compatibility (EMC) - Part Testing and measurement techniques - Surge immunity test DIN EN : Electromagnetic compatibility (EMC) - Part Generic standards - Immunity for residential, commercial and light-industrial environments DIN EN : Electromagnetic compatibility (EMC) - Part Generic standards - Emission standard for residential, commercial and light-industrial environments DIN EN : Signaling on low-voltage electrical installations in the frequency range 3kHz to 148.5kHz - Part 1 - General requirements, frequency bands and electromagnetic disturbances DIN EN 50160: Voltage characteristics of electricity supplied by public distribution networks IEC 60038: IEC standard voltages DIN EN : Electricity metering equipment (a.c.) - Part 1 - General requirements, tests and test conditions - Metering equipment (class indexes A, B and C) DIN EN : Electricity metering equipment (A.C.) - Part 3 - Particular requirements - Static meters for active energy (class indexes A, B and C)

13 79. DIN EN : Plugs, socket-outlets and couplers for industrial purposes - Part 1 - General requirements DIN EN : Plugs, socket-outlets, vehicle couplers and vehicle inlets - Conductive charging of electric vehicles - Part 1 - Charging of electric vehicles up to 250 A a.c. and 400 A d.c VDE-AR-E : Plugs, socked outlets, vehicle couplers and vehicle inlets - conductive charging of electric vehicles - Part Dimensional interchange ability requirements for pin and contact-tube accessories DIN EN : Appliance couplers for household and similar general purposes - Part 1 - General requirements DIN EN : Safety requirements for secondary batteries and battery installations ISO and -2 (under development): Road vehicles - Communication protocol between electric vehicles and grid - Part 1 - Definitions and use-cases; Part 2 - Sequence diagrams and communication layers Proposal to TC 21A/WG 5(2008): Safety requirements for secondary lithium batteries for hybrid vehicles and mobile applications ISO/DIS Draft: Electrically propelled road vehicles - Test specification for lithium-ion traction battery systems - Part 2 - High energy applications

14 0. Introduction of the study This study was carried out under the framework of the German Chinese Sustainable Fuel Partnership (GCSFP) with the aim to identify, summarize and compare relevant standards in the area of electric vehicles in Germany/European Union and China. The standards were divided into six technical areas: Accreditation of electric vehicles Electric vehicle component safety Battery transporting and storage Battery abuse and safety Battery charging, exchange stations and grid connection Battery recycling and disposal As a high number of standard documents could be identified in these areas, a detailed comparison of all standard documents was not possible in the framework of this study. Therefore the comparison part of the study focuses on the most important topic within this field the lithium-ion battery standards. All other relevant standards are summarized in short abstracts to have a quick insight into the topics covered and to have a rough opportunity for comparison. In parallel to this study, which focuses on standards, another project was carried out in the field of regulations for electric vehicles: Analysis of European/German and Chinese Regulations regarding electric vehicle infrastructure for road traffic. As the Chinese GB-standards have both meanings (mandatory standard), GB-standards are covered in both studies. Also some important ECE-regulations are treated in this study as well. Therefore a small overlap will be between both studies. 1

15 Followinthe table of contents a list of all standards can be found sorted by page numbers where the respective abstract is shown. Chapter 1 describes the general relevance of standardization for electric vehicles and vehicle batteries. In this chapter, the standardization systems and the process of standardization for Germany/EU and China is described. Chapter 2 describes the standardization of electric vehicles and vehicle batteries in China. Abstracts for relevant standards are presented and also standards under development are named. Chapter 0 describes the standardization of electric vehicles and vehicle batteries in Germany/EU. Abstracts for relevant standards are presented and also standards under development are named. Chapter 4 compares vehicle battery standards in Germany/EU and China. The relevant standards are introduced for both regions and a detailed comparison is carried out. Chapter 5 shows the demand for further coordination of standardization in Germany/EU and China. Examples for areas of high importance are given. Chapter 6 summarizes and concludes the study. In Appendix 7.3 and 7.4 all standards are listed by category also with the respective page number where the abstract is shown. 2

16 1. General relevance of standards for electric vehicles and vehicle batteries 1.1 Relevance of standardization Standards do not dictate a specific technical solution but formulate requirements which allow for different technical approaches. Standardization contributes to a fast spread of knowledge e.g. in the area of technology transfer from science to industry. Thus the competitiveness of companies is increased. Standards also foster innovation by increasing the marketability of new products [din]. For fast-evolving areas as the development of hybrid and electric cars it is difficult to make specific standards available in time. To deal with that problem the research and development (R&D) accompanying standardization is used [Nie00]. With that, the technology transfer can be guaranteed and also important interfaces can be defined in time. As an example in the field of electric vehicles the charging plug can be named which is a crucial part for guaranteeing interoperability between charging systems of different utilities and countries. The field of R&D accompanying standardization can be classified in four areas [DIN09] which will be described in the following sections. Terminology, measurement and validation standards These standards create universal and independent validation methods to assure the quality of the new products. They foster the communication between different players and reduce the information and transaction costs. In the field of electric vehicles this becomes very important as different industries like utilities and car manufacturers have to work together to find the optimum solution. These two industries did not work together before and have different terminologies they use. 3

17 Interface standards Interface standards guarantee the interoperability between different components and systems and thus reduce the costs for later adaption. As mentioned earlier, the charging plug is a good example for this area of standardization. But also when it comes to billing for example, interface standards are crucial for successful developments. The area of vehicle-to-grid (V2G) technology is also an example where interface standardization is an important point. Plug-in hybrid or electric cars which are introduced into the market during the coming years have a lifetime of ten years or more. If V2G becomes introduced into the market during this lifetime it would be beneficial that the cars are V2G-ready due to an early standardization process. Compatibility standards Compatibility standards integrate components into existing systems and create the prerequisites for future technologies. Battery exchange stations are good examples which need compatibility standards in an early phase of the development of electric vehicles. This technology can only get a large market penetration when the compatibility of battery packs of different car manufacturers is given. Otherwise cars of a certain manufacturer could only exchange the battery at certain type of exchange station. This would cause huge infrastructure costs and an inefficient infrastructure usage. Quality, product and service standards These standards regard environmental, security and ergonomics issues and thus increase the acceptance of innovative products and services. They reduce the risks and foster the market introduction. 4

18 As an example in the field of hybrid and electric vehicles standardization of maintenance is an important point. Maintenance of conventional vehicles is relatively riskfree and well-known of the service personnel. With electric vehicles the hazard of high voltage occurs and the service personnel needs knew guidelines for the daily work. Furthermore paramedics and the fire department have to deal with high voltages in the case of emergencies. 1.2 Procedure of standardization in China The management of Chinese standards China standardization is a kind of centralized administrative system combined with respective responsibility of any official departments and civil association. Standardization Administration of the People's Republic of china (SAC) is authorized by the State Council and under the control of AQSIQ to exercise the administrative functions and carry out centralized administration for standardization in China. While relevant competent administrative departments of the State Council shall be assigned the responsibility of managing the work of standardization within their respective professional sectors. The competent administrative departments for standardization in the provinces autonomous regions and municipalities shall execute unified administration of the work of standardization in their respective administrative regions. The competent administrative departments of the governments of provinces, autonomous regions and municipalities shall administrate the work of standardization within their respective sectors in their respective administrative regions. Brief Introduction of SAC Standardization Administration of the People's Republic of China (SAC) was established in April 2001 and authorized by the State Council to exercise administrative 5

19 responsibilities by undertaking unified management, supervision and overall coordination of standardization works in China. SAC represents China to join the International Organization for Standardization (ISO), the International Electro-technical Commission (IEC) and other international and regional standardization organizations; SAC is responsible for organizing the activities of Chinese National Committee for ISO and IEC; SAC approves and organizes the implementation of international cooperation and exchanging projects on standardization. The classes and system of Chinese standards The classes and system of Chinese standards Chinese Standards are divided into mandatory standards and voluntary standards. Standards concerning protection of human health, personal property and safety and those enforced by laws and administrative regulations are mandatory standards, others are voluntary standards The system of Chinese standards Chinese standards are divided into National Standards, Professional Standards, Local Standards and enterprise Standards. National Standards shall be developed for technical requirements need to be unified national wide. Professional Standards may be developed for which no National Standards are available but unified technical requirements are needed in a certain professional field throughout country. 6

20 Local Standards may be developed for which neither National Standards nor Professional Standards are available, but unified requirements for safety and hygiene of industrial products are needed within a local area. Enterprise Standards may be developed within an enterprise when National Standards, Professional Standards and Local Standards aren't available. However, an enterprise is encouraged to adopt National Standards, Professional Standards and Local Standards if they are available. Moreover, national advisory technical documents may be developed for some developing projects, which are required relevant guiding standard documents or have standardization value but can't be developed formal standards or adopt ISO/IEC and other international standards at present. Table 1 Codes of Chinese standards National Standards Codes No. Code Content Competent Dept. 1 GB Mandatory National Standards SAC 2 GB/T Voluntary National Standards SAC 3 GB/Z National Standardization Guiding Technical Documents SAC Professional Standards Codes No. Code Content Competent Dept. 32 QC Automobiles MIIT Local Standards Codes No. Code Content Competent Dept. 1 DB + * Mandatory local standards 2 DB + */T Voluntary local standards Province Level Bureau of Technical Supervision Note: * represent Province code 7

21 Procedure of standardization in China The standardization procedure in China can be divided into 9 different stages. 1) Preliminary stage 2) NP determination stage 3) Preparatory stage 4) Enquiry stage 5) Examination stage 6) Approval stage 7) Publication stage 8) Reviewing stage 9) Repealing stage Introduction of TC114/SC27 Electric vehicle sub-committee (SC27) was established in 1998 under the National Automotive Standardization Technical Committee, with CATARC as secretariat. SC 27 is responsible for the standardization (GB, GB/T and QC/T) of EV related field, including EV, HEV, Plug-in, FCV, traction battery, Electric motor, charging couplers and so on. SC27 is also the mirror committee of ISO/TC22/SC21andI EC/TC69; SAC exercises the administrative functions and carries out centralized administration for SC 27 in China, while Ministry of Industry and Information Technology of PRC (MIIT) assigned the responsibility of managing the work of standardization within his respective professional sectors. 8

22 There are 4 work groups under SC27, which are HEV WG, FCV WG, Battery WG and E motor WG. Figure 1 Standardization for EVs in China Figure 2 Structure of TC11 4/SC27 in China 9

23 1.3 Procedure of standardization in Germany and the European Union and Germany Introduction In the following section the relevant standardization organizations and their different standardization document types are introduced. Furthermore, the general relevance of standardization work with special respect to the development of electric vehicles is shown. Institutes and committees for standardization with relevance in the European Union Table 2 International and European standardization organizations gives an overview on relevant international and European standardization organizations. As standardization nowadays is a highly international process also the international standardization organizations are regarded even though the study focuses on standardization in Germany. Many CENELEC standards for example are based on IEC standards so that it seems also helpful to consider standardization of the organizations ISO and IEC. Table 2 International and European standardization organizations [Nie00] Standardization National European International General DIN CEN ISO Electrical DKE CENELEC, ETSI IEC DIN: German Institute for Standardization DKE: German Commission for Electrical, Electronic & Information Technologies CEN: European Committee for Standardization CENELEC: European Committee for Electrotechnical Standardization ETSI: European Telecommunications Standards Institute 10

24 ISO: International Organization for Standardization IEC: International Electrotechnical Commission In the following section the different standardization organizations are briefly introduced and their responsibility for standardization is shown German Institute for Standardization (DIN) The German Institute for standardization (Ger.: Deutsches Institut für Normung e.v., DIN) is responsible for standardization in Germany and protects the German interests within the European and international standardization organizations. DIN is a registered association and acts as a platform for all interested groups to determine the state-of-the-art and to document this in DIN-standards. Standardization in Germany is therefore a process of self-administration and not a process which is taken care of by the federal government. DIN is financed by all who derive advantage from the standardization. Everybody is free to apply the valid standards or not. DIN-standards serve as a recommendation for proper technical attitude. The DIN itself cannot commit e.g. manufacturers to apply standards, but the standards can be part of contracts for example and thus become compulsory. The different types of DIN documents are summarized in Table 3. 11

25 Table 3 Different DIN documents DIN DIN CEN (CLC)/TS DIN EN DIN EN ISO DIN EN ISO/IEC DIN ISO (IEC) DIN standard with only national relevance or as initial version for an international standard Unchanged adoption of an European technical standard from the CEN (CENELEC) as German pre-standard Unchanged adoption of an European Standard Standard developed in cooperation of ISO and CEN and published of both organizations German standard which is based on an European standard which itself is based on an ISO/IEC standard German standard unchanged adopted from an ISO (IEC) standard German Commission for Electrical, Electronic & Information Technologies of DIN and VDE (DKE) The German Commission for Electrical, Electronic & Information Technologies (Ger.: Deutsche Elektrotechnische Komission, DKE) is a joint organization of DIN and the Association for Electrical, Electronic & Information Technologies (Ger.: Verband der Elektrotechnik, Elektronik, Informationstechnik e. V., VDE). The DKE is responsible for standardization in the field of electrical engineering and represents the German interests within the European and international standardization committees. The results of the DKE are documented in DIN-standards. If they contain security-relevant regulations they are also included as VDE-instruction (Ger.: VDE-Bestimmung) in the VDE-instructions compendium (Ger.: VDE-Vorschriftenwerk). These are then named DIN VDE standards. 12

26 European Committee for Standardization (CEN) The European Committee for Standardization (French: Comité Européen de Normalisation, CEN) is responsible for non-electrotechnical standardization within the European Union European Committee for Electrotechnical Standardization (CENELEC) The European Committee for Electrotechnical Standardization (French: Comité Européen de Normalisation Electrotechnique, CENELEC) is the electrotechnical standardization organization of the CEN. CENELEC, where Germany is represented by the DKE, develops standards in the field of electrical engineering in the European Union. The task of CENELEC is to harmonize national standards by the development of European Standards (EN). Many European Standards are based on standards of the IEC (refer to section ). A list of all CENELEC members can be found in appendix 7.1. If an European standard is accepted by the members of CENELEC, all member countries are obliged to transfer the European standard into the respective national standards without any modification. European standards which were transferred into German standards are named as DIN EN. Besides European Standards (EN), Harmonization Documents (HD) exist which are also CENELEC standards. To be contrary to ENs the transfer to national standards does not have to be one-to-one, e.g. appendices with national characteristics can be contained. Technical Specifications (TS) are only approved by a technical committee and not CENELEC as such. The validity of a TS is limited from two to three years. Furthermore, Technical Reports (TR) are published by CENELEC, which are documents on technical contents of the standardization progress. Another document type developed by CENELEC is the European Pre-Standard (ENV). These documents are valid for three years (can be extended by two years) and the existing opposing national standards do not have to be withdrawn in this case. 13

27 European Telecommunications Standards Institute (ETSI) The European Telecommunications Standards Institute (ETSI) is responsible for standardization in the field of telecommunication, information and broadcast technology. Besides CEN and CENELEC it is the third European organization which is responsible for the development of standards International Organization for Standardization (ISO) The International Organization for Standardization (ISO) is responsible for world-wide standardization in the field of non-electrotechnical issues. ISO works with the same principals as CEN and both organizations agreed upon a close cooperation to improve cooperation. ISO publications have the status of recommendations and do not have to be transferred into national standardization International Electrotechnical Commission (IEC) The International Electrotechnical Commission is responsible for standardization in the field of electrical and electronic engineering as agreed with ISO. If topics are in the fields of both organizations, ISO and IEC, a decision has to be made in each case which organization takes care about the standardization work. A list of all IEC member states can be found in appendix 7.2. Just like ISO standards, IEC standards have the status of a recommendation and do not have to be transferred into national standardization. IEC publishes different types of documents: International Standard (IS): A normative document, developed according to consensus procedures, which has been approved by the IEC National Committee members of the responsible committee [iec] Technical Specification (TS): This document type is similar to the IS, but only approved by two/thirds of the members of a technical committee or subcommittee. 14

28 Technical Report (TR): More descriptive than normative, this is an informative document of a different kind from normative documents (e.g. collection of data). A TR is approved by simple majority of Participating Members of an IEC technical committee or subcommittee. [iec] 15

29 2. Standardization of electric vehicles and vehicle batteries in China 2.1 Existing standards of electric vehicles and vehicle batteries in China There are 42 standards published in China, 35 of them are National Standards and 6 are Professional Standards. These standards are as follows: Table 4 Existing standards of electric vehicles and vehicle batteries in China No Standard number Standard Name 1. GB { XE Electric motorcycles and electric mopeds - Safety specifications "GB " } 2. GB/T Electric vehicles Symbols for controls,indicators and tell-tales 3. GB/T Lead-acid batteries used for electric road vehicles 4. GB/T Nickel-metal hydride batteries of electric road vehicles 5. GB/T Electric vehicles-safety specification. Part l :On- board energy storage 6. GB/T Electric vehicles-safety specification. Part 2:Functional safety means and protection 7. GB/T Electric vehicle-safety specification. Part 3:Protection of persons against electric hazards 8. GB/T Electric vehicles Power performance Test method 9. GB/T Electric vehicles Energy consumption and range Test procedures, 10. GB/T Limits and test methods of magnetic and electric field strength from electric vehicles, Broadband, 9kHz to 30MHz, 11. GB/T Electric vehicles-engineering approval evaluation program 12. GB/T Electric vehicle conductive charging system--part 1:General requirements 13. GB/T Electric vehicle conductive charging system--electric vehicles requirements for conductive connection to an A.C./ D.C. supply 14. GB/T Electric vehicle conductive charging system--a.c./d.c.electric vehicle charging station 15. GB/T The electrical machines and controllers for electric vehicles - Part 1:General specification 16. GB/T The electrical machines and controllers for electric vehicles - Part 2: Test methods. 17. GB/T Terminology of electric vehicles 18. GB/T Hybrid electric vehicles-engineering approval evaluation program 19. GB/T Hybrid electric vehicles safety specification 20. GB/T Hybrid electric vehicles-power performance-test method 21. GB/T Test Methods for Energy Consumption of Light-duty Hybrid Electric Vehicles 22. GB/T Test Methods for Energy Consumption of Heavy-duty Hybrid Electric Vehicles 23. GB/T Measurement Methods for Emissions from Light-duty Hybrid Electric Vehicles 24. GB/T Instrumentation for electric vehicles 25. GB/T Plugs, socket-outlets, vehicle coupers and vehicle inlets for conductive charging of electric vehicles - General requirements 26. GB/T Electric motorcycles and electric mopeds - Power performance - Test methods 27. GB/T Electric motorcycles and electric mopeds - Energy consumption and range - Test procedures 28. GB/T Electric motorcycles and electric mopeds - General specifications 29. GB/T Textile machinery and accessories - Spinning machines - Flyer bobbins 16

30 30. GB/T Fuel cell electric vehicles - Terminology 31. GB/T Fuel cell electric vehicles - Safety requirements 32. GB/T Electric vehicles - Windshield demisters and defrosters system - Performance requirements and test methods 33. GB/T Performance test methods for fuel cell engines 34. GB/Z Lithium-ion batteries for electric road vehicles 35. GB/Z Zinc-air batteries for electric road vehicles 36. QC/T Ultra-capacitors for vehicles. 37. QC/T Lead-acid batteries for electric vehicles 38. QC/T Li-ion Storage Battery for Electric Automotives 39. QC/T Nickle-metal hydride batteries for electric vehicles 40. QC/T Electric motorcycles and electric mopeds-engineering approval evaluation program 41. QC/T Motors and controllers for electric motorcycles and electric mopeds 42. QC/T Specification of mobile hydrogen refueling vehicles Accreditation of electric vehicles In China, the Accreditation of EV is carried out by MIIT. Besides applicable standards for traditional vehicles, electric vehicles must meet the 22 dedicated standards for EVs. These standards are as follows. Table 5 Standards for accreditation of electric vehicles in China No Standard number Standard Name 1. GB/T Electric vehicles Symbols for controls,indicators and tell-tales 2. GB/T Electric vehicles-safety specification. Part l :On- board energy storage 3. GB/T Electric vehicles-safety specification. Part 2:Functional safety means and protection 4. GB/T Electric vehicle-safety specification. Part 3:Protection of persons against electric hazards 5. GB/T Electric vehicles Power performance Test method 6. GB/T Electric vehicles Energy consumption and range Test procedures, 7. GB/T Limits and test methods of magnetic and electric field strength from electric vehicles, Broadband, 9kHz to 30MHz, 8. GB/T Electric vehicles-engineering approval evaluation program 9. GB/T The electrical machines and controllers for electric vehicles - Part 1: General specification 10. GB/T The electrical machines and controllers for electric vehicles - Part 2: Test methods. 11. GB/T Hybrid electric vehicles-engineering approval evaluation program 12. GB/T Hybrid electric vehicles safety specification 13. GB/T Hybrid electric vehicles-power performance-test method 14. GB/T Test Methods for Energy Consumption of Light-duty Hybrid Electric Vehicles 15. GB/T Test Methods for Energy Consumption of Heavy-duty Hybrid Electric Vehicles 17

31 16. GB/T Measurement Methods for Emissions from Light-duty Hybrid Electric Vehicles 17. GB/T Instrumentation for electric vehicles 18. GB/Z Zinc-air batteries for electric road vehicles 19. QC/T Ultra-capacitors for vehicles. 20. QC/T Lead-acid batteries for electric vehicles 21. QC/T Li-ion Storage Battery for Electric Automotives 22. QC/T Nickle-metal hydride batteries for electric vehicles The brief introductions about some of the standards in this list are as follows: 1. GB/T : Electric vehicles - Symbols for controls, indicators and tell-tales Reference of international standard No.: ISO 2575:2000/Amd.4:2001; JEVS Z 804:1998 Scope of this standard This standard specifies basic requirements for electric vehicle, regarding to symbols for controls, indicators and tell-tales, and colors for tell-tales. The standard applies to electric vehicle. 2. GB/T : Electric vehicles - Safety specification Part1:Onboard energy storage Reference of international standard No.: ISO/DIS :2000 Scope of this standard This standard specifies the safety specification for on-board energy storage of electric vehicle propulsion system to ensure the safety of users and vehicle environment. This standard applies to electric passenger vehicle whose max working voltage of onboard circuit is less than 660 V (AC) or 1000 V (DC) (according to GB 156), and to electric commercial vehicle whose max design total mass is not more than 3500 kg, 18

32 and the max design mass of electric vehicle is more than 3500 kg that can refer to this standard. The standard is not applied to guide assembly, maintenance and repair of electric vehicle. 3. GB/T : Electric vehicles - Safety specification Part2 - Functional safety means and protection against failures Reference of international standard No.: ISO/DIS :2000 Scope of this standard This standard specifies the specification for functional safety means and protection against failures for special dangers of electric vehicle propulsion system. This standard applies to electric passenger vehicle whose max working voltage of onboard circuit is less than 660 V (AC) or 1000 V (DC) (according to GB 156), and to electric commercial vehicle whose max design total mass is not more than 3500 kg, and the max design mass of electric vehicle is more than 3500 kg that can refer to this standard. The standard is not applied to guide assembly, maintenance and repair of electric vehicle. 4. GB/T : Electric vehicles - Safety specification Part3 - Protection of persons against electric hazards Reference of international standard No.: ISO /DIS :2000 Scope of this standard This standard specifies the specification for protection of persons against electric hazards, when electric vehicle is not connected with external power supply. 19

33 This standard applies to electric passenger vehicle whose max working voltage of onboard circuit is less than 660 V (AC) or 1000 V (DC) (according to GB 156), and to electric commercial vehicle whose max design total mass is not more than 3500 kg, and the max design mass of electric vehicle is more than 3500 kg that can refer to this standard. The standard is not applied to guide assembly, maintenance and repair of electric vehicle. 5. GB/T : The electrical machines and controllers for electric vehicles - Part 1 - General specification Scope of this standard This part specifies the duty quota environmental condition technical requirements inspection test items and type approval test and so on of the electrical machines and controllers for electric vehicles. This part applies to the electrical machines and controllers for electric vehicles. If had particular requesting, the user and the manufacture may specifies the requirements in special technical agreement. 6. GB/T : Hybrid electric vehicles safety specification Reference of international standard No.: ECE R100, ETA HTP001 Scope of this standard This standard specifies the special safety specification for class of M hybrid electric vehicle (the definition of hybrid electric vehicle can see to GB/T 19596). 20

34 This standard applies to class of M hybrid electric vehicle whose max working voltage of on-board circuit is less than 660 V (AC) or 1000 V (DC)(according to GB ). The other classes of hybrid electric vehicle can refer to the standard. 7. GB/T : Test methods for energy consumption of light-duty hybrid electric vehicles Reference of international standard No.: MOD ECE R Scope of this standard This standard specifies the test methods for energy consumption of light-duty hybrid electric vehicles equipped with positive-ignition engine or compression-ignition engine. This standard applies to the categories of M1, M2 and N1 hybrid electric vehicles equipped with ignition engine or compression engine and with a maximum mass not exceeding 3500 kg. 8. GB/T : Measurement methods for emission from light-duty hybrid electric vehicles Reference of international standard No.: MOD ECE R83 Scope of this standard This standard specifies the measuring methods for exhaust pollutants after a cold start, emissions of crankcase gases, evaporative emissions from light-duty hybrid electric vehicles with positive-ignition engine and measuring methods for exhaust pollutants after a cold start from light-duty hybrid electric vehicles with compressionignition engine. 21

35 This standard applies to the light-duty hybrid electric vehicles equipped with positiveignition engine or compression-ignition engine and having a minimum design speed exceeding 50 km/h. Electric vehicle component safety There are no separate component safety standards in China, the test methods and requirements are included in corresponding component standards, such as GB/T 18488, QC/T 841, QC/T 842, QC/T 843, QC/T 844. Transporting and storage of lithium-ion batteries There is no standard in China about the transporting and storage of lithium-ion batteries. Battery abuse and safety There are 4 national standards and 4 professional standards in China about batteries. Table 6 Standards for battery abuse and safety in China No Standard number Standard Name 1. GB/T Lead-acid batteries used for electric road vehicles 2. GB/T Nickel-metal hydride batteries of electric road vehicles 3. GB/Z Lithium-ion batteries for electric road vehicles 4. GB/Z Zinc-air batteries for electric road vehicles 5. QC/T Ultra-capacitors for vehicles. 6. QC/T Lead-acid batteries for electric vehicles 7. QC/T Li-ion Storage Battery for Electric Automotives 8. QC/T Nickle-metal hydride batteries for electric vehicles The brief introduction of the QC/T 741, QC/T 742 and QC/T 744 are as follows: 9. QC/T 741 This standard took the references from GB/T Lead-acid batteries used for electric road vehicles, GB/Z Lithium-ion batteries for electric 22

36 road vehicles, GB/T Terminology of (secondary) cell or battery and some relevant standards and test handbooks of some companies that mainly involve the development of ultra capacitors. This standard includes the requirement, test method, inspecting-rules, symbols, package, transporting and storage of ultra capacitors in electric vehicles and it applies to starting, ignitions, and traction and ultra capacitors for lighting of electric vehicles. 10. QC/T 742 This standard includes the requirement, test method, inspecting-rules, symbols, package, transporting and storage of Lead-acid batteries for electric vehicles. This standard applies to Lead-acid batteries for electric vehicles. 11. QC/T 744 This standard includes the requirement, test method, inspecting-rules, symbols, package, transporting and storage of Nickel-metal hydride batteries for electric vehicles. This standard applies to the Nickel-metal hydride batteries for electric vehicles. The nominal voltage of single battery is 1.2 V and battery package is n 1.2 V (n is the number of cells, n 5). 23

37 Battery charging, exchange stations and grid connection Table 7 Standards for battery charging, exchange stations and grid connection in China No Standard number Standard Name 1. GB/T Electric vehicle conductive charging system--part 1:General requirements 2. GB/T Electric vehicle conductive charging system--electric vehicles requirements for conductive connection to an A.C./ D.C. supply 3. GB/T Electric vehicle conductive charging system--a.c./d.c.electric vehicle charging station 4. GB/T Plugs, socket-outlets, vehicle couplers and vehicle inlets for conductive charging of electric vehicles - General requirements The brief introductions of standards in this list are as follows: 12. GB/T : Electric vehicle conductive charging system - Part 1 - General requirements Reference of international standard No.: EQV IEC :2001 Scope of this standard This standard applies to the electric vehicle charging system with a maximum AC nominal voltage is 660 V, maximum DC nominal voltage is 1000 V(according to GB ). This standard applies to road electric vehicle charging system. This standard not applies to the charging system of engine start, lighting and ignition device or similar use, home-use or other similar storage battery charging system. This standard also not applies to the charging system of non-road storage battery charging system such as wheelchair, indoor electric vehicle, trolley car, trolleybus, railway vehicle and industrial load-carrying vehicle (ex. fork lift truck) and so on. This standard not involved vehicle of category II. This standard specifies the general requirements of the charging system, namely the requirements for the power supply device, vehicle connection characteristic and op- 24

38 erating environment; the technical requirements of the charging system and the required characteristic of the electric vehicle; the requirements of the electric power supply voltage and electric current; the requirements of the charging mode function; the requirements of the connection and connector of the electric vehicle; the requirements of the special jack, connector, plug, socket and charging cable and so on. This standard also specifies the safety requirements of the anti- electric shock protection, but not including other safety requirements related to maintain. 13. GB/T : Electric vehicle conductive charging system Electric vehicles requirements for Conductive connection to an A.C/D.C. supply Reference of international standard No.: IDT IEC :1999 Scope of this standard This standard and GB/T specifies the connection requirements of electric vehicle and AC or DC power supply. When the electric vehicle connects with the power supply grid, the maximum AC nominal voltage is 660 V and the maximum DC nominal voltage is 1000 V according to GB This standard not involved vehicles of category II. This standard applies to road electric vehicle charging system. This standard not including other safety requirements related to maintain. This standard not applies to the charging system of non-road vehicles such as trolleybus, railway vehicle and industrial truck. 25

39 14. GB/T : Electric vehicle conductive charging system A.C./D.C. Electric vehicle charging station Reference of international standard No.: IEC :2001 Scope of this standard This standard and GB/T specifies the requirements of the AC/DC charger set (station) conductive connection of the electric vehicle (the maximum AC nominal voltage is 660 V and the maximum DC nominal voltage is 1000 V according to GB ). For the AC charger station, this standard not included the cassette device without charging control function, which equipped with socket to the electric vehicle for energy supply. According to GB/T , the mode of the electric vehicle DC charger set (station) is mode4. This standard is not including other safety requirements related to maintain. 15. GB/T : Plugs, socket-outlets, vehicle couples and vehicle inlets for conductive charging of electric vehicles General requirements Reference of international standard No.: IEC :2003 Scope of this standard This standard applies to plugs, socket-outlets, vehicle couples,vehicle inlets and cables for conductive charging of electric vehicles, these attachments and cables is used in conductive charging system that have control performance, its rated working voltage should be not more than the following value: AC 660 V,50 Hz ~60 Hz (when the rated current is not more than 250 A) DC 1000 V(when the rated current is not more than 400 A) 26

40 These attachments and cables are used in various voltage and frequency described in the standard, including extra low voltage (ELV) and communication signal. The range of ambient temperature for using these attachments and cables is - 30 C to + 50 C. These attachments are only connected with cables that have the core of copper or copper alloy. Those attachments which meet the specifications of this standard that applies to a part of charge modes of electric vehicle. These definitions and instructions of charge modes and descriptions for types of connections (A, B and C) can be found in appendix A. Types of attachment (B, U 32, U A, U D ) which are permitted to use that are given in the table 1, under each charge mode and types of connection. Also, the table 1 gives the charge modes and types of connection that can permit to use these attachments which meet the specifications of this standard, can also use other standardize attachments. This standard is not applied to these standardize attachments (e.g. Mode1 and mode 2) are in charge system that meets other standards. The charge mode and types of connection which are used in this type of standardize attachment, and their mark is the column of type, the corresponding content is random. The standard can be as the guidance of these attachments that are used in light vehicle which have small number contacts, and lower using level. 27

41 Battery recycling and disposal There is no standard in China about battery recycling and disposal. 2.2 Standards under development in China About 28 standards are being drafted, 4 are under revision and 12 approved, including whole EVs, components, charging infrastructures. Table 8 Standards under development in China type new items revision add up electric vehicle BEV HEV FCEV components RESS (battery) Motor and controller Charger and interface total

42 3. Standardization of electric vehicles and vehicle batteries in Germany and in the European Union 3.1 Existing standards of electric vehicles and vehicle batteries in Germany and EU In this study the international standards from ISO and IEC, European standards from CEN and CENELEC, German standards from DIN and VDE will be taken into consideration. In brief the following topics are given a high priority for standardization work for electric vehicles: Accreditation of electric vehicles Electric vehicle component safety Transporting and storage of lithium-ion batteries Battery abuse and safety Battery charging, exchange stations and grid connection Battery recycling and disposal In this section, these topics will be discussed in detail. Accreditation of electric vehicles Terminology standards (glossaries) establish a terminology for the components of electric road vehicles and related terms, concentrating primarily on defining components and terms specific to electric road vehicles. Am important part of standards for electric vehicles are electric vehicle performance standards which specify test procedures for measuring the reference energy consumption and range, road operating characteristics and safety of electric vehicle, etc. For hybrid electric road vehicles, there are standards about emissions and fuel consumption measurements, road operating characteristics and energy performance. Safety of industrial trucks concerns electrical requirements. 29

43 Terminology standards Terminology standards establish a terminology for electric road vehicles. They concentrate on defining the components and terms of electric road vehicles (international standard: ISO 8713, European standard: EN 13447, German standard: DIN EN 13447). The brief introduction about the standard EN is as follows: 1. EN 13447(2001): Electrically propelled road vehicles - Terminology Scope of this standard The document gives definitions used in European standards for electrically propelled road vehicles. It is not intended to give definitions of all terms concerning these vehicles, but to permit a good understanding of the content of standards dealing with electrically propelled road vehicles. Short description of standard This standard gives definitions for electrically propelled road vehicles. It presents an overview of the definitions which are necessary for the tests presented in specific standards. Parts of these definitions are repeated in other standards for electric vehicles. There are many different types of electric vehicles as pure electric vehicles or hybrid vehicles. Furthermore distinctions due to the charging mode are explained. With this standard a classification for the different types is given. Also the different driving modes are defined. For the following measurements of road operating ability references to the specific standards are given: 30 minutes maximum speed; Maximum speed; Accelerating power from 0 km/h to 50 km/h; 30

44 Accelerating power from 50 km/h to 80 km/h; Climb velocity at slope Driveaway behaviour at slope Further sections of the standards give definitions to the topics energy use in vehicles, polluting emissions of a thermal-electric hybrid vehicle in hybrid mode and electric propelled vehicle in general. Definitions to the Subsystems in vehicles, to the battery and its environment and further general definitions for electric propelled vehicles are presented in the last sections of the standard Electric vehicle performance An important part of standards for electric vehicles are specified test procedures for measuring the reference energy consumption and range (international standard: ISO 8714, ECE 101 Revision 2 Annex 7 and ECE 101 Revision 2 Annex 9, European standard: EN , German standard: DIN EN ). For example, standard ISO 8714 includes: Common test procedure Initial charge of the batteries Application of the test sequence until the end-of-test specification is reached, and measurement of the reference range achieved Measurement of the energy consumption and charging of the vehicle batteries Calculation of the reference energy consumption Test cycles for different regions Driving cycle in Europe Driving cycle in America Driving cycle in Japan In addition to that, standards which are specifying procedures for measuring the road operating characteristics of electric vehicles (international standard: ISO 8715, Euro- 31

45 pean standard: EN , German standard: DIN EN ) exist. These standards include: Maximum speed Acceleration ability Speed uphill ability Hill starting ability The abstracts of standards ECE 101 Revision 2 Annex 7, ECE 101 Revision 2 Annex 9, DIN EN and DIN EN are as follows: 2. ECE 101 Revision 2 Annex 7: Method of measuring the electric energy consumption of vehicles powered by an electric power train only Scope of this standard This standard specifies the procedure to apply in order to measure the electric energy consumption of electrically propelled road vehicles. The document does not apply to electric hybrid or partially electrically propelled road vehicles. Short description of standard The standard defines the test sequences for the consumption measurement. The test sequence is composed of two parts: (a) an urban cycle made of four elementary urban cycles; (b) an extra-urban cycle. In case of a manual gear box with several gears, the operator changes the gear according to the manufacturer's specifications. If the vehicle has several driving modes, which may be selected by the driver, the operator shall select the one to best match the target curve. 32

46 Detailed information about the test method for the consumption measurement is given in the standard. This includes the condition of the vehicle and the operating mode with information about charging and discharging the battery. The test method includes the four following steps: a) Initial charge of the battery; b) Application twice of the cycle made of four elementary urban cycles and an extra-urban cycle; c) Charging the battery; d) Calculation of the electric energy consumption. The appendix describes the determination of the total road load power of a vehicle powered by an electric power train only, and calibration of the dynamometer. 3. ECE 101 Revision 2 Annex 9: Method of measuring the electric range of vehicles powered by an electric power train only or by a hybrid electric power train Scope of this standard This standard specifies the procedure to apply in order to measure the electric range of electrically propelled road vehicles or vehicles with a hybrid electric power train. Short description of standard Detailed information about the test method for the range measurement is given in the standard. This includes the condition of the vehicle and the operating mode with information about charging and discharging the battery. The test method includes the following steps: a) Initial charge of the battery. b) Application of the cycle and measurement of the electric range. 33

47 A distinction is made between pure electric vehicles, externally chargeable hybrid electric vehicle (OVC HEV) without an operating mode switch, externally chargeable hybrid electric vehicle (OVC HEV) with an operating mode switch. 4. DIN EN (1997): Electrically propelled road vehicles - Measurement of energy performance - Part 1 - Pure electric vehicles Scope of this standard This standard specifies the procedure to apply in order to measure the range and the consumption of the electrically propelled road vehicles (purely electric road vehicles). The document applies to vehicle categories M1, M2, N1 and N2, and to three and four wheel power driven vehicles from the motor cycle type. The document does not apply to electric hybrid or partially electrically propelled road vehicles. Short description of standard This Standard defines the test sequences for the range and the consumption measurements. The test sequence is composed of two parts: (a) an urban cycle made of four elementary urban cycles; (b) an extra-urban cycle. These cycles correspond to the cycles that are determined in directive 91/441/EWG, except transmission-gear shifts. Detailed information about the test method for the consumption and range measurement is given in the standard. This includes the condition of the vehicle and the operating mode with information about charging and discharging the battery. The test method for the consumption measurement includes the four following steps: (a) Initial charge of the battery; 34

48 (b) Application twice of the cycle made of four elementary urban cycles and an extraurban cycle; (c) Charging the battery; (d) Calculation of the electric energy consumption. The test method for the range measurement includes the following steps: (a) Initial charge of the battery. (b) Application of the cycle and measurement of the electric range. In the appendix information about determining total resistance of a vehicle and calibration of a driving performance test bench, an example sheet of technical information about the test vehicle and an example sheet of a common test report are presented. Part of the Standard is similar to ECE 101 Revision 2 Annex 7/Annex9. There are distinctions regarding the test sequence. 5. DIN EN : Electrically propelled road vehicles - Measurement of road operating ability - Part 1 - Pure electric vehicles Scope of this standard The document specifies test methods for measuring the road operating abilities of electrically propelled road vehicles (pure electric vehicles), and specifies road operating abilities which include vehicle speed, acceleration, hill climbing ability. It is applicable to vehicles of the categories M 1, M 2, N 1, motor tricycles, and quadricycles from the motorcycle type. Short description of standard This standard gives information to important definitions for parameters of the test method especially relating to the different definition of mass. 35

49 With the testing conditions and methods it is possible to measure 30 minutes maximum speed; Maximum speed; Accelerating power from 0 km/h to 50 km/h; Accelerating power from 50 km/h to 80 km/h; Climb velocity at slope Driveaway behaviour at slope A detailed description of the general test conditions, including vehicle conditions, environment conditions and road-test route is described. For the tests a pre-treatment of the vehicle is necessary. This refers primarily to the battery conditions of the vehicle. The standard gives information about battery charging methods. According to the standard there is a test sequence that allows measuring all road operating abilities within two days. To each test further detailed information is given regarding to the special test methods and conditions. In the appendix information about determining total resistance of a vehicle and calibration of a driving performance test bench are presented Electric vehicle safety Electric vehicle safety standards deal with vehicle safety, vehicle operating conditions and energy storage installation. The functional safety defines how the electric drive system shall be organized for safe functional operation such as power-on procedure, indication of reduced power, indication of state of charge, driving backwards, parking, electrical connections, auxiliary electrical circuits, overcurrent cut-off device, etc. Protection of persons against electric hazards includes the voltage classes of electrical circuits, protection against direct contact, testing, etc (international standard ECE 100 and ISO/DIS including ISO/DIS 26262, ISO/DIS , ISO/DIS , ISO/DIS and ISO/DIS , German standards DIN EN and DIN EN ). The abstracts of these standards are as follows: 36

50 6. ECE 100: Uniform provisions concerning the approval of battery electric vehicles with regard to specific requirements for the construction and functional safety Scope of this standard The standard describes specific requirements for the construction and functional safety to all battery electric road vehicles of categories M and N with a maximum designed speed above 25 km/h. Short description of standard The standard gives definitions which are important regarding the requirements for battery electric vehicles. It is described how the application for approval has to be done and works out details to the approval itself. The manufacturer or an authorized person has to hand in the application for approval regarding to special requirements to construction method and operating safety for battery electric vehicles. The application has to include a detailed description of type regarding characteristic of build, electric power train and drive battery. An expansion of the approval is necessary if there are changes regarding the vehicle type. The authority has to be informed about every change made. Regulations and testing is specified with information to requirements to the construction of the vehicle and operational safety. Information about production consistency and what has to be done if there are production variations is given. In Revision 1 of ECE 100 the standard is extended and includes all information to hydrogen emission with the new title: 37

51 Uniform provisions are made concerning the approval of battery electric vehicles with regard to specific requirements for the construction functional safety and hydrogen emissions. Appendix 7 deals with determination of hydrogen emissions during charging of the battery. 7. ISO/DIS 26262: Road vehicles - Functional safety Scope of this standard ISO is the adaptation of IEC to comply with needs specific to the application sector of E/E systems within road vehicles. This adaptation applies to all activities during the safety lifecycle of safety-related systems comprised of electrical, electronic, and software elements that provide safety-related functions. With the trend of increasing complexity, software content and mechatronic implementation, there are increasing risks from systematic failures and random hardware failures. ISO includes guidance to avoid these risks by providing feasible requirements and processes. Although ISO is concerned with E/E systems, it provides a framework within which safety-related systems based on other technologies can be considered. ISO 26262: provides an automotive safety lifecycle (management, development, production, operation, service, decommissioning) and supports tailoring the necessary activities during these lifecycle phases; provides an automotive specific risk-based approach for determining risk classes (Automotive Safety Integrity Levels, ASILs); 38

52 uses ASILs for specifying the item's necessary safety requirements for achieving an acceptable residual risk; and provides requirements for validation and confirmation measures to ensure a sufficient and acceptable level of safety being achieved. Safety issues are intertwined with common function-oriented and quality-oriented development activities and work products. ISO addresses the safety-related aspects of the development activities and work products. 8. ISO/DIS : Road vehicles - Functional safety - Part 2 - Management of functional safety Scope of this standard ISO is intended to be applied to safety-related systems that include one or more E/E systems and that are installed in series production passenger cars with a max gross weight up to 3.5 t. ISO does not address unique E/E systems in special purpose vehicles such as vehicles designed for drivers with disabilities. Systems developed prior to the publication date of ISO are exempted from the scope. Short description of standard ISO addresses possible hazards caused by malfunctioning behavior of E/E safety-related systems including interaction of these systems. It does not address hazards as electric shock, fire, smoke, heat, radiation, toxicity, flammability, reactivity, corrosion, release of energy, and similar hazards unless directly caused by malfunctioning behavior of E/E safety-related systems. ISO does not address the nominal performance of E/E systems, even if dedicated functional performance standards exist for these systems (for example active and passive safety systems, brake systems, ACC). 39

53 This part of ISO specifies the requirements on functional safety management for automotive applications. These requirements cover the project management activities of all safety lifecycle phases and consist of project-independent requirements, project-dependent requirements to be followed during development, and requirements that apply after release for production. The requirements on the organizations that are responsible for the safety lifecycle or that perform safety activities in the item s safety lifecycle are described. In addition the safety management roles and responsibilities, regarding the development phases in the item s safety lifecycle to define the requirements on the safety management during the development phases, including the planning of the safety activities, the application of the safety lifecycle, the creation of the safety case, and the execution of the confirmation measures, are described in detail. Safety management includes the responsibility to ensure that the confirmation measures are performed in accordance with the required levels of independence, regarding resources, management and responsibility for release for production. Confirmation measures include confirmation reviews, functional safety audits and functional safety assessments. The confirmation reviews are intended to check the compliance of the associated work products, with the requirements of ISO The responsibilities of the organizations and persons responsible for functional safety after release for production are defined. This relates to the general activities for ensuring the required functional safety of the item during the lifecycle phases after release for production. 9. ISO/DIS : Road vehicles - Functional safety - Part 3 - Concept phase Scope of this standard 40

54 ISO is intended to be applied to safety-related systems that include one or more E/E systems and that are installed in series production passenger cars with a max gross weight up to 3.5 t. ISO does not address unique E/E systems in special purpose vehicles such as vehicles designed for drivers with disabilities. Systems developed prior to the publication date of ISO are exempted from the scope. Short description of standard This part of the International Standard specifies the requirements on the concept phase for automotive applications. These requirements include the item definition as well as the initiation of the safety life estimations. The standard gives information to the item definition. The first objective of the item definition is to define and describe the item. The second objective is to support an adequate understanding of the item so that each activity defined in the safety lifecycle can be performed. Based on the item definition, the safety lifecycle is initiated by distinguishing between either a new development or a modification, and the tailoring of the safety-related activities takes place. Hazard analysis, risk assessment and ASIL determination are concerned with determining safety goals for the item such that an unreasonable risk is avoided. For this, the item is evaluated with regard to its functional safety. Safety goals and their assigned Automotive Safety Integrity Level (ASIL) are determined by a systematic evaluation of hazardous situations. The rational of the ASIL determination considers the estimation of the impact factors, that is, severity, probability of exposure and controllability. It is based on the item s functional behaviour; therefore, the detailed design of the item does not necessarily need to be known. Hazard analysis and risk assessment is concerned with setting requirements for the item, such that unreasonable risk is avoided. 41

55 To comply with the safety goals, the functional safety concept specifies the basic safety mechanisms and safety measures in form of functional safety requirements. The functional safety requirements are allocated to elements in the system architecture. To specify safety mechanisms the functional safety concept addresses the following: Fault detection and failure mitigation; Transitioning to a safe state; Fault tolerance mechanisms, where a fault does not lead directly to the violation of the safety goals and which maintains the system in a safe state (with or without degradation); Fault detection and driver warning in order to reduce the risk exposure time to an acceptable interval (repair request, stop request); and Arbitration logic to select the most appropriate control request from multiple requests generated simultaneously by different functions 10. ISO/DIS : Road vehicles - Functional safety - Part 8 - Supporting processes Scope of this standard ISO is intended to be applied to safety-related systems that include one or more E/E systems and that are installed in series production passenger cars with a max gross weight up to 3.5 t. ISO does not address unique E/E systems in special purpose vehicles such as vehicles designed for drivers with disabilities. Systems developed prior to the publication date of ISO are exempted from the scope. Short description of standard 42

56 This Part of the International Standard specifies the requirements for supporting processes. These include interfaces within distributed developments, overall management of safety requirements, configuration management, change management, verification, documentation, qualification of software tools, qualification of software components, qualification of hardware components, and proven in use argument. The customer (e.g. vehicle manufacturer) and the suppliers for safety-related projects have to jointly use the procedures specified in ISO Responsibilities have to be agreed between the customer and the suppliers. Subcontractor relationships are permitted. Just as with the customer's safety-related specifications concerning planning, execution and documentation for in-house development projects, comparable procedures have to be agreed for co-operation with the supplier on distributed development projects, or development projects where the supplier has the full responsibility for safety. Safety requirements constitute all requirements aimed at achieving and ensuring the required functional safety level. The management of safety requirements includes managing requirements, obtaining agreement on the requirements, obtaining commitments with those implementing the requirements, and maintaining traceability. In order to support the management of safety requirements, the use of suitable requirements management tools is recommended. It is described how it can be ensured that the work products, and the principles and general conditions of their creation, can be uniquely identified and reproduced at any time and that the relations and differences between earlier and current versions can be traced. Change management ensures the systematic planning, controlling, monitoring, implementing and documenting changes, while maintaining the consistency of each work product. Before changes are made, potential impacts on functional safety have first to be assessed. For this purpose, decision-making processes for change are introduced and established, and responsibilities assigned between the parties involved. 43

57 Information to verification is given. Verification should ensure that the work products are correct, complete and consistent and that the work products meet the requirements of ISO It is described how to develop a documentation management strategy, so that every phase of the entire safety lifecycle can be worked through effectively and can be reproduced. The objective of the qualification of software tools is to provide evidence of software tool suitability for use when developing a safety-related item or element, such that confidence can be achieved in the correct execution of activities and tasks required by ISO The section that describes the qualification of software components shows how to enable the re-use of existing software components as part of items, systems or elements developed in compliance with ISO without completely re-engineering the software components and to show their suitability for re-use. The next part, qualification of hardware components, shows the suitability of intermediate level hardware components and parts for their use as part of items, systems or elements, developed in compliance with ISO 26262, concerning their functional behaviour and their operational limitations. The second objective of qualification of hardware components is to provide relevant information regarding their failure modes and their distribution, and their diagnostic capability with regard to the safety concept for the item. Provide guidance for proven in use argument is the content of the last part of this standard. Proven in use argument is an alternate means of compliance with ISO requirements that may be used in case of reuse of existing items or elements when field data is available. 44

58 11. ISO/DIS : Road vehicles - Functional safety - Part 9 - ASILoriented and safety-oriented analyses Scope of this standard ISO is intended to be applied to safety-related systems that include one or more E/E systems and that are installed in series production passenger cars with a max gross weight up to 3.5 t. ISO does not address unique E/E systems in special purpose vehicles such as vehicles designed for drivers with disabilities. Systems developed prior to the publication date of ISO are exempted from the scope. Short description of standard This Part of the International Standard specifies the requirements for ASIL-oriented and safety-oriented analyses. These include ASIL decomposition, criteria for coexistence of elements of different ASIL, analysis of dependent failures, and safety analyses. The objective of the section, requirements decomposition with respect to ASIL tailoring, is to provide rules and guidance for decomposing safety requirements into redundant safety requirements to allow ASIL tailoring at the next level of detail. The ASIL of the safety goals of an item under development is assured throughout the item's development process. Starting from safety goals, the safety requirements are derived and detailed during the development phases. The ASIL, as an attribute of the safety goal, is inherited by each subsequent safety requirement. The functional and technical safety requirements are allocated to architectural elements, starting with preliminary architectural assumptions and ending with the hardware and software elements. By default, when an element is composed of several sub-elements, each of those sub-elements is developed in accordance with the measures corresponding to the 45

59 highest ASIL applicable to this element. Guidance is provided for determining the potential of each of its sub-elements for violating any safety requirement that is allocated to it. The analysis of dependent failures aims to identify any single event or single cause that could bypass or invalidate the independence or freedom from interference between elements of an item required to comply with its safety goals. The objective of safety analyses is to examine the consequences of faults and failures on items and elements considering their functions, behaviour and design. Safety analyses also provide information on conditions and causes that could lead to violation of a safety goal or safety requirement. Additionally, the safety analyses also contribute to the identification of new functional or non-functional hazards not previously considered during hazard analysis and risk assessment. 12. DIN EN (1997): Electrically propelled road vehicles - Specific requirements for safety - Part 2 - Functional safety means and protection against failure Scope of this standard The document specifies all requirements for electrically propelled road vehicles in order to remain safe both for the users of the vehicle and for the vehicle environment. This part deals with functional safety means and protection against failures, thus defining the minimum rules to follow in the design of electric vehicle and the specific hazards avoid due to the electrical drive aspects of the vehicle. Short description of standard The functional safety and protection against failure is the main topic of this standard. The components which are installed in an electric propelled vehicle have to be constructed in the way that they can be operated under the same conditions as the entire vehicle. 46

60 Functional safety has to be ensured during the switch-on process, driving and parking. Detailed requirements for functional safety are described in the standard. Furthermore the standard describes the security concept which includes arrangements and construction principles that have to be taken into consideration in case of failure to ensure safety against physical injury and damage. Unintended acceleration, breaking and reversing have to be prevented. Particularly there must not be a failure which leads to a movement from standing of a non-braked vehicle above 0.1 m. A missing connection or unexpected separation of an electric connection must not lead to a dangerous vehicle behaviour. Safety against excess voltage has to be ensured. Information to the special content of the operating instruction for electric propelled vehicles is mentioned. 13. DIN EN (1998): Electrically propelled road vehicles - Specific requirements for safety - Part 3 - Protection of users against electrical hazards Scope of this standard The following items are covered within this standard: Definitions, voltage classes, protection against contact, thermal protection, and water protection. Short description of standard The standard defines the requirements to electrically propelled road vehicles regarding to electrical safety, if the vehicle is connected with an external power source. This applies to electric vehicles with a maximum operating voltage of every electric circuit below 750 V direct voltage or 500 V alternating voltage. 47

61 First some definitions and information to the voltage classes of an electric circuit are given. A distinction is made between voltage class A and B. For both categories there are different requirements according to electrical safety. Protection against direct and indirect contact has to be ensured. For class A there is no special safeguard necessary. The requirements for class B are presented in detail. Protection against direct contact has to be prevented by insulation or separating wall or casing. For safety regarding to indirect contact there are two methods depending on the classification of the equipment in class I or class II. Potential equalization is used for class I. Another possibility is the using of equipment of class II or an equal insulation for special fractions of class I equipment. The test method, which is presented, consists of measurement of insulation resistance and testing of electrical strength. Information to protection against increase in temperature is explained. Furthermore information to protection against the influence of water is given. Two test methods are described for the degree of protection IPX3 and IPX5. Both test methods base on EN 60529:1991 with adequate adjustment for vehicles Hybrid electric road vehicles In Europe there are also standards specific for hybrid electric road vehicles, including energy performance standards (European standard: EN , German standard: DIN EN ) and road operating characteristics (European standard: EN , German standard: DIN EN ). DIN EN defines the emissions of hybrid vehicles. The abstracts of these standards are as follows: 48

62 14. DIN EN (2001): Electrically propelled road vehicles - Measurement of energy performance - Part 2 - Thermal electric hybrid vehicles Scope of this Standard The document aims at defining the range in pure electric driving mode and the consumption measurements for a thermal electric hybrid road vehicle from M1, N1, or M2 category, and for tricycles and quadricycles of the motorcycle types. This standard applies to the above mentioned vehicles whose range and consumption can be tested following the provisions already laid down for conventional vehicles (i.e. internal combustion engine vehicle) from the equivalent categories. Summary of Standard The descriptions for the range and consumption measurements are divided into a pure electric part and a hybrid mode measurement. This standard bases on the testing methods and conditions which are given in DIN EN Differences in the test cycles or conditions are presented in detail. The range measurement in pure electric mode is the same as shown in DIN EN section 6. The consumption measurement in pure electric mode is described in DIN EN section 5. If the range in pure electric mode of the thermal hybrid electric vehicle is shorter than requested in DIN EN section 5, the testing may be performed with the highest possible completely passed test cycles which match the range. If the range in pure electric mode is shorter than test cycle 1 the measurement method is not applicable. If the vehicle driver can chose pure thermal mode, the measurement of consumption has to be performed according to directive 80/1268/EWG. In this case the hybrid electric vehicle is driven like a vehicle with thermal engine and the measurement in 49

63 hybrid mode is not necessary. Otherwise the complete testing has to be performed in hybrid mode. The test cycle includes four urban cycles and one extra-urban cycle, as in DIN EN defined. Appendix A completes the operating mode, defines the measurements which have to be performed and the underlying calculations. In appendix B an example is given for the calculation of emission of gases with a cost analysis method. 15. DIN EN : Electrically propelled road vehicles - Measurement of road operating ability - Part 2 - Thermal electric hybrid vehicles Scope of this standard The document specifies test methods of road operating abilities of partly electrically and partly thermally propelled road vehicles (hybrid vehicles with a thermal engine, permanently decoupled from the electrical drive train, e.g. range extender vehicles). Short description of Standard A detailed description of the general test conditions, including vehicle conditions, environment conditions and road-test route is described. For the tests a pretreatment of the vehicle is necessary. This refers primarily to the battery conditions of the vehicle. The standard gives information about battery charging methods. There are different driving modes for hybrid vehicles. This standard takes this into account and defines the driving mode for each test and gives detailed information to onboard energy sources. 50

64 According to this standards the following measurements of road operating ability are presented with definitions and detailed information about the test method including equations for the necessary calculations. In hybrid mode: Maximum speed; Acceleration from 0 km/h to 100 km/h; 30 minute maximum speed; Climb velocity at slope; Driveaway behaviour at slope. In pure electric mode: Maximum speed; Acceleration from 0 km/h to 50 km/h; Climb velocity at slope; Driveaway behaviour at slope. 16. DIN EN (2001): Electrically propelled road vehicles - Measurement of emissions of hybrid vehicles - Part 1- Thermal electrical hybrid vehicle Scope of this Standard The document aims at defining the emission measurements for a thermal electric hybrid road vehicle from M1, N1, or M2 category, and for tricycles and quadricycles from the motorcycle types. The project applies to the above mentioned vehicles whose emission can be tested following the provisions already laid down for conventional vehicles (i.e. Internal Combustion engine vehicle) from the equivalent categories. Short description of Standard 51

65 The emission measurements have to be determined with the same test methods as used for the consumption measurement, with the same vehicle conditions, driving mode and velocity characteristics. If the vehicle driver can chose pure thermal mode, the measurement of consumption has to be performed according to directive 70/220/EWG. In this case the hybrid electric vehicle is driven like a vehicle with thermal engine and the measurement in hybrid mode is not necessary. Cycle, equipment, fuel, specific values, units, accuracy of measurement and test conditions are the same as presented in EN Furthermore the operating mode is the same as given in EN , with a small modification for the emission definition. Hydrocarbon, carbon monoxide, nitrogen oxides and particle emissions have to be described in the test report in gram per kilometre. Test results can be presented as shown in appendix D. Appendix A completes the operating mode, defines the measurements which has to be performed and the calculations. In Appendix B an example for the calculation of gaseous emissions with a continuous analysis method is described Fuel cell road vehicles ISO , ISO and ISO are the standards for functional safety for fuel cell road vehicles, protection against hydrogen hazards for vehicles fuelled with compressed hydrogen and protection of person against electric shock, respectively. ISO/TR and ISO DIS are standards for maximum speed measurement and energy consumption measurement for fuel cell vehicles, respectively. 52

66 Industrial trucks European standard EN and German standard DIN EN (VDE ) concern the electrical requirements of industrial trucks specifying the electrical and the coherent mechanical safety for the design and the production of the electric equipment. 17. DIN EN : Safety of industrial trucks - Electrical requirements - Part 1 - General requirements for battery powered trucks Scope of this standard: This standard applies to industrial trucks with an electric battery drive system (nominal voltages up to 240 V) specifying the electrical and the coherent mechanical safety requirements for the design and the production of the electric equipment. Necessary environmental conditions: min. indoor temperature: + 5 C, min. outdoor temperature: - 20 C, max. temperature: + 40 C, average temperature for continuous operation: + 25 C, altitude: up to 2000 m, relative air humidity: 30% - 95%. Short Description of Standard: The standard defines several terms concerning industrial truck motors, e.g. motortype-test, nominal motor voltage, motor power during intermittent duty, etc. Potential hazards for persons (mechanical hazards, electrical hazards, thermal hazards, hazards caused by disregard and hazards caused by fault) are listed indicating the respective safety requirements. Safety requirements mentioned within the standard: Drive battery: Battery installation and protection (covers, cover construction, spark producing parts, air ventilation, inner surface), fixture and separation Battery plug devices: Detailed description in annex A 53

67 Exothermic electric parts: Have to be arranged adequately to avoid overheating, hazards for persons or damage of nearby parts Electric motors: Detailed description in annex B Switches: Detailed description in annex C Electromechanical breaks: Have to be applied mechanically and released electrically Protection against electric shock: Direct contact, indirect contact, connection to the frame, board s own battery charger Protection of the electric equipment: Short-circuit and overload, over-current protections Security relevant regulations: Low voltage, accidental grounds, drive-controlsystem, drive pulse contact controls, drive prevention, steer-control, loadcontrol, shaft-switch, speed limit, slack ropes or slack chains Cables: Protection, cable cross-section, specifications for copper wires (have to be flexible; cross-sections of at least 0.50 mm² (control cables), 0.30 mm² (signal cables), 0.08 mm² (data transmission cables); cross-sections of at least 1 mm² for single cables outside of cable loops) Cable routing: Multi-conductor cables, main current cables, movable cables, mechanical protection, identification Battery charge: Driving during charge, engaging of the charger Emergency shut-down: Accessibility, function Electric strength test (type test): Procedure, testing voltage, electronic components Leakage resistance test (routine test): Testing voltage, leakage resistance of the industrial truck, leakage resistance of the battery Furthermore the standard contains an overview for additional requirements for nominal voltages exceeding 120 V: Battery: Battery container (has to be made of metal or insulating material), connection terminals and cell connectors, end terminals, battery hood Battery plug devices: Requirements, emergency shut-down 54

68 Protection against electric shock: Electric enclosures, circuits, earthing, earthing observation, emergency shut-down: Manually operated disconnector or a circuit breaker of two separate switches in the inductor circuit Leakage resistance test (routine test): Testing voltage, leakage resistance of the industrial truck, leakage resistance of the battery The maintenance manual has to contain a schematic diagram conform to clause 19 of EN Supply terminals for backup illumination installations have to be marked. Procedures and intervals to test the safety systems have to be included in both the maintenance and the instruction manuals. In addition the instruction manual has to contain information about the installation, maintenance, charge and operation. Electric enclosures for industrial trucks with nominal voltages exceeding 120 V have to wear an enduring warning sign conform to clause 18.2 of EN Advices that have to be attached to the drive battery: Name and address of the battery manufacturer, type, serial number, nominal voltage (in a container), capacitance in Ah during 5-hour-discharge and operation weight (with additional weight to balance too small battery weights) Electric vehicle component safety Electric vehicle component standards should focus on definitions and measurement methods of functional aptitude of motors and motor control systems, including safety of personnel against electric shocks and protection of electrical components, such as wiring and connectors and instrumentation of motor and motor control systems, rotating machines and controllers. There are also standards for safety of electrical cables in electric vehicles, electrical and electronic equipment in electric vehicles, highvoltage test and test procedures of machine and insulation coordination. 55

69 Testing standards for electrical and electronic equipments Testing standards for electrical and electronic equipments include for example the affect of the chemical loads to electric and electronic systems and components, Definitions, test and procedure requirements for low-voltage equipment (international standard: ISO , German standards: DIN EN and DIN EN ). And ISO 7673 specifies the electromagnetic compatibility of electronic instruments. The abstracts of these standards are as follows: 18. ISO : Electric road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 5 - Chemical loads Scope of this Standard: This part of ISO specifies the chemical loads that can affect electric and electronic systems and components in respect of their mounting location on or in road vehicles, and specifies the corresponding tests and requirements. It does not cover electromagnetic compatibility. Short description: For terms and definitions as well as documentation, see ISO Components and associated parts that can come in contact with the specified chemical agents (e.g.: Diesel fuel, gasoline, battery fluid or brake fluid) shall be resistant to those agents. Test condition and procedure are given. After the test, functional status shall be Class C in accordance with ISO :2003, Clause 6. There shall be no changes that could impair normal performance (e.g. sealing function), marking and labeling shall remain visible and legible. 56

70 19. DIN EN : High-voltage test techniques for low-voltage equipment - Part 1 - Definitions, test and procedure requirements Scope of this standard: This standard applies to A.C. and D.C. insulation tests, surge voltage insulation tests, surge current tests and test with combinations of these variables, with A.C. rated voltages not exceeding 1 kv and D.C. rated voltages not exceeding 1.5 kv. Primarily this standard is made for type test. Given the agreement of the responsible technical committee it might also be applied to sampling tests or routine tests. This standard does NOT apply to electromagnetic compatibility tests of electric or electronic devices. Remark: This standard is closely linked to IEC Short Description of Standard: Definition of terms: Surge, partial breakdown, clearance ( IEV ), leakage distance ( IEV ), fixed insulation, breakdown, characteristics of testing voltage, default characteristics of testing voltage, actual characteristics of testing voltage, size of testing voltage, breakdown voltage, withstand voltage, secured breakdown voltage. Remark: Test-specific terms are defined within the different test sections. General regulations: Testing procedures (polarity, testing sequence, etc.; have to be specified by the responsible technical committee), devices under test (conformity of device, stabile condition, etc.) and testing environment (normal reference atmos- phere: temperature t 20 C, air pressure 0 p 0 101,3kPa ( IEV ); atmospheric correction factor). 57

71 Remark: All values mentioned might vary due to the responsible technical committee. All characteristics of the testing voltage/current/surge generators and the calibration of the measuring systems have to be looked up in IEC D.C. tests: The ripple factor of the D.C. testing voltage has to be below 3%. The limiting deviation of the measured testing voltage from the defined testing voltage must not exceed ± 3%. Test of withstand voltage: Starting with an adequately small value (no switching surge) the voltage has to be increased steadily for proper reading of instruments (5% of the estimated final voltage per second), but without unnecessarily long device strain under high voltages, i.e. voltages over 75% of the estimated final voltage. After the testing time the voltage hast to be lowered by discharging the smoothing capacitor and the device under test using an adequate resistor. If there is no device breakthrough, the testing requirements are fulfilled. A.C. tests: The frequency of the testing voltage has to be 45 Hz - 60 Hz (might be far higher or lower due to the responsible technical committee). The voltage has to have a ratio between rms-value and peak value of 2 (± 5%). The limiting deviation of the measured testing voltage from the defined testing voltage must not exceed ± 3%. The test circuit voltage should not be influenced by any leakage currents. During the type test, with adjusted testing voltage and short circuit, the current rms-value hast to be at least 0.1 A. Test of withstand voltage: Same as D.C. tests. After the testing time the voltage hast to be lowered quickly, but not cut off abruptly. If there is no device breakthrough, the testing requirements are fulfilled. Surge voltage tests: 58

72 1.2/50 surge voltage: Standardized surge voltage with apparent wave-front duration of 1.2 μ s and apparent half-value time of 50 μ s. Other wave forms might be approved by the responsible technical committee. Limiting deviations: peak value: ± 3%; wave-front duration: ± 30%; half-value time: ± 20%. Remark: The standard contains detailed information about vibrations or over-vibrations within the peak of the surge ( 6.2.2; attached graphs). The surge voltage wave form has to be checked for at least 50% of the testing voltage values. Test of withstand voltage: Five surges of defined form, both polarities and size of the secured breakthrough voltage are applied. If there is no device breakthrough or partial device breakthrough, the testing requirements are fulfilled. Surge current tests: Standardized surge current types (surge, wave-front duration, upper-surface half-life period and peak duration) can be taken from table Limiting deviations for 1/20, 8/20, 3/60 surges: peak value: ± 10%; wave-front duration: ± 20%; half-value time: ± 20%. Small vibration or over-vibration is approved (peak value not exceeding 5% close to the surge peak value). Any polarity reversal after current zero-crossing has to be below 20% of the peak value. Limiting deviations for rectangle-current surges: peak value: + 20%, - 0%; peak duration: + 20%, - 0%. Vibration or over-vibration is approved (amplitude not exceeding 10% of the peak value). The total time of the rectangle-current surge should not exceed 1.5-times the peak duration. Any polarity reversal has to be below 10% of the peak value. Definitions the responsible technical committee has to make: Current amplitude, number of surges, polarity, wave form, surge interval, calibration procedure and acceptance criterion. 59

73 Combined tests: Three different testing procedures: Hybrid-generator single-handedly, hybridgenerator and power supply, normal 1.2/50 surge generator and power supply. In detail the different testing procedures can be found within the standard ( 8.3, 8.4, annex A and 8.5). Testing with hybrid-generators: The standardized surge of the hybrid-generator is identified by the output voltage in open-circuit operation (apparent wave-front duration of 1.2 μ s and apparent halfvalue time of 50 μ s) and the output current in short circuit (apparent wave-front duration of 8 μ s and apparent half-value time of 20 μ s). Other wave forms might be approved by the responsible technical committee. Approved deviation of the open-circuit operation surge voltage: peak value: ± 3%; wave-front duration: ± 30%; half-value time: ± 20%. Vibration or over-vibration is approved (peak value not exceeding 5% of the surge peak value). Limiting deviation of the short circuit surge current: peak value: ± 10 %; wave-front duration: ± 20%; half-value time: ± 20%. Small vibration or over-vibration is approved (peak value not exceeding 5% close to the surge peak value). Any polarity reversal after current zero-crossing has to be below 30% of the peak value. The apparent impedance of the surge generator has to be defined by the responsible technical committee (preferred values: 2 Ω, 12 Ω; difference between actual value and defined value: ± 15%). During the measuring of the surge voltage the generator must not be connected to the device under test due to the influence of the device impedance. 60

74 20. DIN EN : High-voltage test techniques for low-voltage equipment - Part 2 - Test equipment Scope of this Standard: This standard applies to test equipment for insulation tests of low-voltage devices with D.C. voltage, A.C. voltage, surge voltage and surge current tests, as well as combined surge voltage and surge current tests. The test equipment has to consist of a voltage or current generator and a measuring system protected from external influences by an adequate shielding (e.g. conductive screen) This standard does NOT apply to test equipment with measuring systems consisting of non-shielded parts and/or that are connected by long input leads. In this case the respective information has to be looked up in IEC Short Description of Standard: Definition of terms: testing instruments, reference measuring system, error of measurement declared output impedance (surge voltage generator) General conditions to verify the characteristics of the test equipment: Environmental conditions: Temperature: 15 C - 35 C, air pressure: 86 kpa kpa, relative humidity: 25% - 75%; have to be the same as testing conditions ( IEC 68-1); actual environmental conditions have to be recorded Connecting cables between the device being calibrated and the respective measuring system have to be directly and as short as possible; surge test: length of connecting cables: 1 m (limiting deviation of +0.5 m/ -1 m); the comparing measurement system has to have a distance from any earthed part as big as its height; otherwise it has to be shielded. The test equipment has to be loaded with its nominal voltage (± 10%) and its nominal frequency. 61

75 Influence of load: Any comparison test has to be realized first with the lowest, then with the highest permitted load. Comparison procedure: The calibrating test equipment has to be connected to a comparing measurement system in parallel or in series depending on the respective application. Parallel measurements have to be taken at the initial value and the ultimate value of the working range and at two more values in-between. The measurements have to be taken under increasing as well as decreasing voltage/current values. Quantity of verification: Verifications have to be realized in adequate intervals, at least once a year. Verification of the characteristics of the different generator types: D.C. generators: Ripple hast to be within the limits defined in IEC , (sole Ohm resistive load, highest defined current, lowest defined voltage). Error of measurement must not exceed ± 3% of the reference value. The difference between the output voltage without load and with the highest load must not exceed 5% (stable conditions). A.C. generators: The output voltage of the test equipment has to be measured by a comparing measurement system connected in parallel, taking peak value and rmsvalue at the same time. The ratio between peak value and rms-value has to be 2 ( 5%). Error of measurement must not exceed 3% of the reference value. Surge voltage generators: The correct voltage wave form has to be verified with a calibrated oscilloscope or digital recorder (highest and lowest load, any polarity; values of time parameters have to be within the deviation range defined in IEC ). Error of measurement must not exceed 5% of the reference value ( 20% for time parameters). Surge current generators: The correct current wave form has to be verified with a calibrated oscilloscope or digital recorder (output terminals of the test equipment 62

76 have to be connected directly and with shortest possible input lead to the compared measuring system; wave form deviations have to be compatible to IEC ). Error of measurement must not exceed 5% of the reference value (± 20% for time parameters). Hybrid generators: Has to be tested like a surge voltage generator with minimum load and like a surge current generator with the same calibration of the control unit. The voltage and current wave forms have to be compatible to IEC and The ratio between voltage peak and current peak has to be determined for the highest and lowest calibration of the control unit and for two more values inbetween (average value has to be compatible to IEC ). Comparing measurement system requirements: A.C. /D.C.: The overall uncertainty within the range of application must not exceed ± 2%. The accuracy must not be influenced by ripple of up to 3% (D.C.). Surge voltage/current: The overall uncertainty within the range of application must not exceed ± 3% for peak values and 10% for time parameters. Comparing measurement: The comparing measuring system hast to be verified by compared measuring with another comparing measurement system based on national standards. 21. ISO (1995): Road vehicles - Electrical disturbances by conduction and coupling - Part 3 - Vehicles with nominal 12 V or 24 V supply voltages - Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines Scope of this Standard: This standard specifies the electromagnetic compatibility of electronic instruments, apparatus and equipment in terms of electrical transient transmission by capacitive and inductive coupling via lines other than supply lines. It applies for vehicles with nominal 12 V or 24 V supply voltages. 63

77 Short description: This standard specifies methods for testing of immunity to disturbances of instruments, apparatus and equipment in terms of coupled transient transmission. The test must be taken in the laboratory to ensure reproducibility. The ambient temperature should be 23 ± 5. The test configuration is explained in detail. Test equipments are described elaborately. This standard suggests benchmarks for the test, consisting of three parts: Classification of the functional state during and after the disturbance Test procedure as described in the standard Classification of severity level of the pulse used for testing The standard furthermore suggests ways to display the test results Safety standards for low voltage electrical installations Standards for low voltage electrical installations are about the safety issue including protection against thermal effects, against overcurrent, against electromagnetic influences and against electric shock (German standards: DIN IEC , DIN IEC , DIN IEC and VDE and VDE ). Standards DIN IEC and DIN IEC A2 define the selection and erection of earthing arrangements and low voltage generating sets. The abstracts of these standards are as follows: 64

78 22. DIN IEC : Low-voltage electrical installations - Part Protection for safety - Protection against thermal effects Scope of this standard: This standard applies to electrical installations and equipment with regard to measures for the protection of persons, livestock and properties. Thermal effects described in this standard are occurring from electrical equipment, flames and smoke in case of a fire hazard being propagated from electrical installations to other fire compartments segregated by barriers which are in the vicinity and electrical equipment for safety services being cut off. Short Description of Standard: The standard identifies four protection groups: Protection against fire caused by electric equipment, precautions where particular risks of danger or fire exist, protection against burns and protection against overheating. Electrical equipment shall not present a fire hazard to adjacent materials. Precautions shall be taken for: High surface temperatures: Withstanding materials, sufficient distances Emitted arcs or sparks: Enclosing materials, shielding, sufficient distances Fixed equipment causing a focusing or concentration of heat: Sufficient distances Electrical equipment in a single location containing flammable liquid in significant quantity The materials of enclosures arranged around electrical equipment during erection shall withstand the highest temperature likely to be produced by the electrical equipment. 65

79 Unless protective measures against ignition are taken, combustible materials are not suitable for the construction of these enclosures. Electrical equipment shall be selected and erected in a way that its normal temperature rise and foreseeable temperature rise during fault cannot cause fire (construction of equipment or conditions of installation). The standard defines three conditions of evacuation in an emergency and provides respective requirements: BD2: Low density occupation, difficult conditions of evacuation BD3: High density occupation, easy conditions of evacuation BD4: High density occupation, difficult conditions of evacuation Luminaries shall be kept at the adequate distance from combustible materials. Lamps and other components of luminaries shall be protected against foreseeable mechanical stresses. Precautions shall be taken to ensure that electrical equipment cannot ignite walls, floors and ceilings. In structures where shape and dimensions facilitate the spread of fire, precautions shall be taken to ensure that the electrical installation cannot propagate a fire (e.g. chimney effect). The standard mentions further special precautions concerning switchgear, wiring and wiring systems, forced-air heating installations, motors other than light-duty servomotors, circuits supplied at SELV and PEN conductors in clause Accessible parts of electrical equipment within arm s reach shall not attain a temperature likely to cause burns to persons. Appropriate limits can be taken from table 42A. All parts of the installation likely attaining temperatures exceeding these limits in normal service shall be guarded to prevent any accidental contact. 66

80 The heating elements of forced air heating systems shall not be activated until the prescribed air flow has been established and deactivated when the air flow is stopped. The heating elements shall have two temperature limiting devices independent of each other preventing permissible temperatures from being exceeded in air ducts. The frame and enclosure of heating elements shall be of non combustible material. All appliances producing hot water or steam shall be protected by design or erection against overheating in all service conditions. If an appliance has no free outlet, it shall also be provided with a device limiting the internal water pressure. Remark: In Germany there are additional requirements for protection against arcing, electric heater installations, battery charger installations, wiring systems and safety devices. 23. DIN IEC : Erection of low-voltage installations - Part Protection for safety - Protection against overcurrent Scope of this standard: This standard applies to live conductors and their protection by one or more devices for automatic interruption of the supply in the event of overload and short-circuits. This standard does NOT apply to the equipment connected to the conductors. It also does NOT apply to flexible cables connecting equipment by plugs and socket-outlets to fixed installations. External influences are NOT taken into account by this standard. Short Description of Standard: Protective devices shall be provided to break any overcurrent flowing in the circuit conductors before danger can be cause by it due to thermal and mechanical effects 67

81 or a temperature rise detrimental to insulation, joints, terminations, or surroundings of the conductors. Nature of protective devices mentioned in the standard: Devices ensuring protection against both overload current and short-circuit current: circuit-breakers incorporating overload releases ( IEC , IEC 60898, IEC or IEC 61009), circuit-breakers in conjunction with fuses, fuses having fuse-links with gg characteristics( IEC or IEC ) Devices ensuring protection against overload current only: Inverse-time-lag protective devices whose interrupting capacity may be below the value of the protective short-circuit current at the installation point Devices ensuring protection against short-circuit current only: Devices that are capable of breaking the short-circuit current up to and including the prospective short-circuit current. They are installed where overload protection is achieved by other means or where overload protection is allowed to be dispensed with Detection of overcurrent shall be provided for all line conductors. It shall cause the disconnection of the conductor in which the overcurrent is detected (exceptions can be made for TT and TN systems). Where the cross-sectional area of the neutral conductor is less than that of the phase conductors, it is necessary to provide overcurrent detection for the neutral conductors, appropriate to the cross-sectional area of that conductor (TT or TN systems). In TT or TN systems the neutral conductor shall be protected in every case of a short circuit. The requirements for a neutral conductor are also valid for a PEN conductor. In IT systems it is strongly recommended that the neutral conductor should not be disturbed. 68

82 Overcurrent detection shall be provided for the neutral conductor in a three-phase circuit where the harmonic content of the line currents is such that the current in the neutral conductor is expected to exceed that in the line conductors. A device protecting a cable against overload shall have operating characteristics satisfying I B I n I Z and I I Z I B : Design current for the circuit I Z : Continuous current-carrying capacity of the cable I n : Nominal current of the protective device I 2 : Current ensuring effective operation in the conventional time of the protective device (given in the product standard or may be provided by the manufacturer) A device ensuring protection against overload shall be placed at the point where a change (cross-sectional area, nature, method of installation, or constitution) causes a reduction on the value of current-carrying capacity of the conductors. The prospective short-circuit current shall be determined at every point of the installation (either by calculation or measurement). A device ensuring protection against short-circuit shall be placed at the point where a reduction of the cross-sectional area of the conductors or another change causes a change to the current-carrying capacity of the conductors. The break capacity of each short-circuit protective device shall not be less than the prospective short-circuit current at the place of its installation. For cables and conductors all current caused by a short-circuit occurring at any point of the circuit shall be interrupted in a time not exceeding that which brings the conductor to the admissible limit temperature. 69

83 For short-circuits of duration up to 5 s, the time t, in which a given short-circuit current will raise the conductors from the highest admissible temperature in normal duty to the limit temperature can be calculated by: S t ( k ) I 2 t: Duration S: Cross-sectional area I: Effective short-circuit current k: Factor taking account of conductor material characteristics and temperatures (values in table 43 A) Further requirements for the protection against overload currents and short-circuit concerning cases for omission of devices and conductors in parallel can be found in clauses 433 and 434. Information about the co-ordination of overload and short-circuit protection (protection afforded by one device, protection afforded by separate devices) is provided in clause 435. Conductors are considered to be protected against overload and short-circuit currents where they are supplied from a source incapable of supplying a current exceeding the current-carrying capacity of the conductors. 24. DIN IEC : Low voltage electrical installations - Part protection against voltage disturbances and measures against electromagnetic influences, clause protection against temporary over voltages and faults between high-voltage systems and earth Scope of this standard: This section of the standard contains information about protection of electric equipment when disturbances of the voltage and electromagnetic disturbances occur. It is not valid for the public power supply grid. 70

84 Short Description of Standard: Protection against temporary over voltages due to earth faults at high voltage level or faults at low voltage level: The following information about the high voltage grid is required: - Quality of earthing of neutral point - Maximum current in case of earth fault - Impedance of earthing equipment Four cases are dealt with that usually produce the highest temporary over voltages, as defined in IEV (604): - Earth-faults in grids with higher voltage A table is given providing the information to calculate the voltages at different points in the system during fault Maximum allowable magnitude and duration of these voltages are defined. - Interruption of neutral conductor in low voltage grid Maximum fault voltage will be U 3 * U 0 - Unintended earthing of a low voltage IT-system Maximum fault voltage will be U 3 * U 0 - Short-circuit in low voltage system Maximum fault voltage will be U 1.45* U 0 for up to 5 seconds 25. DIN VDE : Low-voltage electrical installations - Part Protection for safety - Protection against electric shock Scope of this standard: This standard applies to low-voltage electric installations providing essential requirements for the protection against electric shock including basic protection (protection 71

85 against direct contact) and fault protection (protection against indirect contact) of persons and production animals. The standard covers the appliance and coordination of these requirements in relation to external influences. Short Description of Standard: Protective measures have to consist of an adequate combination of two independent precautions, i.e. either a basic protection measure and a fault protection measure or an increased precaution securing basic protection and fault protection. The following protective measures are generally approved: Protection from automatic shutdown of the power supply (basic protection: basic insulation/covering/enclosing of active parts; fault protection: protective potential equalization using the main earth bar) Protection from double or increased insulation (basic protection: basic insulation; fault protection: additional insulation; alternative: basic protection and fault protection: increased insulation between active parts and tangible parts) Protection from protective separation of the supply of a consumable (basic protection: basic insulation/covering/enclosing of active parts; fault protection: simple separation of the electric circuit with separation protective from other circuits and earth) Protection from low voltage by SELV or PELV At least one of these protective measures has to be applied in each part of an installation (exceptional cases are mentioned in clause 410.3). The standard provides detailed information about each of the generally approved protective measures mentioned above in clauses (requirements for basic 72

86 protection and fault protection, TN-, TT- and IT-systems, FELV, requirements for SELV- and PELV-circuits, etc.). Additional protection can be provided by residual current protection devices (RCDs) or by additional protective potential equalization. The use of such installations is not accepted as the only protective measure against electric shock. Annex A contains precautions for basic protection und normal conditions. Annex B contains precautions for basic protection under special conditions (barriers and arrangement outside the hand area). 26. DIN VDE (German version of IEC 60364, modified): Low voltage electrical installations - Part Protection for safety - protection against voltage disturbances and electromagnetic disturbances (German version of part 4-44:2007, clause 444, modified Scope of this standard: This section of the standard is directed to people engaged in planning, erecting and maintaining electrical installations. It contains information about installation concepts that can help to reduce electromagnetic disturbances. This section defines rules and recommendations for electrical installations. It is not valid for installations that are (completely or in parts) part of the public energy supply ( IEC ). Short Description of Standard: For definitions of general terms see IEC Furthermore, the following terms are defined: bonding network, bonding ring conductor, common bonding network, equipotential bonding, earth-electrode network, meshed bonding network, parallel earthing conductor. Only assets that fulfill the EMC standards may be used. 73

87 Equipment sensitive to electromagnetic disturbances may not be installed closely to sources of these disturbances, such as switchgear for inductive loads, electric motors, fluorescent lamps, welding equipment, data processing equipment, rectifiers, switch mode power supply, frequency converters, elevators, transformers, switchgear, power distributors with bus bars Measures to reduce electromagnetic disturbances are defined. These measures focus on correct laying of data, signal and power cables, correct use of cable shielding, consideration of IEC for installation of lightning arrester systems. Different requirements for IT, TT and TN systems: TN: TN-C systems should not be maintain in existing buildings and may not be installed in new building. TN-S systems have to be installed in new buildings. Where TN-C-S systems are installed in existing buildings, any loop of data and signal lines shall be avoided. TT: over voltages have to be taken into account that can occur between active components and bodies, where bodies of different buildings are connected to different earth-conductors. IT: It has to be taken into account that the voltage between a conductor with no failure and a body may rise to the value of the line to line voltage when a single failure occurs in the insulation of a line and the body. Special attention has to be paid when dealing with systems with multiple feeders. Examples are given for different cases. Other equipment like water supply tubes etc. should enter the buildings at the same point where data and signal conductors enter. Metal tubes and metal shielding of cables have to be connected to the main earthing bar with cables of low impedance. All earthing conductors have to lead to the same earthing bar. Separate earthing bars for functional and protective earth are not allowed. Where this is not possible due to 74

88 installations in different buildings, the data and signal conductors of different buildings should be galvanic isolated. Examples are given for different network topologies. Power and signal cables may be installed in the same routes, but special requirements are defined in this standard. Examples and figures are given. Use of different types of cables trenches is explained. Examples and figures are given. Requirements for fire protection have higher priority than EMC requirements. 27. DIN IEC : Low-voltage electrical installations - Part Selection and erection of electrical equipment - Earthing arrangements, protective conductors and protective bonding conductors Scope of this standard: This standard addresses the earthing arrangements, protective conductors and protective bonding conductors in order to satisfy the safety of the electrical installation. Short Description of Standard: Terms defined within the standard: Exposed-conductive part, extraneous-conductivepart, earth electrode, concrete-embedded foundation earth electrode, Soil-embedded foundation earth electrode, protective conductor, protective bonding conductor, earthing conductor and main earthing terminal. According to the requirements of the electrical installation the earthing arrangements may be used jointly or separately for protective and functional purposes. Requirements for protective purposes shall always take precedence. Where provided, earth electrodes within an installation shall be connected to the main earthing terminal using an earthing conductor. Consideration shall be given to the earthing arrangements which are used in high voltage and low-voltage systems ( IEC , clause 442) and to the earthing 75

89 arrangements where currents with high frequencies are expected to flow ( IEC , clause 444). Requirements for connection to earth: reliable and suitable for the protective requirements of the installation can carry earth fault currents and protective conductor currents to earth without danger from terminals, thermo-mechanical and electromechanical stresses and from electric shock arising from these currents is also suitable for functional requirements, if relevant Protection against electric shock shall not be adversely affected by any foreseeable change of the earth electrode resistance (e.g. due to corrosion, drying or freezing). Type, materials and dimensions of the earth electrodes shall be selected to withstand corrosion and to have adequate mechanical strength for its expected lifetime. Commonly used materials, minimum sizes in due consideration of corrosion and mechanical strength for earth electrodes where embedded in soil can be looked up in table Further information about earth electrodes, earthing conductors, main earthing terminals, protective conductors and protective bonding conductors (types, materials, characteristics, applications, etc.) is provided in clauses Annex A contains a method needed to calculate cross section values of protective conductors as well as various tables containing the values of parameters for different materials. Annex B gives examples of earthing arrangements, protective conductors and protective bonding conductors. 76

90 28. DIN IEC A2: Erection of Low electrical installations - Part 5-55-A2 - Selection and erection of electrical equipment - low voltage generating sets Scope of this standard: This part of IEC contains rules for the erection of low voltage generating sets and for the selection and erection of lighting equipment that is part of a fixed installation. Short Description of Standard: General statements: - Part 5-55 applies to generating sets for either a continuous or an intermittent supply with electric energy. The following power supply systems are covered: Power supply of a system that is not connected to the public grid Power supply as an alternative to the public grid Power supply in parallel to the public grid Applicable combinations of the above mentioned systems Remark: Requirements of the local utility should be taken into account when connecting a power supply system to the public grid Different types of energy sources, power generation units and purposes of erection are named, including: batteries, power electronic inverters and temporarily connected systems. Safety and functionality of other power sources may not be affected. The short-circuit current and the earth-fault current of the generating set and the combination of different operating sets has to be determined. Limits of existing protective devices may not be exceeded in any way. 77

91 When the system is intended to be used solely or as alternative to the public grid it has to be able to operate properly regardless of the turn-on and turn-off of devices supplied. Appropriate security measures have to be installed. No damage may be caused to devices due to violations of the voltage band or frequency. When the system is installed together with other power supply units, it has to be installed within a separate electric circuit where no energy consuming devices are installed or may be installed (also no plug-ins!) The generating set may not be connected to electric circuits by a plug that can be energized when not plugged in. Security measures are defined for: Protection against indirect contact Over current protection Additional requirements for systems that are a switchable alternative to the public grid Additional requirements for systems that may be used in parallel to the public grid Additional requirements for systems with stationary batteries Standards for machines IEC and DIN EN ISO are about electric vehicle machines. IEC defines the rating and performance of machines and DIN EN ISO describes a systematic procedure for risk assessment. 78

92 29. IEC (2004): Rotating electrical machines - Part 1- Rating and performance Scope of this Standard: The areas of application are all rotating electrical machines that are not subjects of other Standards, e.g. IEC The ambient air temperature should range from - 15 C to 40 C. For machines with rated powers below 600 W or above 3300 kw, the minimum temperature should not be less than 0 C. Short description: The operator should state the purpose of the rotating electrical machines either by explicit numerical value/diagram of variables or by choosing one of the given operation modes. Ten operation modes S1 to S10 are given with specific characteristic diagrams of their applied load, electrical losses, and temperature over time. The seller should state the rating of the machine by choosing one of the following rating categories: Continuous operation (S1) short-term operation (S2) periodical operation (S3-S8) non-periodical operation (S9) operation with single constant load and rotation speed (S10) testing operation If no statement is made, the default rating is continuous operation (S1). 79

93 If the machine operates with multiple rotation speeds, for each speed a rating has to be given. The standard includes rules for the rating of different machine types, e.g. motor, dc generator and reactive power machines. Detailed requirements about harmonics, negative sequence components of threephase systems, rated frequencies and rated voltages of different electrical generators are given in the standard. A classification of the insulation system according to IEC has to be made. Thermal aging tests should be analysed according to IEC Conditions and procedures of heat testings and temperature measurements are presented. Various requirements for the machine, and testing conditions and procedures are imposed: Minimum frequency and effort of routine checks. Testing of the withstand voltage Overload capability requirements Rotation speed overload capability requirements Pull-up torque requirements. Overspeed requirements. Earthing requirements Furthermore, the standard gives information on how to label the machines. It also gives detailed information on tolerance of various factors like efficiency, power factor and rotation speed. 80

94 30. DIN EN ISO (2007): Safety of machinery - Risk assessment Part: 1-Principles Scope of this standard The primary function of this document is to describe a systematic procedure for risk assessment so that adequate and consistent safety measures can be selected. Risk assessment is an essential part of the iterative process for risk reduction which should continue until adequate safety is achieved. Short description of Standard This standard defines general principles to achieve the objectives of risk minimization according to ISO :2003. The principles describe knowledge and experience about construction, operation, event of accident and defects linked to machines for estimating risk during the service life of machines. Instructions for performance of risk assessment are given. Methods for identification of hazard and risk assessment and evaluation are described. Furthermore procedural guidelines for decisions linked with safety of machines and the way of documentation, for proving the conducted risk assessment, are presented. This standard is not applicable for risks relating to pets, properties or environment. Risk assessment comprises the following parts which are described detailed in the standard: a) Risk analysis 1) Define the boundaries of the machine 2) Identification of hazard 3) Risk assessment b) Risk evaluation. 81

95 The risk analysis gives information that is important for the risk assessment, which determines the necessity of risk minimization. The information for the risk evaluation should include the following parts: a) Relating to the description of the machine 1) User specification, 2) Expected machine specification, including: i) Description of different phases of service life of the machine, ii) Engineering marking or other device to detect the type of machine, iii) Necessary energy sources and supply, 3) Documentation to earlier constructions comparable machines, if relevant, 4) User information for the machine, if available, b) Relating to regulations, standards and other applicable documents: 1) Applicable regulations, 2) Relevant standards, 3) Relevant technical specifications, 4) Safety data sheets, c) Relating to experience in operation 1) All accident, incident or failure events of this or a comparable machine, 2) Documented damage caused to someone s health, for example due to emissions or used chemical, d) Relevant ergonomic principles (s. ISO :2003) 82

96 Standards for semiconductor convertors The requirements of semiconductor convertors are described in standards IEC 146 and VDE : 31. IEC (1991): Semiconductor convertors, General requirements and line commutated convertors - Part Specifications of a basic requirements Scope of this Standard: This standard is applicable for all electronic power converters and electronic power switches that utilize controllable and/or uncontrollable electronic valve devices. Short description: The standard gives a classification of converters based on the following characteristics: a) Type of power conversion (e.g.: rectification, inversion) b) Purpose of conversion (e.g.: voltage control, frequency control) c) Type of commutation or quenching d) Voltage or current stiffness The standard also gives a classification of electronic valve devices. Relevant terms are briefly described and for some the IEV number ( electrical and electronic terminology database of the International Electrotechnical Commission) is listed. The labeling of cooling systems is described in detail. 83

97 The conditions of the normal operation are described as interior operation, with ambient temperatures of - 40 C to 55 C during transport and storage, air humidity of at least 15% and purity of the air according to degree of pollution described in IEC 664. Other conditions are aggregated as unusual conditions, and need special agreements between operator and seller. Requirements for the electrical network are described in IEC TC 77. For calculation methods to determine electrical environmental conditions, see IEC Sellers have to define load types of the convertor as one of the following: Resistive load Inductive load Motor Battery Capacitive load Generator This standard defines three classes of immunity to disturbance as A, B and C regarding their requirements for frequency, voltage form and harmonics. B is the default class, if not stated differently. For some common converters calculation factors like voltage ratio, voltage changes, magnetic circuit and dissipation factor are described. This standard defines which losses are considered for efficiency calculation and which are not. 84

98 The calculation of different power factors are described shortly. For detailed information, see IEC In addition to that, dc voltage change, harmonic in network current/voltage, voltage ripple on the dc voltage side, ac fractions in dc output, and disturbances are described. Counteractive measures are suggested and requirements are defined. This standard describes rated current, rated voltage and applied load classes. It states the correct way to label the converter and specifies which data the rating plate must contain and which are optional. This standard characterizes three inspection programs which are type test, routine test and additional test. Several types of inspections are described as well as the necessary inspection program along with the proper way of execution. 32. DIN VDE : Semiconductor convertors - Part 1 - General specifications and particular specifications for line-commutated convertors Scope of this standard: This standard applies to convertors with single crystal semiconductor valve components (rectifier diodes, thyristors, active transistors) for all types of applications. It applies to rectifier diodes and thyristors, convertor sets and convertor devices and installations equipped with convertor sets (if designed for conversion or regulation of electric energy using convertor valves). The standard contains general specifications for semiconductor convertors and particular specifications for line-commutated convertors (rectifier, inverted rectifier, A.C. converter). 85

99 Short description of standard: The standard contains very detailed definitions of terms concerning semiconductor converters, i.e. general terms and names, rectifier diode and thyristors terms, terms for sets of convertors, terms for convertor transformers, inductor terms, capacitor terms, terms for electric parameters of convertor devices and installations and terms for types, construction and operation of convertor devices and installations. Separated into three sections the standard defines very detailed requirements and tests for semiconductor valve components (clause 3), sets of convertors and valve modules (clause 4) and convertor devices and installations (clause 5). Requirements and tests: General requirements: Thresholds, characteristic values, leakage distances, air gaps Test procedures: Type tests, routine tests Operating conditions: Duty, normal measurement, exceptional operating conditions, degree of efficiency Electric equipment: Sets of convertors, valve control installations, control and regulation installations, convertor transformers, inductors and auxiliary transformers, capacitors Protection: Shock currents, active parts, IP-protection degrees, installments Labeling and data sheets Data sheets of rectifier diodes and thyristors have to contain the following thresholds: Limiting average on state current, surge current threshold, maximum permissible repetitive peak off-state value, maximum permissible surge peak voltage, maximum permissible control dissipation loss (thyristors only), critical rate of current rise (thyristors only), critical rate of voltage rise (thyristors only), maximum permissible temperature of the substitute depletion layer, range of storage temperature. 86

100 Data sheets of rectifier diodes and thyristors have to contain the following characteristic values: Forward characteristic, holding current (thyristors only), minimum control current (thyristors only), minimum control voltage (thyristors only), input characteristic and flammable range (thyristors only), (inner) thermal resistance and transient thermal resistance. Rectifier diodes and thyristors have to be labeled with the trade of the manufacturer or the supplier, type identification allowing a clear relation to the respective data sheet, identification of the polarity by a symbol ( DIN ) on the enclosure. Table 2 contains information about which type tests and routine tests have to be performed for diodes and/or thyristors. Sets of convertors, valve modules and convertor devices and installations: Ambient air temperatures have to be between 0 C and + 40 C (+ 45 C for installation sets of convertors). Rated values of this standard refer to altitudes of sites above sea level not exceeding 1000 m. The kind of the cooling system has to be indicated. The cooling temperature has to be between 0 C and + 35 C (between + 5 C and + 25 C for liquid cooling). Sets of converters have to stand connection voltage deviations of ± 10% and grid frequency deviations of ± 2% of their nominal/rated values permanently without damage. Surge voltages and voltage drops have to be permissible according to DIN VDE All rated and nominal values (voltage, current, etc.) have to be indicated. The labeling highly depends on the kind of set/device/installation (see clauses and 5.5). Test procedures described for sets of converters and valve modules: 87

101 Test with rated values and nominal values, insulation test, performance test, leakage determination, short-circuit measurement for multi-phase two-path circuits, shortcircuit measurement for multi-phase single-path circuits, short-circuit measurement for path-changing circuits and determination of no-load losses. Test procedures described for convertor devices and installations: Performance test, heating test, test of convertor transformers, test of inductors, determination of the degree of efficiency, determination of the basic oscillation efficiency factor, collecting of characteristic values and respective curves of rectifying devices, insulation tests of convertor devices, insulation test of convertor installations, determination of superposed A.C. parameters on the D.C. side, determination of the degree of radio interference, IP degree of protection and protection class Standards for insulation coordination DIN EN 60071, DIN EN and DIN EN supplement 3 are the definitions, principles, requirements and tests about insulation coordination: 33. DIN EN (2006): Insulation coordination - Part 1 - Definitions, principles and rules Scope of this Standard: This standard applies to three-phase alternating current networks with a highest voltage for equipment of 1 kv. It describes the procedure of choosing the insulation level for phase-to-earth, phaseto-phase and lengthwise insulation of equipments and installations in the network. Requirements for the safety of persons are not part of this standard. 88

102 Short description: Relevant terms and definitions are given in this standard. The procedure of insulation coordination is described in detail as the choice of a combination of rated voltages which characterizes the insulation of the equipment. The combination of chosen rated voltages forms the insulation level. The first step is to determine the amplitude, form and duration of the operation voltage and overvoltage. Different standardized voltage forms are given. The coordinated withstand voltages is determined by identifying the lowest withstand voltage at which the insulation still fulfills the defined requirements under operational conditions. The required withstand voltages are determined by multiplication of the coordinated voltages with the atmospheric correction factor and the security factor to convert them to fit standardized test conditions. The choice of rated insulation level is a choice for the most cost-effective combination of rated insulation voltages to ensure all withstand voltage requirements. Regular environmental conditions are described. The allocation of rated switching impulses with highest voltages for equipment and the allocation of rated lightning impulses with rated switching impulses are described. Standardized insulation levels for lengthwise, phase-to-earth and phase-to-phase insulation are listed in two ranges of highest voltages for equipment. The first range is 1 kv kv, the second is > 245 kv. Requirements for different standardized withstand voltage tests are given in detail. 89

103 34. DIN EN : Insulation coordination for equipment within lowvoltage systems - Part 1 - Principles, requirements and tests Scope of this standard: This standard applies to equipment within low-voltage systems with rated voltages not exceeding 1500 V (d.c.) and 1000 V (a.c.) with rated frequencies of up to 30 khz used in heights of up to 2000 m above sea level. The standard defines requirements for air gaps, creepage distances and fixed insulations of equipment including respective test methods based on performance characteristics. This standard does NOT apply to distances in liquid insulating materials, other gases than air and compressed air. Short Description of Standard: The standard defines several terms concerning insulation coordination, e.g. creepage distance, rated surge voltage, double insulation, etc. Insulation coordination covers the selection of electric insulation characteristics of the equipment in relation to its environment and with respect to its appliance. Respect has to be given to permanent a.c. and d.c. voltages, transient surge, periodic peak voltages, temporary surge and ambient conditions for voltages within the system, voltages generated by the system, the degree of availability of the demanded function and the safety of persons and equipment. Technical committees have to determine the basis for rated voltages as well as a surge category with respect to the expected use of the equipment and the characteristics of the system. 90

104 The rated voltage of the equipment must not be smaller that the nominal voltage of the power supply system. Transient surges are the basis for the determination of the rated surge voltage. Creepage distances for insulations for long-term voltage stress can be taken from table F.4. Insulation fouling might be reduced by effective appliance of enclosures, encapsulations or hermetic sealing. Small air gaps can be bridged completely by fixed parts, dust or water. Minimum air gaps are defined whenever fouling can occur in the micro-environment. Four degrees of fouling of the micro-environment are defined in the standard: Fouling degree 1: No fouling or dry, non-conductive fouling occurs. Fouling degree 2: Only non-conductive fouling occurs. Occasional conductivity due to bedewing. Fouling degree 3: Conductive fouling or dry, non-conductive fouling that becomes conductive due to expected bedewing occurs Fouling degree 4: Permanent conductivity occurs caused by conductive dust, rain or moisture Technical committees have to determine the indications provided in the documentation of the equipment. Four groups of insulating materials are defined by the standard based on their CTIvalues (test to determine CTI-values as defined in IEC 60112): Insulating material group I: 600 CTI Insulating material group II: 400 CTI < 600 Insulating material group IIIa: 175 CTI <

105 Insulating material group IIIb: 100 CTI < 175 Air gaps have to be determined by withstand surge voltages for function insulations and basic, additional and strengthened insulations, permanent withstand voltages and temporary withstand surges, periodic withstand peak voltages, condition of the electric field, height and degree of fouling of the micro-environment. Respective values can be taken from table F.2 and F.7. Furthermore mechanical influences and impacts of forces might require bigger air gaps. Creepage distances have to be determined by voltages, micro-environment, arrangement and position of the creepage distance, design of the insulating material surface, the insulating material and the duration of voltage stress. Respective values can be taken from table F.4. Solid insulation as part of the basic insulation, additional insulation and strengthened insulation has to be able to withstand electrical and mechanical stresses as well as thermal and ambient influences that can occur during the expected durability of the device (values: See chapter 5.3.3). Stress of solid insulations is divided up into short-term and long-term stress. Short-term stresses are: Consequences of frequency variations (electric strength, dielectric warmth and thermal instability), heating and mechanical shock. Long-term stresses are: Partial discharges, heating, mechanical stress, humidity and other stresses like radiation, influence of chemical substances, etc. Test and measurement procedures are defined for: Tests to validate air gaps: General information, testing voltages Tests to validate solid insulations: Selection of tests, pre-treatment, surge voltage test, supply-frequency a.c. voltage test, partial discharge test, d.c. voltage test, high-frequency voltage test 92

106 Insulation test of the entire equipment: General information, parts to be tested, preparation of the equipment circuits, testing voltage values, testing criteria Other tests: Test for other purposes than insulation coordination, sample tests and routine tests Measurement of air gaps and creepage distances 35. DIN EN supplement-3: Insulation coordination for equipment within low-voltage systems - Part 1 - Supplement 3 Interface considerations Scope of this standard: This supplement applies to low-voltage installations and low-voltage equipment providing a review of the different types of transient surges. Short Description of Standard: Terms defined in the supplement: surge category, limited surge condition, system limitation, protective limitation and rated surge voltage. The supplement is divided up into five chapters: Consideration of surge categories Thoughts concerning the use of protective limitations (general information; summary of lightening voltages) Determinations concerning transient surges and failure frequency (general information; use of damage indications during operation; avoiding enduring damages) Principles of the coordination between surge protection installations and equipment that has to be protected (closely linked to IEC ) 93

107 Equipment for grids, installations and operation under system limitation/protective limitation conditions (special protection of parts of grids or installations, special protection inside of equipment) Within these five chapters the supplement contains information and field reports about the size and duration of typical transient surges as well as their occurrence frequency, information about surges caused by the influence between heavy current circuits and communication circuits, guidelines for surge protection devices and the treatment of interfaces with respect to insulation coordination, as well as clarification concerning the influence of temporary surges and other parameters Standards for switch gear and control gear Standards VDE , DIN EN and DIN EN are about how to select and build the switch gear and control gear and also define the requirements for operation and performance. DIN V VDE V is about automatic disconnection device between a generator and the public low-voltage grid. The abstracts are as follows: 36. DIN VDE : Erection of low voltage installations - Part selection and erection of electrical equipment - switch gear and control gear Scope of this standard: This standard applies to the selection of assets to interrupt, switch, control and supervise electric systems. It further applies to the erection of these as systems in order to ensure the fulfillment of security measures and all measures required for the system to function properly. 94

108 Short Description of Standard: General requirements: Contacts of multipolar devices have to be connected mechanically in order to ensure simultaneous opening and closing Switches for neutral conductors may close earlier and open later than the others A switch only for neutral conductors is not allowed Safety and supervision devices may not be switch in under normal operating conditions Over current protection: Automatic reconnection is only allowed for systems that are only operated by specifically trained personnel Different kinds of protective devices are allowed in TN and TT systems than in IT systems Residual current devices (RCD) Different types and their characteristics are defined Rules for selections of different types of RCDs are defined Different kinds of RCDs are allowed in TN and TT systems than in IT systems Additional functionality depending on the voltage: In discussion Fire-protection: Residual or differential current devices may be used to prevent fires. A maximum current before triggering the device is defined 95

109 Types of protective devices are defined and applicable standards are referred to (not all those are part of this study!) A very important chapter focuses on the coordination of different protective devices and gives hints for application. 37. DIN EN : Low-voltage switchgear and control gear - Part 3 - Switches, disconnectors, switch-disconnectors and fuse-combination units Scope of this standard: This standard applies to switches, disconnectors, switch-disconnectors and fusecombination units for distribution and motor circuits with rated voltages not exceeding 1000 V A.C. or 1500 V D.C. It defines characteristic attributes, requirements for operation and performance, insulation characteristics, test requirements and labeling. This standard does not apply to devices belonging to the application range of IEC , IEC or IEC This standard does not contain the additional requirements for electric devices in explosive gas mixtures. Short Description of Standard: The standard defines various terms concerning switch and control gear, e.g. fusedisconnector, switch-fuse, fuse-combination unit, etc. Switches, disconnectors, switch-disconnectors and fuse-combination units are categorized by their utilization category, kind of manual operation, disconnecting function and type of protection. Characteristic attributes that have to be indicated: 96

110 Type of equipment: Number of poles, kind of current, number of positions of the main contacts (if more than two) Rated and limiting values for the main circuit: Rated voltages, currents, rated frequency, rated duty, normal load and overload characteristics, short-circuit characteristics Utilization category: categories A and B (see tables 2, 3 and 4) Control circuits: See IEC Auxiliary circuits: See IEC Relays and releases: See IEC The manufacturer has to indicate these attributes according to the respective standard of the used fuse. Labels for product information that have to be attached: On the device, visible from front view: display of the on- and out position, disconnecting function, specific labels (depending on the utilization category) On the device, not necessarily visible from front view: Name of the manufacturer or trademark, type identifier or catalogue number, rated operating currents with rated operating voltages and utilization category, rated frequency or D.C. (or symbol), fuse-combination units: type, maximum rated current and dissipation loss, IEC (if claimed), type of protection of devices in the enclosure Terminals: grid-sided and load-sided terminals, neutral conductor terminals with N, protective earth conductor Furthermore the manufacturer has to indicate the rated insulation voltage, rated surge withstand voltage for devices with disconnecting function, degree of pollution (if different from 3), rated duty, rated short-time withstand current and duration, rated short-circuit making capacity and conditional rated short-circuit current. 97

111 In terms of requirements for the design and the performance of switchgear and controlgear the standard strongly refers to IEC and gives additive information about materials, specific characteristics of devices (e.g. equipment with electric interlock), operating requirements and electromagnetic compatibility. Test and testing procedures mentioned in the standard: Type tests of the design requirements: Mechanical characteristics of terminals, verification of the effectiveness of the display of switching positions of the main terminals with disconnecting function Performance: Test sequences I, II, III, IV and V (general performance, operating performance, short-circuit performance, conditional short-circuit current, overload performance) Tests concerning electromagnetic compatibility: Interference resistance, emitted interference Special tests: Mechanical durability, electric durability Remark: The standard contains various tables providing thresholds, testing procedures, requirements, etc. 38. DIN EN : Low-voltage switchgear and control gear - Part Contactors and motor-starters - Electromechanical contactors and motor-starters Scope of this standard: This standard applies to A.C. and D.C contactors and A.C. motor-starters with main contacts intended to be connected to circuits with rated voltages not exceeding 1000 V A.C. or 1500 V D.C. A.C. and D.C. contactors dealt with: contactors, combinations with suitable relays, actuators of contactor relays and contactors or starters with an electronically controlled electromagnet. 98

112 A.C. motor starters dealt with: Direct-on-line (full voltage) A.C. starters, reduced voltage A.C. starters, Star-delta starters, two-step auto-transformer starters and rheostatic rotor starters. Starters and contactors dealt with in this standard are not normally designed to interrupt short-circuit currents. This standard does NOT apply to star-delta starters, rheostatic rotor starters or twostep auto-transformer starters intended for special applications and designed for continuous operation in the starting position. It also does NOT apply to D.C. starters, unbalanced rheostatic rotor starters, equipment designed also for adjustment of speed next to starting, liquid starters and those of the liquid-vapor type, semiconductor contactors and starters making use of semiconductor contactors in the main circuit, rheostatic stator starters, contactors or starters designed for special applications, auxiliary contacts of contactors and contacts of connector relays. Short Description of Standard: The standard defines several terms concerning contactors, starters and characteristic quantities. A.C. and D.C. contactors are intended to close and open electric circuits and, if combined with suitable relays, to protect these circuits against operating overloads which may occur therein. A.C. motor starters are intended to start and accelerate motors to normal speed, to ensure continuous operation of motors, to switch off the supply from the motor and to provide means for the protection of motors and associated circuits against operating overloads. Contactors and starters described within this standard are classified by their characteristics: 99

113 Type of equipment: Kind, number of poles, current type, operating conditions, etc. Rated and limiting values for main circuits: Voltages, currents or powers, frequencies, duties, normal load and overload, rated conditional short-circuit currents Utilization category Control circuits: Type of current, power consumption, rated frequency (or D.C.), control circuit voltage and control supply voltage, nature of external control circuit devices Auxiliary circuits Relays and releases: Types, characteristic values, designation and current setting of overload relays, time-current characteristics of overload relays, influence of ambient air temperature Co-ordination with short-circuit protective devices: Type, ratings and characteristics of the short-circuit protective devices (SCPD) Types and characteristics of automatic change-over devices and automatic acceleration control devices Types and characteristics of auto-transformers for two-step auto-transformer starters Types and characteristics of starting resistors for rheostatic rotor starters The manufacturer has to provide information about the product concerning identification (manufacturer s name or trade mark, type designation or serial number, number of this standard, if compliance is claimed), as well as characteristics, basic rated values and utilization (including instructions for installation, operation and maintenance). Unless otherwise stated by the manufacturer, a contactor or a starter is for use in pollution degree 3 environmental conditions. 100

114 The standard defines very detailed performance requirements, divided up into operating conditions, temperature rise, dielectric properties, normal load and overload, co-ordination with short-circuit protective devices and vacant. Limits, values and general conditions are provided for each of the different contactor and starter types. Test procedures are described as well. This equipment is inherently sensitive to voltage dips and short time interruptions on the control supply. The devices covered by this standard do not generate significant levels of harmonics (no harmonic tests are required). Tests described within this standard: Type tests: Temperature rise limits, dielectric properties, rated making and breaking capacities, change-over ability and reversibility (where applicable), conventional operational performance, operation and operating limits, ability of contactors to withstand overload current, performance under short-circuit conditions, mechanical properties of terminals, degrees of protection of enclosed contactors and starters, EMC tests (where applicable) Routine tests: operation and operating limits, dielectric tests Sampling test: operation and operating limits, dielectric tests (sampling based on AQL 1, acceptance number Ac = 0, rejection number Re = 1) Special test: damp heat, salt mist, vibration, shock 39. DIN V VDE V : Automatic disconnection device between a generator and the public low-voltage grid Scope of this standard: This standard applies to automatic disconnection devices installed as a safety interface between the generator and the public low-voltage grid. 101

115 The automatic disconnection devices serve as replacements for switching devices with separating function accessible to the grid operating company at all times. Remark: DIN V VDE V 0126 is a prestandard that has not been released yet by DIN. Short Description of Standard: Terms defined within the standard: switching device, separate switching device, integrated switching device, unintended isolated operation, grounding leakage current, grounding residual current, residual current, measuring residual current, single disconnection and residual current monitoring unit (RCMU). The automatic disconnection device avoids unintended feed of the generator in a sub-network separated from the supply grid (isolated operation). It protects the operating personnel against voltage of the separated sub-network, the equipment and the customer against improper voltages and frequencies, the equipment against feed of generator faults and the generator against improper voltages and frequencies in case of low-voltage grid faults. The switching device has to cut off the generator A.C.-sided from the grid via two parallel switches in case of: voltage and/or frequency chances of the low-voltage grid D.C. current feed into the low-voltage grid unintended isolation operation intended isolation operation with grid replacement infrastructure Switching devices have to be designed, built, selected, arranged and combined in a way that they can withstand the expected operational demands and external impacts using the basic safety principles. A single fault in a switching device must not cause a decrease of safety functions. Each of the switches connected in series have to have a switching capacity according to the nominal current of the generator. At least one of the switches has to be ex- 102

116 ecuted as a relay or air gap switch and has to be qualified for over-voltage category 2. Voltages, frequencies and the D.C. currents have to be monitored. Exceeding the threshold has to cause a cut-off within 0.2 s. Described type tests for integrated and separated switches: Functional safety: single fault safety and fault detection tests Voltage monitoring, frequency monitoring, D.C. current monitoring Detection of isolated operation: impedance measuring, oscillating circuit test, three phase voltage monitoring Residual current monitoring: tests with 0.85 U N, U N and 1.10 U N Test setups, circuits, proceedings, etc. are described in detail within the standard in clause 6. Routine tests concerning safety relevant parameters have to be performed by the manufacturers before delivery Standards for cables ISO specifies the test methods and requirements for cables and DIN EN defines the conductors of insulated cables. 40. ISO 14572(2001): Road vehicles - Round, unscreened 60 V and 600 V multicore sheathed cables - Test methods and requirements for basic and high performance cables Scope of this Standard: This standard specifies test methods and requirements for basic and high performance round, unscreened 60 V and 600 V multicore sheathed cables intended for use in road vehicle applications. For unscreened single-core cables used in multicore cables see ISO

117 For temperature classes, see ISO Short description: The voltage rating is established by the rating of the cores. 60 V and 600 V cores shall not be mixed in the same multicore cable. For 600 V cable test conditions and requirements, see ISO The standard gives additional information to ISO 6722 on tests and requirements for different characteristics, such as: Electrical characteristics: Continuity, withstand voltage. Mechanical characteristics: Durability at pressure at high temperature, adhesion of sheath, cyclic bending. Low temperature characteristics: Winding, Impact. Heat aging characteristics: Short-term aging 240 h, long-term aging 3000 h, thermal overload, shrinkage by heat sheath. Chemical resistance: Fluid compatibility of the sheath, durability of sheath marking, resistance to ozone. Resistance to adhesion Resistance to flame propagation Artificial weathering 41. DIN EN 60228: Conductors of insulated cables Scope of this standard: This standard applies to conductors of cables and insulated cables for heavy current installations defining their nominal diameters (0.5 mm² to 2500 mm²). 104

118 Conductors treated in this standard are single-wire or multi-wire conductors made of copper, aluminum and aluminum alloys for static laying and flexible copper conductors. The standard applies to conductors in a complete cable, but not to conductors produced to be used in cables. This standard does NOT apply to conductors of communication cables and wires. Short Description of Standard: The standard defines the terms metal-coated and nominal diameter. Conductors are categorized into four classes: Class 1: single-wire conductors Class 2: multi-wire conductors Class 5: fine-wired conductors Class 6: extra fine-wired conductors Conductors of classes 1 and 2 are designed for cables and wires with static laying. Conductors of classes 5 and 6 are intended for flexible wires (might also be used for static laying). All conductors have to be made of blank or metal-coated soft annealed copper, aluminum or aluminum alloys. Nominal diameters and the respective tensile strength for single- or multi-wire conductors can be found in the tables of clauses 4.2 and 4.3. The minimum nominal diameter for all conductors is 10 mm² (exception: sector conductors). Single-wire conductors (class 1) have to be round. 105

119 Each single wire of a non-compressed multi-wire circular conductor (class 2) has to have the same nominal diameter. Multi-wire sector conductors (class 2) made of copper, aluminum or aluminum alloys have to have a nominal diameter of at least 25 mm². The ratio between the diameters of two wires of the same conductor must not exceed 2. Fine-wired and extra fine-wired conductors (classes 5 and 6) have to be made of blank or metal-coated soft annealed copper. All single wires have to have the same nominal diameter. Remark: The tables 1 to 4 provided in clause 7 contain all thresholds concerning nominal diameters, maximum value of the conductor resistance (at 20 C) and minimum number of wires for all conductor types Standards for fuses and connections-double-pole DIN EN applies to fuses and ISO 4165 specifies the dimensions and electrical characteristics of the double-pole connection. 42. DIN EN : Low-voltage fuses - Part 1 - General requirements Scope of this standard: This standard applies to fuses with closed, current-limited fuse inserts with a rated breaking capacity of at least 6 ka designed for the protection of operational-frequent A.C. circuits witch nominal voltages up to 1000 V or D.C. circuits with nominal voltages up to 1500 V. The standard defines the parameters for fuses or parts of fuses (fuse bottom section, fuse holder, fuse insert) in a way that they might be replaced by fuses or fuse bottom sections witch the same parameters. 106

120 Type tests to verify the fuse parameters and labeling of the fuses is part of this standard as well. Short Description of Standard: The standard defines several terms concerning fuse parameters and testing these parameters, e.g. opening time; short-circuit strength, transient voltage (TRV), etc. The ambient air temperature T a has to be within - 5 C to 40 C. The average ambient air temperature (24 h) must not exceed 35 C. The relative air humidity has to be 50% - 90%. The fuse must not be used in a place higher than 2000 m above sea level. The peak value of the supply voltage must not exceed 110% of the rated voltage of the fuse (105% for fuses determined for 690 V). If D.C. currents are generated by rectification of A.C. currents, the ripple has to be within + 5% and - 9% of the average in the amount of 110% of the rated voltage. For A.C. currents the frequency has to be the rated frequency of the fuse insert. Power factors and time constants can be taken from tables 20 and 21 for the respective currents and duty. Fuses are classified by their parameters: Fuse holders: Rated voltage, rated current, kind of current and rated frequency, rated value of the absorbable power, dimensions or installation size, number of poles, short-circuit strength Fuse inserts: Rated voltage, rated current, kind of current and rated frequency, rated power drain, time/current characteristic curve, breaking range, rated breaking capacity, on state current characteristic curve, I²t characteristic curve, dimensions or installation size Type of protection: See IEC

121 All parameters can be taken from tables 1 to 4 and clause 5 of the standard. Fuse holders have to be labeled with the name of the manufacturer or a trademark, type number of the manufacturer, rated voltage and rated current, kind of current and rated frequency. Fuse inserts have to be labeled with the name of the manufacturer or a trademark, type number of the manufacturer, rated voltage and rated current, breaking range and utilization category, kind of current and rated frequency. Kind of current and frequency can be labeled with graphic symbols of IEC The standard provides detailed requirements for the design of fuses and respective tests in clauses 7 and 8. All tests mentioned in this standard are type tests that have to be performed by the manufacturer. Test procedures: Verification of the insulation characteristics and breaking applicability: Arrangement of the fuse holder, verification of the insulation characteristics, verification of the breaking applicability, evaluation Heating and power drain: Arrangement of the fuse, heating measurement, measurement of power drain of the fuse insert, testing procedures, evaluation Functionality: Arrangement of the fuse, ambient temperature, test procedures and evaluation Breaking capacity: Arrangement of the fuse, parameters of the test circuits, test equipment, test procedures, ambient temperature, evaluation of oscillograms, evaluation On state current characteristic curve: Test procedures, evaluation I²t characteristic curve: Test procedures, evaluation, verification of the correlation of fuse inserts at 0.01 s, selectivity test 108

122 Type of protection of enclosures Heat resistance Aging resistance of terminals: Arrangement of the fuse, test procedures, evaluation Mechanical tests: Mechanical strength, resistance against stress cracking corrosion, heat resistance under high temperatures and fire, resistance against rust Electromagnetic compatibility Various tables containing thresholds, types, minimum vales etc. are provided, as well as very detailed information to each of the sections. 43. ISO 4165(2001): Road vehicles-electrical connections-double-pole connection Scope of this Standard: This standard specifies the dimensions and electrical characteristics of the doublepole connection required for the interchange ability of electrical connections used to supply additional appliances in road vehicles with a nominal supply voltage of 12 V or 24 V d.c. Short description: For terms and definitions, see ISO The dimensions of the plug and socket are given in a figure. Requirements and test conditions for connection and disconnection, temperature rise, connection resistance, withstand voltage; temperature/humidity cycling and durability are given. 109

123 Transporting and storage of lithium-ion batteries There are international standard IEC (valid from May 2005), European standard EN (valid from June 2004) and German standard DIN EN (VDE ) (valid from February 2005) in the area of transportation and storage of lithium-ion batteries. The abstract of standard IEC is as follows: 44. IEC 62281(2004): Safety of primary and secondary lithium cells and batteries during transport Scope of this standard: This International Standard specifies test methods and requirements for primary and secondary (rechargeable) lithium cells and batteries to ensure their safety during transport other than for recycling or disposal. Requirements specified in this standard do not apply in those cases where special provisions given in the relevant regulations, listed in 7.3, provide exemptions. Normative references: The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC , Primary batteries - Part 4: Safety of lithium batteries IEC 61960, Secondary cells and batteries containing alkaline or other non-acid electrolyte Secondary lithium cells and batteries for portable applications IEC Guide 104:1997: The preparation of safety publications and the use of basic safety publications and group safety publications 110

124 In Europe, there is the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR), which gives the regulations and exemptions regarding the transport of lithium batteries and lithium batteries contained in or packed with equipment. For example, ADR gives UN numbers to Lithium batteries, which UN numbers (also called UN IDs) are four-digit numbers that identify hazardous substances, and articles in the framework of international transport. UN 3090 for lithium metal batteries including lithium alloy batteries and referring to this number there are other information such as classification code, packing group, packing instructions, etc. UN 3091 for lithium metal batteries contained in equipment and lithium metal batteries packed with equipment including lithium alloy batteries UN 3480 for lithium ion batteries including lithium ion polymer batteries UN 3481 for lithium ion batteries contained in equipment and lithium ion batteries packed with equipment including lithium ion polymer batteries Another code is IMDG Code (International Maritime Dangerous Goods Code), which is an international guideline to the safe transportation or shipment of dangerous goods or hazardous materials by water on vessel. ICAO-TI (ICAO Technical Instructions) and IATA-DGR (IATA Dangerous Goods Regulations) aim to assure the safe, orderly and economic development of air transport, which ICAO is International Civil Aviation Organization and IATA is International Air Transport Association. Battery abuse and safety Battery standards include dimensions of cells and terminals and marking of polarity on cells at first and then is opportunity charging of the batteries and battery performance. General requirements and methods of test for batteries should include dynamic discharge performance test, endurance test, performance and life testing. What s also important is to protect personnel against electric shocks and protect electrical components which include fire protection, explosion protection and crash safety, etc. 111

125 Testing standards for electric vehicle batteries Testing standards for electric vehicle batteries include the standards general electric vehicle batteries, such as performance and life testing, and also the standards specific for lithium-ion batteries used in electric vehicles Testing standards for general electric vehicle batteries Testing standards for general electric vehicle batteries include testing for battery performance, vibration testing and life cycle testing (international standards: IEC Ed.1.0, USA standards: SAE J1798, SAE J2288 and SAE J2380). The abstracts of these standards are as follows: 45. IEC Ed. 1.0(2001): Secondary batteries for the propulsion of electric road vehicles - Part 3 - Performance and life testing (traffic compatible, urban use vehicles) Scope of this standard This standard is applicable to performance and life testing of electrical energy storage systems for general purpose, traffic compatible, and light urban use electric road vehicles that are designed for transportation of passengers or goods in city centre driving. For the purposes of this standard, the electrical energy storage system is defined as one that is recharged electrically though some of the test procedures may be applicable to fuel cells and other mechanically rechargeable systems. The test procedures may also be applicable to electrical energy storage systems used in some types of hybrid-electric vehicle though detailed consideration of electrical energy storage systems for hybrid vehicles will be addressed separately. This part of IEC is not applicable to systems for specialist vehicles such as public transport vehicles, refuse collection vehicles, scooters or large commercial 112

126 vehicles. Standards relating to the test procedures for energy storage systems for these vehicles will be developed later as a supplement to this standard. The test procedures are defined as a function of the vehicle requirements and without reference to the actual composition of the electrical energy storage system under test. They will allow direct comparison between the performance of different types of electrical energy storage systems when used for the same duty. They will also allow direct comparison between the performances of the same type of electrical energy storage system with different capacities, when used for the same duty. Note that there are three fundamental tests i.e., tests for capacity (range), power (performance), and life. All other tests are optional. The results from the test program are presented in the form of performance achieved and not in the form of pass/fail. A second edition is under preparation. 46. SAE J1798(1997): Recommended Practice for Performance Rating of Electrical Vehicle Battery Modules Scope of this standard: This SAE Recommended Practice provides for common test and verification methods to determine Electric Vehicle battery module performance. The document creates the necessary performance standards to determine (a) what the basic performance of EV battery modules is; (b) whether battery modules meet minimum performance specification established by vehicle manufacturers or other purchasers. Specific values for these minimum performance specifications are not a part of this document. Form: An Electric Vehicle propulsion battery will consist of a battery configuration of several (typically 12 V) modules interconnected in one or more series strings. This document 113

127 provides test methods to determine performance of such modules, including but not limited to modules built in accordance with SAE J1797. Use of this document is intended for independently packaged modules operating at ambient temperature. Testing of a fully configured propulsion battery system, or battery subsystems designed to operate at elevated temperatures, is expected to require additional testing methods beyond those included in this document. SAE J1798 does not address temperature testing. 47. SAE J2288(1997): Life Cycle Testing of Electric Vehicle Battery Modules Scope of this standard This SAE Recommended Practice defines a standardized test method to determine the expected service life, in cycles, of electric vehicle battery modules. It is based on a set of nominal or baseline operating conditions in order to characterize the expected degradation in electrical performance as a function of life and to identify relevant failure mechanisms where possible. Accelerated aging is not included in the scope of this procedure, although the time compression resulting from continuous testing may unintentionally accelerate battery degradation unless test conditions are carefully controlled. The process used to define a test matrix of accelerated aging conditions based on failure mechanisms, and to establish statistical confidence levels for the results, is considered beyond the scope of this document. Because the intent is to use standard testing conditions whenever possible, results from the evaluation of different technologies should be comparable. End-of-life is determined based on module capacity and power ratings. This may result in a measured cycle life different than that which would be determined based on actual capacity; however, this approach permits a battery manufacturer to make necessary tradeoffs between power and energy in establishing ratings for a battery module. This approach is considered appropriate for a mature design or production battery. 114

128 Form: An Electric Vehicle propulsion battery will consist of a battery configuration of several (typically 12 V) modules interconnected in one or more series strings. This document provides test methods to determine the life expectancy of such modules, including but not limited to modules built in accordance with SAE J1797. Use of this document is intended for single independently packaged modules operating at ambient conditions (i.e., standard room temperature). Testing of a fully configured propulsion battery system, especially when designed to operate at elevated or reduced temperatures, usually results in reduced expected service life and requires testing methods beyond the scope of those included in this document. It should be noted that the procedure defined in this document is functionally identical to the USABC Baseline Life Cycle Test Procedure. SAE 2288 does not address temperature variation and testing. 48. SAE J 2380(2009): Vibration Testing of Electric Vehicle Batteries Scope of this standard This SAE Recommended Practice describes the vibration durability testing of a single battery (test unit) consisting of either an electric vehicle battery module or an electric vehicle battery pack. For statistical purposes, multiple samples would normally be subjected to such testing. Additionally, some test units may be subjected to life cycle testing (either after or during vibration testing) to determine the effects of vibration on battery life. Such life testing is not described in this procedure; SAE J 2288 may be used for this purpose as applicable Testing standards for Lithium-ion batteries used in electric vehicles In this section, the standards specific for lithium-ion batteries are introduced. IEC Ed.1.0 and IEC Ed.1.0 are about performance testing, reliability 115

129 and abuse testing for lithium-ion batteries. Standard UL 1642 covers the requirements for primary (non-rechargeable) and secondary (rechargeable) lithium batteries to reduce the risk of fire or explosion, injury to persons due to fire or explosion, etc. UN manual of tests and criteria paragraph part 3, section 38 and paragraph 38.3 is also about Classification Procedures, Test Methods and Criteria for lithium-ion batteries. The abstracts are as follows: 49. IEC Ed. 1.0(2008): Secondary batteries for the propulsion of electric road vehicles - Part 1 - Performance testing for lithium-ion cells- 21/708/CDV Scope of this standard This part of IEC specifies performance and life testing of secondary lithium-ion cells used for propulsion of electric vehicles including battery electric vehicles (BEV) and hybrid electric vehicles (HEV). Performance: capacity, energy and power density, calendar and cycle life time, energetic efficiency. Responsible National Committee DKE/K 371 Akkumulator 50. IEC Ed. 1.0(2008): Secondary batteries for the propulsion of electric road vehicles - Part 2 - Reliability and abuse testing for lithiumion cells21/709/cdv Scope of this standard This part of IEC specifies test procedures to observe the reliability and abuse behavior of secondary lithium-ion cells used for propulsion of electric vehicles including battery electric vehicles (BEV) and hybrid electric vehicles (HEV). The objectives of this standard are to specify the standard test procedures and conditions for basic characterizations of Li-ion dells for use in propulsion of battery and 116

130 HEVs. The tests are indispensable for obtaining essential data on reliability and abuse behavior of Li-ion cells for use in various designs of battery systems and battery packs. This standard provides standard classification of description of test results to be used for the design of battery systems or battery packs. Responsible National Committee DKE/K 371 Akkumulator 51. UL 1642(2005): Lithium Batteries Scope of this standard These requirements cover primary (non-rechargeable) and secondary (rechargeable) lithium batteries for use as power sources in products. These batteries contain metallic lithium, or a lithium alloy, or a lithium ion, and may consist of a single electrochemical cell or two or more cells connected in series, parallel, or both, that convert chemical energy into electrical energy by an irreversible or reversible chemical reaction. 1.1 These requirements cover lithium batteries intended for use in technicianreplaceable or user-replaceable applications. 1.2 These requirements are intended to reduce the risk of fire or explosion when lithium batteries are used in a product. The final acceptability of these batteries is dependent on their use in a complete product that complies with the requirements applicable to such product. 1.3 These requirements are also intended to reduce the risk of injury to persons due to fire or explosion when user-replaceable lithium batteries are removed from a product and discarded. 1.4 These requirements cover technician-replaceable lithium batteries that contain 5.0 g (0.18 ounce) or less of metallic lithium. A battery containing more than 5.0 g of lithium is judged on the basis of compliance with the require- 117

131 ments in this standard, insofar as they are applicable and further examination and test to determine whether the battery is acceptable for its intended uses. 1.5 These requirements cover user-replaceable lithium batteries that contain 4.0 g (0.13 ounce) or less of metallic lithium with not more than 1.0 g (0.04 ounce) of metallic lithium in each electrochemical cell. A battery containing more than 4.0 g or a cell containing more than 1.0 g lithium may require further examination and test to determine whether the cells or batteries are acceptable for their intended uses. 1.6 These requirements do not cover the toxicity risk that may result from the ingestion of a lithium battery or its contents, or the risk of injury to persons that may occur if a battery is cut open to provide access to the metallic lithium. 52. UN Manual of Tests and Criteria Paragraph Lithium metal and lithium ion batteries(2009) - UN Manual of Tests and Criteria Part III - Classification Procedures, Test Methods and Criteria and Relating to Class 3, Class 4, Division 5.1 and Class 9; Section 38 - Classification Procedures, Test Methods and Criteria and Relating to Class 9; Paragraph Lithium metal and lithium ion batteries Purpose: This section presents the procedures to be followed for the classification of lithium metal and lithium-ion cells and batteries (see UN Nos. 3090, 3091, 3480 and 3481, and the applicable special provisions of Chapter 3.3 of the Model Regulations). Scope of this standard: Lithium metal and lithium ion cells and batteries shall be subjected to the tests, as required by special provisions 188 and 230 of Chapter 3.3 of the Model Regulations prior to the transport of a particular cell or battery type. Cells or batteries which differ from a tested type by: 118

132 (a) for primary cells and batteries, a change of more than 0.1 g or 20% by mass, whichever is greater, to the cathode, to the anode, or to the electrolyte; or (b) for rechargeable cells and batteries, a change in Wh of more than 20% or an increase of voltage of more than 20%; or (c) a change that would materially affect the test results, shall be considered a new type and shall be subjected to the required tests. In the event that a cell or battery type does not meet one or more of the test requirements, steps shall be taken to correct the deficiency or deficiencies that caused the failure before such cell or battery type is retested. The following safety test are to carry out: Altitude Simulation, Thermal Test, Vibration, Shock, External Short Circuit, Impact, Overcharge passed, and Forced-Discharge Safety standards for electric vehicle batteries ISO , DIN EN and ISO relate requirements for the on-board rechargeable energy storage systems (RESS) and vehicle operational safety means and protection against failures of electrically propelled road vehicles, including battery-electric vehicles (BEVs), fuel-cell vehicles (FCVs) and hybrid electric vehicles (HEVs), for the protection of persons inside and outside the vehicle and the vehicle environment. Protection of persons against electric hazards (ISO ) includes: Voltage classes of Electrical circuits on-board electric vehicles Protection against direct contact Dielectric strength tests Types of enclosures 119

133 The standard states requirements for protection against water effects VDE V is about battery performance. It specifies requirements and tests for the safe operation of lithium ion secondary cells and batteries for use in vehicle technology. It applies to all types of hybrid or electric vehicle, as well as any similar vehicles licensed for use on public roads. 53. ISO : Electrically propelled road vehicles - Safety specifications - Part 1 - On-board rechargeable energy storage system (RESS) Scope of this standard: This standard applies to the on-board rechargeable energy storage systems (RESS) of electrically propelled road vehicles, including battery-electric vehicles (BEVs), fuelcell vehicles (FCVs) and hybrid electric vehicles (HEVs), specifying requirements for the protection of persons inside and outside the vehicle and the vehicle environment. The standard only applies to RESS in on-board voltage class B electric circuits for vehicle propulsion ( ISO clause 3.18). This standard does NOT apply to flywheels. It also does NOT apply to RESS in motorcycles and vehicles not primarily intended as road vehicles, such as material handling trucks or fork-lift trucks. Remark: Comprehensive safety information for manufacturing, maintenance and repair personnel is not provided in this standard. Short Description of Standard: The standard defines several terms concerning safety specifications for RESS, e.g. auxiliary electric system, creepage distance, or exposed conductive part. RESS as part of voltage class B electric circuits shall be marked with the symbol shown in figure

134 Requirements for RESS mentioned in this standard: Isolation resistance requirements Clearance and creepage distance Requirements for the emission of hazardous gases and other hazardous substances Heat generation. In terms of isolation resistance of the RESS the standard describes the respective measurement mentioning general information, preconditioning and conditioning, as well as the test procedure. The isolation resistance shall be measured during the conditioning period at a rate, from which the lowest resistance value can be determined. For a RESS not embedded in a whole circuit, the minimum requirement for the isolation resistance divided by its maximum working voltage shall be 100 Ω/V (not containing A.C.) or 500 Ω/V (containing A.C. without additional A.C. protection throughout the entire lifetime of the RESS). When the RESS is integrated in a whole electric circuit, a higher resistance value may be necessary. In terms of clearance and creepage distance the standard deals with additional leakage-current hazards between the connection terminals of a RESS, including any conductive fittings attached to them and any conductive parts, due to the risk of electrolyte or dielectric medium spillage from leakage under normal operating conditions. If electrolytic leakage can occur, the creepage distance d should be as follows: d 0.25U 5 (creepage distance between two RESS connection terminals) d 1.25U 5 (creepage distance between the live part and the electric chassis) U: Maximum working voltage between the two RESS connection terminals 121

135 If electrolytic leakage does not occur, the RESS should be designed according to IEC The clearance between conductive surfaces shall be 2.5 mm minimum. In terms of emission the standard prohibits the existence of any potentially dangerous concentration of hazardous gases and other hazardous substances anywhere in the driver, passenger and load compartments. Heat generation under any first-failure condition, which could form a hazard to persons, shall be prevented by appropriate measures, e.g. based on monitoring of current, voltage or temperature. All requirements given in this standard shall be met across the environmental and operating conditions for which the electrically propelled vehicle is designed to operate, as specified by the vehicle manufacturer. The requirements for the emission of hazardous gases and other hazardous substances, as well as the requirements for the protection of persons, the protection of a third party and the protection against a short-circuit shall be met in a crash test. 54. ISO : Electrically propelled road vehicles - Safety specifications - Part 2 - Vehicle operational safety means and protection against failures Scope of this standard: This standard applies to electrically propelled road vehicles, including battery-electric vehicles (BEVs), fuel-cell vehicles (FCVs) and hybrid electric vehicles (HEVs), specifying requirements for operational safety means and protection against failure related to hazards for the protection of persons inside and outside the vehicle and the vehicle environment. The standard applies only if the maximum working voltage of the on-board electrical propulsion system is lower than the upper voltage class B limit. 122

136 Requirements related to internal combustion engine (ICE) systems of HEVs and comprehensive safety information for manufacturing, maintenance and repair personnel are NOT provided by the standard. This standard does NOT apply to motorcycles and vehicles not primarily intended as road vehicles, such as material handling trucks or fork-lifting trucks. Short Description of Standard: Terms defined in the standard: Auxiliary electric system, battery-electric vehicle (BEV), drive direction control, driving-enabled mode, electric drive, electrically propelled vehicle, BEV operating mode, fuel-cell vehicle (FCV), hybrid electric vehicle (HEV), rechargeable energy storage system (RESS) and voltage class B. At least two deliberate and distinctive actions for the power-on procedure shall be performed in order to go from the power-off mode to the driving-enabled mode. Only one action is required to go from the driving-enabled mode to the power-off mode. A main switch function shall be an integral part of the power-on/power-off procedure. It shall be indicated to the driver, continuously or temporarily, that the propulsion system of the electrically propelled vehicle is ready for driving. After an automatic or manual turn-off of the propulsion system, it shall only be possible to reactivate it by the power-on procedure, as described. If the on-board RESS can be externally charged by the user, vehicle movement by its own propulsion system shall be impossible as long as the vehicle is physically connected to the off-board electric power supply (does not refer to class A auxiliary electric systems). Significant vehicle propulsion power reductions and low energy contents of the RESS should be indicated to the driver (e.g. visible or audible signal). 123

137 In case of a low state of charge it shall still be possible to move the vehicle out of the traffic area using its own propulsion system. A minimum energy reserve shall be available for the lighting system when there is no independent energy storage for the auxiliary electrical systems. Switching between the forward and backward (reverse) directions, if achieved by reversing the rotational direction of the electric motor, shall require either two separate actions by the driver or a safety device allowing the transition only when the vehicle is stationary or moving slowly When leaving the vehicle, it shall be indicated to the driver whether the electric propulsion system is still in the driving-enabled mode. After switching to the power-off mode no unexpected movement of the vehicle due to the electric drive shall be possible. In terms of electromagnetic compatibility the vehicle shall be tested according to ISO The vehicle has to be protected against failures concerning fail-safe design, first failure responses and unintentional vehicle behavior. The manufacturer of the vehicle shall have information available for safety personnel and/or emergency responders with regard to dealing with accidents involving a vehicle. All requirements given in this standard shall be met across the environmental and operating conditions for which the electrically propelled vehicle is designed to operate, as specified by the vehicle manufacturer. 124

138 55. ISO : Electric road vehicles - Safety specifications - Part 3 - Protection of persons against electric hazards Scope of this standard: This standard applies to exclusively battery-powered electric road vehicles (passenger cars, light commercial vehicles) when the vehicles are not connected to an external power supply. It only refers to vehicles with a maximum working voltage of an onboard electrical circuit of 1000 V A.C. or 1500 V D.C. The standard does NOT necessarily apply to assembly, maintenance and repair of these vehicles. Short Description of Standard: Terms and definitions described within the standard: Conductive part, exposed conductive part, live part, electrical circuit, auxiliary electrical circuit, electrical chassis, nominal voltage, working voltage, power unit, power system, direct contact, indirect contact, basic insulation, supplementary insulation, double insulation, reinforced insulation, protection degree, class I equipment, class II equipment, opening part, potential equalization, insulation resistance monitoring system. Electrical circuits are classified depending on its working voltage U (A.C. systems: frequency 15 Hz 150 Hz; rms-value). Voltage class A: 0 V < U 60 V (D.C. systems); 0 V < U 25 V (A.C. systems) Voltage class B: 60 V < U 1500 V (D.C. systems); 25 V < U 1000 V (A.C. systems) Remark: Further details can be looked up in table 1 (5.1). Voltage class A does not require specific protection means against electrical hazards. Persons need to be protected against direct contact to live parts and against 125

139 hazards caused by fault condition of basic insulation of voltage class B electrical circuits. If protection is provided by insulation, the live parts of the electrical system shall be totally encapsulated by insulation which can only be removed by destruction. The insulating material has to be suitable to the nominal voltage or working voltage and temperature ratings of the electrical vehicle and system (NOT acceptable materials: Varnish, dope, enamel, etc.). Each electrical circuit of the electric vehicle shall have insulation resistance between it and the electrical chassis, and between it and other electrical circuits. Insulation resistance measurement: The equipment shall be subjected to a preconditioning period (duration: at least 8 h; temperature: 5 C (± 2 C)) followed by a conditioning period (duration: 8 h; temperature: 23 C (± 5 C); humidity: 90% (+ 10%, - 5%); atmospheric pressure: from 86 kpa to 106 kpa) Measurements have to be taken periodically throughout the conditioning process. Suitable instruments (e.g. megohmmeter) have to be used. Measurements take place between the power system and the electrical chassis of the vehicle, and the power system and the auxiliary electrical circuit (test voltage of at least 1.5 times the nominal voltage of the power system or 500 V D.C.; traction and auxiliary batteries disconnected; both sides of the auxiliary electrical circuits connected to the chassis of the vehicle). For the power system the insulation resistance shall comply with the values given in table 2. Applied voltage test: Applying an A.C. voltage (frequency 50 Hz 60 Hz) for 1 min between the different sections of the electrical circuit and the exposed parts after disconnecting the traction battery and connecting any other electrical circuits to the electrical chassis. The voltage values for different equipment/insulation can be taken from table

140 Requirements for barriers/enclosures: Depend on the size of openings in the enclosures/barriers and the distance to live parts; have to be looked up in IEC This standard mentions means of protection for directly accessible enclosures/barriers and enclosures/barriers accessible behind a cover (types S0, S1 and S2). Continuity test for the connecting parts: A current (1.5 times the max. current of the power circuit ( 25 A)) from a source (no-load voltage 60 V D.C.) between any two exposed conductive parts has to be passed for at least 5 s. The voltage drop between any two exposed conductive parts is measured. The resistance calculated from the current and the voltage drop shall not exceed 0.1 Ω. Protection against water effects shall be provided by an insulation resistance monitoring system, or by shielding the voltage class B equipment from exposure to water, or by other suitable means. If the vehicle is not equipped with an insulation resistance monitoring system the following test shall be performed: Washing of the vehicle, heavy rainstorm, flooding. Washing: Normal washing, no specific cleaning; using a hose nozzle in accordance with IPX5 ( IEC 60529; annex A) and fresh water (flow rate: 12.5 l/min, water stream speed rate: 0.1 m/s); all border lines (critical areas) shall be exposed; critical areas are a seal of two parts such as flaps, lass seals, outline of opening parts, outline of front grille and seals of lamps; distance between nozzle aperture and border line: 3 m. Heavy rainstorm: Using a spray nozzle in accordance with IPX3 ( IEC 60529; annex B) and fresh water (flow rate: 10 l/min); all surfaces with opening parts that are normally open shall be exposed for 5 min; critical areas are those that are accessible with opening parts that are open. Flooding: Vehicle shall be driven in a wade pool; depth: 10 cm, distance: 500 m, speed 20 km/h, time: approx. 1.5 min (wade pool with less than 500 m has to be driven through several times in less than 10 min). 127

141 After each test, with the vehicle still wet, the vehicle shall comply with the insulation resistance test given in 7.1 of ISO :2001 (power equipment still connected to traction battery) and with additional requirement of at least 100 Ω /V. After a 24 h pause the procedure shall be repeated. If an insulation monitoring system is provided, an automatic disconnect should be activated when loss insulation below 100 Ω /V is detected (vehicle in operation: disconnect when power-off mode is activated ( ISO )). The loss of insulation and the disconnection shall be indicated to the driver. The insulation resistance monitoring system should not allow the vehicle to be reenergized until the fault is cleared. If the driver can use a forced re-energize operation, warnings shall be given to the driver. If a second fault occurs, the vehicle shall be automatically de-energized regardless of its mode of operation. 56. DIN EN (1997): Electrically propelled road vehicles - Specific requirements for safety - Part 1 - On board energy storage Scope of this Standard The document specifies all requirements for electrically propelled road vehicles in order to remain safe both for the users of the vehicle and for the vehicle environment. This part deals with specific requirements related to the on board electro-chemical storage of energy. Short description of Standard The standard gives important information to requirements in order to remain safe for users and the environment of the vehicle. The norm starts with explaining definitions and the declaration of risk materials. The manufacturer of the vehicle has to indicate the gas formation of the battery. 128

142 In section 6 the regulations for setting up of the battery is specified. The protection against direct contact has to match with section 5 of pren :1996. Further information is given to the isolating resistance of the battery and its testing method and requirements, to the creepage distance and the ventilation which is necessary to prevent explosion, fire or toxication in case of gases coming from the battery. If the boundary value of electricity is exceeded in normal operation the battery circuit has to be opened. Therefore the battery has to be supplied with a current-overrun switch. The requirements are described in detail in the standard. The last sections define special requirements for crash tests in terms of on-board energy storage and safety requirements for the battery after a rollover of the vehicle. 57. DIN V VDE V /VDE V (2008): Safety Requirements For Secondary Batteries And Battery Installations - Part 11 - Safety Requirements For Secondary Lithium Batteries For Hybrid Vehicles And Mobile Applications Scope of this standard: The standard specifies requirements and tests for the safe operation of lithium ion secondary cells and batteries for use in vehicle technology. It applies to all types of hybrid or electric vehicle, as well as any similar vehicles licensed for use on public roads. In light of the recent focus on pollutants and carbon footprints, automobile manufacturers, suppliers and energy providers are trying to improve electric vehicles and their necessary networks. In fact, hybrid technology is expected to soon become a key feature of the automotive industry. Of particular interest is the development of technologies to prolong the life and increase the durability of lithium ion batteries, and for charging them as quickly as possible. 129

143 Battery safety needs to be taken into consideration even at the draft stage, for voltages of up to 200 V occurs in hybrid vehicles. This requires strict electrical safety rules that never before needed to be taken into account in automotive design. Expedient safety tests and measures need to be defined in order to ensure safe battery operation Standards for electric-drive battery system Standard SAE J2289 and SAE J1797 describe the common practices for battery pack system. Testing of battery system including crash integrity testing, safety and abuse testing and high power applications test are described in standards SAE J1766, SAE J2646, ISO/DIS and VDA-test specification for li-ion battery systems. The abstracts are as follows: 58. SAE J 2289(2008): Electric-Drive Battery Pack System: Functional Guidelines Scope of this standard: This SAE Information Report describes common practices for design of battery systems for vehicles that utilize a rechargeable battery to provide or recover all or some traction energy for an electric drive system. It includes product description, physical requirements, electrical requirements, environmental requirements, safety requirements, storage and shipment characteristics, and labeling requirements. It also covers termination, retention, venting system, thermal management, and other features. This document does describe guidelines in proper packaging of the battery to meet the crash performance criteria detailed in SAE J1766. Also described are the normal and abnormal conditions that may be encountered in operation of a battery pack system. This document provides the guidelines for designing a battery system to package into manufacturer s electric drive vehicles. It lays the foundation for electric ve- 130

144 hicle battery systems and provides information to assist in developing a robust battery system. 59. SAE J1797(1997): Recommended Practice for Packaging of Electric Vehicle Battery Modules Scope of this standard: This SAE Recommended Practice provides for common battery designs through the description of dimensions, termination, retention, venting system, and other features required in an electric vehicle application. The document does not provide for performance standards. Performance will be addressed by SAE J1798. This document does provide for guidelines in proper packaging of battery modules to meet performance criteria detailed in J1766. Purpose of this standard: This document provides the guidelines for designing a battery module to effectively package into manufacturer's electric vehicles. It will lay the foundation for electric vehicle battery modules and serve as an industry guideline. Form of this standard: A modular unit consisting of electrochemical cell(s) configured to meet the guidelines of this document to provide a component which can be assembled into a battery pack system for electric vehicle applications. SAE 1797 does not address especially lithium-ion batteries. 131

145 60. SAE J1766(2005): Recommended Practice for Electric and Hybrid Electric Vehicle Battery Systems Crash Integrity Testing Scope of this standard Electric, Fuel Cell and Hybrid vehicles may contain many types of high voltage systems. Adequate barriers between occupants and the high voltage systems are necessary to provide protection from potentially harmful electric current and materials within the high voltage system that can cause injury to occupants of the vehicle during a crash. This SAE Recommended Practice is applicable to all Electric, Fuel Cell and Hybrid vehicle designs that are comprised of at least one voltage bus with a nominal voltage greater than or equal to 60 VDC or 30 VAC. This Recommended Practice addresses electrical isolation integrity, electrolyte spillage, and retention of the battery system. 61. SAE J2464(2009): Electric and Hybrid Electric Vehicle Rechargeable Energy Storage System (RESS) Safety and Abuse Testing Scope of this standard This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. It describes a body of tests which may be used as needed for abuse testing of electric or hybrid electric vehicle Rechargeable Energy Storage Systems (RESS) to determine the response of such electrical energy storage and control systems to conditions or events which are beyond their normal operating range. Abuse test procedures in this document are intended to cover a broad range of vehicle applications as well as a broad range of electrical energy storage devices, including individual RESS cells (batteries or capacitors), modules and packs. This document applies to vehicles with RESS voltages above 60 V. This document does not 132

146 apply to RESS that uses mechanical devices store energy (e.g., electro-mechanical flywheels). Purpose: This document is designed to provide a common framework of tests to evaluate the response of various RESS technologies to abusive conditions. These tests are intended to characterize the RESS response to undesirable abusive conditions also termed "off-normal" conditions or environments that may arise as a result of operator negligence, vehicle accidents, device or system defects, poorly informed or trained users or mechanics, failure of specific RESS control and support hardware, or transportation/handling incidents or accidents. The scope of this document is to evaluate the response to abusive conditions at the cell, module and pack levels of RESS integration. While the abusive conditions developed in this test are intended to be representative of potential hazardous conditions in the vehicle environment, not all types of vehicle level hazards are within the scope of this document. The tests described in this document should be supplemented with additional testing (performed at the test sponsor's or manufacturer's discretion) based on their need for data and their determination of the most susceptible condition of the technology. 62. ISO/DIS (2008): Electrically propelled road vehicles - Test specification for lithium-ion traction battery systems - Part 1 - High power applications Scope of this Standard This Standard specifies test procedures for lithium-ion battery packs and systems, to be used in electrically propelled road vehicles. The specified test procedures shall enable the user of this standard to determine the essential characteristics on performance, reliability and abuse of lithium-ion battery 133

147 packs and systems. The user shall also be supported to compare the test results achieved for different battery packs and systems. Therefore the objective of this standard is to specify standard test procedures for the basic characteristics on performance, reliability and abuse of lithium-ion battery packs and systems. This standard enables setting up a dedicated test plan for an individual battery pack or system subject to an agreement between customer and supplier. If required, the relevant test procedures and/or test conditions of lithium-ion battery packs and systems may be selected from the standard tests provided in this standard to configure a dedicated test plan. Figure 3 Overview of test procedures in ISO/DIS (2008) NOTE Testing on cell level is under consideration in IEC. 134

148 International Working Group: ISO/TC 22/SC 21 Electrically propelled road vehicles National Working Group: NA AA Elektrische Straßenfahrzeuge 63. VDA - Test Specification for Li-Ion Battery Systems(2008): Test Specification for Li-Ion Battery Systems for HEVs Introduction: In mid terms most of the hybrid vehicles will be equipped with battery systems consisting of Li-Ion cells. Since already several specifications exist, which define requirements and application advices for battery systems for hybrid vehicles; it would also be necessary to identify tests for these requirements. The aim of this specification is the definition of tests in order to make sure that a battery system is able to meet the harsh requirements of the automobile industry. Most of the tests defined in this specification are not newly developed. The content of this specification based on existing specifications i.e. from USABC, EUCAR Freedom Car and other sources, which were in some cases slightly modified and adopted to the requirements of the European OEMs. Scope of this standard This specification defines tests and related requirements for battery systems, subsystems or modules based on Li-Ion cells to be used in hybrid electric vehicles (HEV). It includes the necessary equipment and software to operate the system and the interfaces to the vehicle. The specification is designed for system testing. However, if in specific cases a testing on cell level shall be performed, Annex F specifies the test related to individual Li- Ion cells (cell-level). 135

149 Battery charging, exchange stations and grid connection Charging station standards include external power supplies to vehicles, on-and offboard chargers, protection of personnel against electric shocks, protection of electrical components and a.c. connections. Electric vehicle requirements for charging systems, communication protocol, plugs and receptacles and grid connection should be concerned for both of these two charging systems. Furthermore the relevant grid codes have to be considered Battery charging stations Conductive charging: Part 1: General requirements (IEC , German standard DIN EN (VDE )) General considerations Charging modes (4 modes) Safety pilot circuit (valid for Modes 2, 3 and 4) Power indicator Connector interface EMC issues Communication between vehicle and charging station Part 2: Electric vehicle requirements for conductive connection to an a.c./d.c. supply (IEC , German standard DIN EN (VDE )) a.c. electric vehicle charging station (IEC , European standard: CLC R , German standard: DIN EN (VDE )) Standard DIN EN is about the airborne acoustical noise of vehicle during charging. The abstracts for these standards are as follows: 136

150 64. IEC : Electric vehicle conductive charging system - Part 1 - General Regulations Scope of this standard This standard applies to all charging devices inside and outside of electric vehicles connected to standardized AC voltages ( IEC 60038) up to 1000 V or DC voltages up to 1500 V. Electric vehicles for the purpose of this standard are all vehicles that derive their energy partly or completely from batteries within the vehicle, i.e. pure electric as well as hybrid electric vehicles. This standard does NOT apply to overhead power line buses, rail vehicles, industrial transport vehicles as well as all vehicles that are not primarily used on roads. Short Description of Standard: The rated value of the ac voltage has to be less than 1000 V +/- 10%. The rated value of the frequency has to be 50 Hz +/- 1% or 60 Hz +/- 1%. There are four different charging modes described within this standard. For all of those, residual-current-operated protective devices (so called RCDs) as well as overcurrent protective devices are required. Mode 1: Connecting the electric vehicle to a 1- or 3-phase AC grid, using standardized plug-ins as well as protective earth and line conductor. Using mode 1 requires an RCD as well as over-current protection. Mode 2: Connecting the EV to a 1- or 3-phase grid using standardized plug-ins as well as protective earth and line conductor in combination with a control function (pilot function) between EV and plug or control device with the cable Mode 3: Direct connection of the EV to the AC grid using an application specific EV power supply which has a pilot function (conductor) leading all the way to the device continuously connected to the ac grid. 137

151 Mode 4: Indirect connection of the EV using an external charging device. A pilot function has to lead all the way to the device continuously connected to the ac grid. Three different types of connections are defined. A: cable fixed to EV, B: cable can be completely taken off, C: cable fixed to EV power supply (grid side) Functions for modes 2 to 4: detection of connection, permanent inspection of protective earth connection, ability to turn on and off the system and (all following optional): choice of ampere rating, determination of ventilation requirements, detection of momentarily available power from the power supply, locking plugs, control of bi-direction power flow. More function may be included; some of the listed function may apply to mode 1 also. As requested in ( ISO ), the EV may not be able to move while connected. Parts that can be touched by the user my not become dangerous active components during normal operation or single failures. ( IEC parts 411 to 413 are applicable. ISO applies to systems built into the EV). ( IEC defines required test procedures) Remark: may be overruled by national regulations. Disconnection of EV: 1 second after disconnecting the EV from the power supply, voltages between touchable conducting elements or one element and earth potential have to be less then 42.4 Vpeak or 60 VDC and stored energy available from these parts has to be less than 20 J. Requirements for standard plugs are defined in ( IEC ), for other plugs and plug-ins in ( IEC ). Plugs and plug-ins have to permanently withstand operating temperatures of -30 C to 50 C and ambient temperatures of - 50 C to 85 C during transport and storage. Surge voltage tests have to be performed according to ( IEC ) and surge voltages (1.2 / 50 µs) of 6000 V (common mode) or 4000 V (differential mode) have to be tolerated by the high power circuits. 138

152 Minimum durability is 5000 operations under load and 5000 under no load or 50 under load and under no load condition. IP protection level is IP 44 in general and IP 55 in drive position At 40 C ambient temperature maximum surface temperature of parts that may be handle is 50 C for metal parts and 60 C for non-metal parts and maximum surface temperature of parts that may be touched but not handle is 60 C for metal parts and 85 C for non metal parts. Cables characteristics (electrical and mechanical) shall be in accordance to ( IEC 60245, cable type 66). The pilot function is described in detail in the standard, but it would go beyond the scope of this short description. 65. DIN EN : Electric vehicle conductive charging system - Part 21 - Electric vehicle requirements for conductive connection to an A.C./D.C. supply Scope of this standard In combination with part 1 of IEC this standard contains the requirements for conductive connection of electric vehicles to an A.C./D.C. supply (A.C. supply: Up to 690 V, D.C. supply: Up to 1000 V). This standard does NOT apply to class II vehicles, trackless trolleys, rail vehicles, industrial transport vehicles or vehicles that are not predominantly used on roads. Not all maintenance safety aspects are covered. Short Description of Standard: The electric vehicle has to be attached to the supply unit in a way that the charging process can be done safely under normal conditions. 139

153 Rated values of the voltage supply have to be 1000 V (D.C.) or 690 V (A.C.). The vehicle systems have to work correctly within ± 10% of the standard nominal voltage ( IEC 60038). The rated value of the frequency is 50 Hz ± 1% or 60 Hz ± 1%. During the charging of the electric vehicle the ambient temperature can reach from - 30 C to + 50 C. All tangible conductive parts of the electric vehicle with the potential of having contact with the voltage supply have to be electrically connected, so that the electrical energy is transferred according to regulations and potential residual currents are conducted to protective earth in case of a fault. Remark: General regulations for electrical safety can be looked up in part 1 of this standard. A protective earth conductor ( IEC ) is required for a potential equalization connection between the protective earth conductor plug of the current supply unit and the tangible conductive parts of the vehicle. During the charging process in the operating modes 2, 3 and 4 the electrical passage of the protective earth conductor has to be observed consistently by the current supply unit. Specific electric values for the vehicle are defined, i.e. withstand voltage values, leakage currents, specific over-current values of supply units, leakage distances and air gaps. Respective references to other standards can be found as well. Tests concerning electromagnetic compatibility such as interference resistance ( IEC and IEC ) and generated electromagnetic interference have to be performed. In all of these tests the connecting cable/line provided by the manufacturer of the supply unit or the electric vehicle has to be used. 140

154 The electric vehicle must not be put into an imperiling or unsafe condition through these tests. It still has to comply with performance criteria A, B and C mentioned within the standard. The electric vehicle has to have a startup blockade to make sure the vehicle cannot be set into operation unless the two closure devices are separated (detection of a connection between the movable cable connector and the vehicle insertion, as well as a connection between the plug and the socket outlet of the current supply unit). All instructions referring to connecting the electric vehicle to the current supply unit have to be delivered with the manual of the vehicle. 66. DIN EN : Electric vehicle conductive charging system - Part 22 - A.C. electric vehicle charging station Scope of this standard In combination with part 1 of IEC this standard contains the requirements for A.C. electric vehicle charging stations for conductive connection with a vehicle with A.C. voltage supply of up to 690 V. This standard does NOT apply to coffer form modules with socket outlets for energy transmission to the vehicle that do not have a charging regulation function. Not all maintenance safety aspects are covered. Short Description of Standard: The A.C. electric vehicle charging station has to be attached to the electric vehicle in a way that the charging can be proceeded safely indoor or outdoor under normal conditions. No danger of fire, electric shock or hazards of persons must occur. The rated value of the A.C. voltage supply has to be 690 V. The equipment has to work correctly within ± 10% of the standard nominal voltage ( IEC 60038). The rated value of the frequency is 50 Hz ± 1% ± 1% or 60 Hz ± 1%. 141

155 During the charging of the electric vehicle the ambient temperature can reach from - 30 C to + 50 C with relative air humidity between 5% and 95%. Rated values for input voltage and current of the charging station can be looked up in IEC There are three alternatives for rated values for output voltage and current: A) single phase, 230 V, 32 A B) single/three phase, 230/400 V, 32 A C) three phase, 500 V, 250 Defined requirements for function and construction: control functions, emergency mode, permitted surface temperature, degree of protection (IP) of the charging station, cable and wire case, arrangement of socket outlets/cable connectors, wire extension and consumption counting. General regulations for electrical safety can be looked up in part 1 of this standard. Further regulations about protection against shock current, earth connection and transmissibility can be found in part 21. Requirements for withstand voltage tests (characteristic values, leakage current, precautions, leakage distances and air gaps) and environmental impact test (climatic impacts, mechanical impacts and electromagnetic impacts) are defined. Current supply stations for electrical vehicles have to be classified to class I or class II. All instructions referring to connecting the electric vehicle to the A.C. electric vehicle charging station have to be delivered with the manual of the vehicle and have to be placed on the station The following labels have to be clearly visible on the charging station: Name or initials of the manufacturer; reference to equipment; serial number; date of production; rated voltage in V; rated frequency in Hz; rated current in A; number of phases; IP 142

156 degree of protection; `only indoor use or something similar, if only destined for indoor use; class II charging station labels have to clearly include its emblem; few further information might be attached to the charging station (telephone number, address of the trader). 67. DIN VDE 0122: Electric equipment of electrical road vehicles Scope of this standard: This standard applies to electric equipment of electrical road vehicles not being connected to the grid during vehicle operation with nominal voltages of up to 600 V This includes battery chargers and their reaction to the power grid, coupling installments of vehicles to stationary power supply units, as well as data gathering devices and installments for replacing the energy storages. This standard does NOT apply to electrical equipment of the on board supply system of road vehicles, industrial trucks, invalid cars, chargers for domestic use or similar purposes and trolley busses. Short Description of Standard: Terms defined within the standard: Electrical road vehicle, drive system, energy storages, chargers, data gathering device, manual coupling installment, automatic coupling installment, type test, routine test and on board supply system. In addition the standard defines nominal values, such as nominal voltage, nominal current, nominal frequency, etc. The standard provides requirements for the construction of electrical road vehicles and gives detailed information about testing conditions. The entire drive system has to be operative with maximum current within the voltage limits of 0.75 to 1.3 U N. Outside these limitations the drive system has to stay restrictedly operative as long as the energy store allows so. 143

157 Special precautions (e.g. regulation) have to ensure that absolute operating ability is provided again as soon as the voltage range mentioned above is maintained. Type tests have to be performed with 0.75 and 1.3 U N respectively for all parts where an increase or decrease of the operating voltage up to these thresholds might have an impact for the purpose of this standard. Equipment for electrical road vehicles has to be designed for the following environmental conditions: Highest ambient air temperature: + 40 C Lowest ambient air temperature: - 25 C Relative air humidity: 100% Absolute altitude: 1500 m The vehicle s interior air temperature might reach + 60 C. Higher temperatures might have to be defined for equipment in enclosures out in the open. Precautions that have to be dealt with: Protection against direct contact, protection against indirect contact, insulation and withstand voltage, capacitor voltages and protection category of the electrical equipment. The power section of the electrical road vehicle has to be installed free of body. Every single circuit has to be protected against overcharge by currents exceeding operating currents (e.g. fuses, protected switches, over-current protection in combination with switches). Main and control current have to be separated. The overload protection has to be placed as close as possible to the supply terminal of the circuit being protected. Testing methods, operational demands and further protection determinations are provided in detail for electrical machines, power control elements, regulation and control devices, switching devices with electronic drive, batteries and energy storages, chargers, coupling installments, plug devices, conductors and cable routing. No- 144

158 minal values, thresholds, limits, etc. can be taken from the respective tables and the annex. 68. DIN EN 12736: Electrically propelled road vehicles - Airborne acoustical noise of vehicle during charging with on-board chargers - Determination of sound power level Scope of this standard: This standard specifies test methods for measuring of airborne acoustical noise of electrically propelled road vehicles of categories M 1, M 2, N 1 or N 2 during charging with-on board chargers. Short description of standard Electric vehicles produce a very low noise level during driving. But they produce a noise during parking if the batteries are charged. This noise emission should be reduced to minimize the disturbance of the population. Therefore it is important to determine measurement techniques and test methods to define the noise emissions during charging with on-board chargers. The conditioning and preparation of the vehicle is described. Before testing the battery has to be minimally 50% discharged. The air pressure of the tires has to match the specifications of the manufacturer. The testing has to be performed according to ISO 1176 and with the most disadvantageous conditions. The on-board charger has to be connected to a fixed power grid. The test facility has to match ISO Background sounds have to be lower than 10 db under the noise of the test vehicle. Temperature hast to be between 0 C and 42 C and wind speed should be below 5 m/s. The acoustic test equipment has to match the specifications of 5.1 of ISO 362:

159 Furthermore there are detailed information to the position of the microphones and duration of the measurement. Specifications to the content of the test report are given. Appendix A is informative and describes different limits for airborne acoustical noises in different European countries Grid connection In this section, several standards are introduced for conducted disturbance, requirements for supply voltage characteristics in transmission, the metering equipments, plugs socket-outlet and couplers Electromagnetic compatibility (EMC) standards Standard DIN EN applies to conducted disturbances. It mentions several terms concerning general definitions such as disturbance level, electromagnetic tolerance, etc. and phenomenon related definitions, such as harmonic frequency, unbalance of voltage, etc. Standards DIN EN , DIN EN , DIN EN and DIN EN apply to electric and electronic devices (equipment, facilities), designed to be used in different fields. The abstracts are as follows: 69. DIN EN : Electromagnetic compatibility (EMC) - Part Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems Scope of this standard: This standard applies to conducted disturbances with a frequency range between 0 Hz and 9 khz (148,5 khz for grid signal transmission systems). 146

160 Tolerance levels for low voltage A.C. current grids with a nominal voltage of up to 420 V (single phase) or 690 V (three phases) and a nominal frequency of 50 Hz or 60 Hz are provided. The tolerance levels defined within the standard apply to the point of common coupling (PCC). Short Description of Standard: The standard mentions several terms concerning general definitions (disturbance level, electromagnetic tolerance, etc.) and phenomenon related definitions, such as harmonic frequency, unbalance of voltage, etc. Different types of disturbances are defined and identified with their respective tolerance levels: Voltage fluctuations and flicker: produced by fluctuating load, operation of stepshifting transformers and other operating calibrations of the electric supply grid or the connected equipment. Flicker can be evoked by voltage fluctuations in low voltage grids. Harmonics: related to quasi-stationary or constant harmonic levels. Declared as ratings for long-term effect as well as very short-time effects. In-between harmonics: Mentioned only are in-between harmonic voltages with frequencies close to the fundamental frequency (50Hz or 60Hz) causing amplitude. Further definitions are still in progress. Voltage breakdowns and short time disruptions: Information can be taken from annex B and IEC Unbalance of voltage: In relation only to long-term effects (duration of 10min or longer) and in relation only to the counter component (relevant component for disturbances of equipment connected to the low voltage supply grid). Transient overvoltage: Information can be taken from annex B and IEC (insulation coordination). 147

161 Fluctuation of the grid frequency: The tolerance level for temporary fluctuations of the grid frequency is ± 1 Hz from the nominal frequency. Constant components: Can be evoked by certain unbalanced loads connected to the grid. A tolerance level is not clearly defined. Signal transmission to low voltage grids: Four system types for signal transmission on low voltage grids are described: circular control system (100 Hz to 3000 Hz), medium frequency supply carrier system (3k Hz to 20kHz), high frequency supply carrier system (20 khz to khz) and grid marking system (3 khz to 20 khz). Remark: All tolerance levels can be looked up in detail within the standard (values, tables and graphs). Annex A contains regulations about the function of EMC tolerance and planning levels, i.e. the necessity of tolerance levels, connection between tolerance and stability levels, connection between tolerance and transient emission levels, planning levels and their visualization. 70. DIN EN : Electromagnetic compatibility (EMC) - Part Limits Limits for harmonic current emissions Scope of this standard: This standard applies to electric and electronic devices (equipment, facilities), designed to be connected to the public low voltage grid, with an input current not exceeding 16 A per conductor. It defines limits for harmonic current emissions that are inducted into the grid. This standard does not apply to arc welding machines designed for professional use ( IEC ). Remark: Thresholds for systems with a nominal voltage below 220 V have not been worked out yet. 148

162 Short Description of Standard: The standard defines several terms that are used to describe the respective limits, such as control gear, input voltage, real power, etc. Limits for harmonic current emissions of equipment are defined to ensure that harmonic disturbance levels do not exceed the tolerances defined in IEC Exceptions can be made for professionally used equipment that does not fulfill the requirements of this standard, if the manual contains a demand to ask the responsible power supply company for a respective access approval. Electric and electronic devices are categorized into classes A-D: A) Symmetric three phase devices, domestic appliances (except for those belonging to class D), non-portable power tools, bulb dimmer, audio devices; all other devices that do not fit into classes B-D. B) Portable power tools, arc welding machines that are NOT designed for professional use C) Illumination devices D) Personal computers and monitor screens for personal computers with a specified power 600 W, TV broadcast receiver with a specified power 600 W All regulations, tests and limits that are defined within the standard apply to the terminals of the power input of equipment designed to be connected to 50 Hz or 60 Hz grids with 220/380 V, 230/400 V and 240/415 V. Those regulations, tests and limits are: control principles, measurement of harmonic currents (test setup, measuring system and testing process) and equipment in a base frame or case. Chapter 7 of the standard contains a flow chart describing methods to determine the applicability of thresholds and to evaluate the test results. Furthermore instructions to 149

163 the chart and respective table are given concerning the identification of thresholds for class A-D devices. 71. DIN EN : Electromagnetic compatibility (EMC) - Part Testing and measurement techniques - Surge immunity test Scope of this standard: This standard applies to electric and electronic devices defining interference resistance requirements, testing methods and the range of favored test severity levels for devices (installations) against single-polar surge voltages produced by surges as a consequence of switching operations and lightning. The standard describes a consistent procedure for the assessment of the interference resistance of a device (installation) or a system against a specified phenomenon. The methods and definitions described in this standard do NOT verify the insulation resistance of the devices under test against surge voltages. Short Description of Standard: The standard defines several terms concerning surge immunity test, e.g. coupling network, device under test, interference resistance, etc. The testing generator has to simulate all possible surge phenomena caused either by the power supply or by lightning as realistically as possible. If the disturbing source is located in the same circuit, e.g. supply network (direct coupling), the generator can simulate a source with small impedance at the terminals of the device under test. If the disturbing source is not located in the same circuit as the device serving as disturbing drain (indirect coupling), the generator can simulate a source with higher impedance. 150

164 Test severity levels have to be chosen according to the respective installation conditions: Test severity level 1: Open-circuit testing voltage (± 10%) of 0.5 kv Test severity level 2: Open-circuit testing voltage (± 10%) of 1.0 kv Test severity level 3: Open-circuit testing voltage (± 10%) of 2.0 kv Test severity level 4: Open-circuit testing voltage (± 10%) of 4.0 kv Test severity level X: Special definition of the open-circuit testing voltage The test setup consists of the device under test, additional/auxiliary equipment (if necessary), a cable (defined type and length), coupling/decoupling networks, an impulse generator combination, a decoupling network/protective devices, reference earth (depending on the respective test). The standard defines two types of impulse generator combinations (hybrid generators): Generation of the pulse form 10/700 µs: Testing of terminals destined for the connection with symmetrically operated communication cables Generation of the pulse form 1.2/50 µs: All other cases; especially for the testing of terminals destined for the connection with power supply cables and short signal connection. Remark: All attributes, performance characteristics, schematic diagrams and parameter definitions for the two generator types and the coupling/decoupling networks can be taken from chapters 6.1, 6.2 and 6.3. Specified test are setups defined in clauses 7.2 to 7.7: Tests performed in relation to the power supply terminals of the device under test Tests on unshielded and asymmetrically operated connection cables Tests on unshielded and symmetrically operated connection/communication cables Tests on high-speed communication cables Tests in shielded cables Tests with potential differences 151

165 The climatic conditions in the laboratory have to be within the climatic ranges of the device under test and the test equipment provided by the producer. Electromagnetic conditions in the laboratory are not allowed to have an impact on the tests. In front of the actual test the generators and the coupling/decoupling networks have to be tested to verify their functionality. The test results have to be classified with terms of loss or failure of functionality/the intended operational behavior of the device under test with respect to the defined operational quality. The test report has to contain all necessary information to be able to repeat the test, i.e. detailed information about the device under test, test setups, ambient conditions, etc. 72. DIN EN : Electromagnetic compatibility (EMC) - Part Generic standards - Immunity for residential, commercial and lightindustrial environments Scope of this standard: This standard applies to electric and electronic devices (equipment, installations) designed for the use in residential, commercial and light-industrial environments. The devices are assumed to be (directly/indirectly) connected to the public low-voltage supply grid. The standard also applies to battery-powered devices and devices designed for the use in residential buildings, sales areas, business rooms, entertainment establishments, outdoor places or small company rooms supplied by a non-public, nonindustrial low-voltage supply grid. It is applicable, if no adequate EMC product standard or product line standard for transient emissions exists. 152

166 Requirements for transient emissions mentioned in this standard apply to a frequency range of 0 Hz to 400 GHz. This standard does NOT contain requirements concerning the safety of the devices. Short Description of Standard: Terms defined in this standard: Terminal (gate), enclosure, line connector, signal connector, electric supply connector, public supply grid, long connector and low voltage. The manufacturer has to provide a description of operation and a description of evaluation criteria during the EMC-tests or as consequence of the EMC-tests. The descriptions have to be recorded in the test report as well. Three evaluation criteria are defined: A. The device has to work according to its purpose during and after the test. No disturbance in its functionality or operating performance must occur. The minimum operational quality might be replaced by a tolerable loss of operational quality. B. The device has to work according to its purpose after the test. No disturbance in its functionality or operating performance must occur. The minimum operational quality might be replaced by a tolerable loss of operational quality. During the test the operating performance can be affected, but a change of duty or a loss of saved data is not permitted. C. Temporary malfunction is permitted, if the function restores itself or is restorable through control devices The device under test (DUT) has to be tested in its duty of highest disturbance sensibility. If the device is part of a system, it has to be tested with the smallest possible arrangement. 153

167 All tests have to be performed within the specified range of environmental conditions for the device concerning temperature, humidity and air pressure and with its rated voltage. If the manufacturer has his own specifications and requirements for operational quality, disturbance of functionality, etc., he has to provide them in the product documentation and manual. The documentation has to be accessible on demand. Because of the diversity and differentness of the devices in the range of application of this standard, it is not possible to define exact criteria for the evaluation of the results of the interference resistance tests. The standard provides test instructions that are applicable, if for example certain terminals exist. Test procedures have to be according to tables 1-4. Test requirements are given for each terminal of the respective device. All tests have to be performed as individual tests in random sequence. 73. DIN EN : Electromagnetic compatibility (EMC) - Part Generic standards - Emission standard for residential, commercial and light-industrial environments Scope of this standard: This standard applies to electric and electronic devices (equipment, installations) designed for the use in residential, commercial and light-industrial environments. The devices are assumed to be (directly/indirectly) connected to the public low-voltage supply grid. The standard also applies to battery-powered devices and devices designed for the use in residential buildings, sales areas, business rooms, entertainment establishments, outdoor places or small company rooms supplied by a non-public, nonindustrial low-voltage supply grid. 154

168 It is applicable, if no adequate EMC product standard or product line standard for transient emissions exists. Requirements for transient emissions mentioned in this standard apply to a frequency range of 0 Hz to 400 GHz. This standard does NOT contain requirements concerning the safety of the devices. Short Description of Standard: Terms defined in the standard: Terminal (gate), enclosure, line connector, telecommunication/grid connector, current supply connector, public supply grid, low voltage, D.C. supply grid, low-voltage A.C. grid connection and highest internal frequency. Transient emission measurements have to be taken depending on the device, its arrangement, connectors, technology and operating conditions. Measurements have to be taken on the respective terminals according to tables 1 to 4 (attached to the standard). Inspections of devices of series production have to be performed either on a random sample of devices of the respective type with a statistical analysis or just on one device. The statistical verification of the accordance to thresholds is achieved, if the following inequality is fulfilled: x ks n L x : Arithmetic mean of the measured interference level of n devices of the sample S n : Standard deviation of the sample 2 1 n ( Sn ( x i i x) 1 n 1 2 ) x i : Interference level of the single device 155

169 L: Respective threshold k: Factor depending on n (see table in clause 8.2) The device under test has to be measured in its duty of highest emission. If the device is part of a system, it has to be tested with the smallest possible arrangement. All tests have to be performed within the specified range of environmental conditions for the device concerning temperature, humidity and air pressure and with its rated voltage. The customer/user has to be informed, if special necessities for the accordance to the requirements of this standard have to be arranged, e.g. the use of shielded conductors. Test results of transient emission tests of devices have to refer to the measuring inaccuracy considerations of IEC/CISPR The inaccuracy of the measuring equipment has to be determined according to IEC/CISPR Standards for signalling on electrical installations The abstract for standard DIN EN is as follows: 74. DIN EN : Signalling on low-voltage electrical installations in the frequency range 3kHz to 148.5kHz - Part 1 - General requirements, frequency bands and electromagnetic disturbances Scope of this standard: This standard applies to electrical devices using signals in the frequency range 3 khz to khz for information transmission on the public low-voltage grid or on customer installations. 156

170 The standard defines the different applications of dedicated frequency bands, thresholds for output voltages within the applied frequency band and thresholds for wireconducted and beamed disturbances. Testing procedures are provided as well. This standard does NOT define signal modulation procedures, encoding procedures, operation characteristics (exception: mutual influences) or requirements and tests for the environment. Short Description of Standard: Frequency bands are divided into frequency bands 3 khz to 95 khz (limited to electricity supply companies and concessionaires) and frequency bands 95 khz to khz (limited to customer installations). Classification for 95 khz to khz equipment: Class 122 equipment: suitable for general use Class 134 equipment: might require registration or approval of authorized admission offices Frequency bands 95 khz to khz are sub-divided into frequency bands 95 khz to 125 khz (no access protocol required), frequency bands 125 khz to 140 khz (access protocol required) and frequency bands 140 khz to khz (no access protocol required). The access protocol for 125 khz to 140 khz frequency bands uses a carrier sense multiple access (CSMA) protocol offering the possibility for multiple system to work within the same or within an electrically connected low-voltage grid. It defines a band busy -signal (frequency khz), the respective band busy - condition (detection of band busy -signals, signal analysis) and gives regulations for access and use of the sub-frequency band (time limits, etc.). Definitions for the transmitter output voltage provided within the standard: 157

171 Measuring circuits for single- and three-phase installations Output signal measuring: determination of bandwidth (spectrum analyzer with peak value detector, bandwidth 100 Hz) and determination of output level (peak value detector, 1 min span of time) Maximum output levels: single-phase installations (test setups for each subfrequency band), three-phase installations with simultaneous transmission on all phases, three-phase installations with transmission on one phase Labels: labels on transmission installations have to indicate the output level class Disturbance thresholds (frequency ranges, quasi-peak values, average values) and the respective testing methods are provided mentioning wire-conducted disturbances, thresholds for the field intensity of disturbing radiation and thresholds for interfering power. If it is appropriate, signal transmission products should have a warning sign about grid signal transmission not being used for device control which might cause danger for persons or objects, if operated unintended or under malfunction. Devices with asymmetric input have to have the following warning sign: The use of this product is not permitted in living quarters because of safety specifications. If devices with asymmetric input are used in an industrial or commercial environment, the raiser bears all responsibility. Any use has to be conforming to local regulations Standards for voltage characteristics Standards DIN EN and IEC define the operating conditions and describing and specifying supply voltage characteristics in transmission or distribution, utilization systems and equipment. 75. DIN EN 50160: Voltage characteristics of electricity supplied by public distribution networks Scope of this standard: This standard applies to the hand-over point between low- and medium voltage public distribution networks and the user under normal operating conditions defining, de- 158

172 scribing and specifying supply voltage characteristics (frequency, size, wave form, symmetry of line voltage). It describes the limits and thresholds for the expected voltage characteristics in the entire public distribution network. It does NOT describe the average situation in a public distribution network as it is experienced by a single user. The characteristics of this standard must not be used as values for EMC or requirements for product standards. The standard does NOT apply to any form of operating conditions deviating from the normal operating conditions. Short Description of Standard: The standard contains numerous definitions for terms that are used to describe the voltage characteristics, e.g. hand-over point, supply voltage, flicker, etc. The standard is separated into 3 parts: Low-voltage characteristics, medium voltage characteristics and high-voltage characteristics. Each part describes enduring phenomena, as well as voltage incidents for the respective voltage range. The standardized nominal voltage (U n ) has to be 230 V between outer conductor and neutral conductor (three-phase power system with four conductors) or between the outer conductors (three-phase power system with three conductors) for low-voltage supply. Voltages for medium voltage supply (U c ) described in this standard range from 1 kv to 35 kv. Voltage for high-voltage supply (U c ) described in this standard range from 35 kv to 150 kv. The nominal frequency of the supply voltage has to be 50 Hz. 159

173 Slow voltage changes should not exceed ± 10% of the nominal voltage U n /agreed voltage U c under normal operating conditions (values just for low- and medium voltage supply). Long-term flicker caused by voltage changes should be P It 1 under normal operating conditions during 95% of any week-period. 95% of the 10-minute-averages of the effective value of the counter-system component (fundamental oscillation) of the supply voltage have to be within 0% to 2% of the respective co-system component (fundamental oscillation) during any week-period under normal operating conditions. Thresholds for harmonic voltages can be taken from table 1 (low-voltage), table 4 (medium voltage) and table 7 (high-voltage). The 3-secound-averages of the signal voltage must not exceed the values of figure 1 (low-voltage) or figure 2 (medium voltage) during 99% of any day. Because of the low resonance frequency of the high-voltage grid no values are defined for high-voltage supply. Voltage incidents are interruption of the supply voltage, collapse and oversize of the supply voltage and transient overvoltage between the outer conductor and earth. Respective descriptions and classifications, if possible, can be found in clause 4.3, 5.3 and 6.3. For most of the voltage incidents only guide values can be provided (see annex B). Remark: Test procedures can be found in EN IEC 60038: IEC standard voltages Scope of this standard: This standard applies to A.C. transmission, distribution and utilization systems and equipment for use in such systems with standard frequencies 50 Hz and 60 Hz and a nominal voltage above 100 V. It also relates to A.C. and D.C. traction systems and 160

174 equipment with nominal voltages below 120 V (A.C., frequency: 50 Hz or 60 Hz) or below 750 V (D.C.). This standard does NOT apply to signal voltages or measured values, standard voltages of components and parts used within electrical devices or parts of equipment. Short Description of Standard: The standard consists of two sections. Section 1: Defines the fundamental technical terms concerning voltages in systems described above: Nominal system voltage, highest and lowest voltages of a system (excluding transient or abnormal conditions), supply terminals, supply voltage, supply voltage range, utilization voltage, utilization voltage range, rated voltage (of equipment), highest voltage for equipment and normal operating conditions (for system) Section 2: Tables of standard voltages: Table 1: A.C. systems having a nominal voltage between 100 V and 1000 V inclusive and related equipment (Contains the nominal voltages of three-phase four-wire or three-phase three-wire systems and single-phase three-wire systems) Table 2: D.C. and A.C. traction systems (Contains the nominal system voltages and the lowest and highest voltages of D.C. systems and A.C. single-phase systems, as well as the rated frequency of A.C. systems) 161

175 Table 3: A.C. three-phase systems having a nominal voltage above 1 kv and not exceeding 35 kv and related equipment (Contains the highest voltage for equipment and the nominal system voltage) Table 4: A.C. three-phase systems having a nominal voltage above 35 kv and not exceeding 230 kv and related equipment (Contains the highest voltage for equipment and the nominal system voltage) Table 5: A.C. three-phase systems having a highest voltage for equipment exceeding 245 kv (Contains the highest voltage for equipment) Table 6: Equipment having a nominal voltage below 120 V A.C. or below 750 V D.C (Contains the preferred and supplementary nominal values for A.C. and D.C. voltages) Table A.1: Highest and lowest voltage values at supply terminals and at utilization terminals, as they can be derived from the text related to table 1 in section 2 (Contains the rated frequency, highest supply or utilization voltage, nominal voltage, lowest supply voltage and lowest utilization voltage of three-phase four-wire or threephase three-wire systems and single-phase three-wire systems) Standards for electricity metering equipments Standards DIN EN and DIN EN describe the requirements and test for metering equipment for domestic, industrial and light industry use. 162

176 77. DIN EN : Electricity metering equipment (a.c.) - Part 1 - General requirements, tests and test conditions - Metering equipment (class indexes A, B and C) Scope of this standard: This standard applies to newly produced watt-hour meters for domestic and industrial purposes as well as the use in light industries for the measurement of a.c. active electrical energy in 50 Hz grids. It applies to electromechanical or electronic active electrical energy meters for indoor and outdoor use consisting of a sensor and (a) displaying part(s) assembled in an enclosure. Operation displays and test ports are treated as well. This standard does NOT apply to watt-hour meters with terminal voltages exceeding 600 V, portable meters or reference standard meters Short description of standard: The standard defines several terms concerning metering equipment, e.g. watthour meter, electric test port, metering enclosure, etc. Standardized reference voltages for electricity metering equipment (see table 1): Standard voltage values (in V): 230/400 (direct connection), 100 / 3 to 110 / 3 (connection via voltage converter). Exceptional voltage values (in V): 220/380, 240/415 (direct connection), 20 / 3 (connection via voltage converter). Standardized reference amperages and respective ranges can be taken from tables 2 and 3. The standard value for the reference frequency is 50 Hz. Remark: In terms of operational temperature ranges the standard is closely linked to EN

177 The meter has to be able to withstand relative air moisture of < 75% (yearly average value), 95% (for 30 days spread across the year) and 85% (occasional). The producer has to determine temperature thresholds for the operating range, the limited operating range, storage and transportation according to table 7. Furthermore the producer has to indicate the site of operation (indoor/outdoor) and whether or not the meter is designed for condensing air moisture. The standard contains indications of test procedures for tests at dry warmth, tests at cold, test at moist warmth (cyclic) and protection against solar radiation. Voltage ranges of the meter: 0.9U n to 1.1 U n (determined operating range), 0.8 U n to 1.15 U n (extended operating range), 0.0 U n to 1.15 U n (threshold of operating range). The meter and all of its additional installations have to maintain their insulating characteristics under normal operating conditions taking into account all atmospheric influences and different voltages. The meter has to withstand sure voltage tests and a.c. voltage test according to chapter 7.3. In terms of electromagnetic compatibility (EMC) the standard considers the following electromagnetic influences as significant: Voltage drops and short-time interruption, electrostatic discharges, irradiated electromagnetic high-frequency fields, fast transient disturbances (bursts), line conducted disturbances inducted by high-frequency fields, voltage surges, (damped) oscillations, mains-frequent magnetic fields (external source), contact magnetic fields (external source) and radio interferences. Test procedures are mentioned for each of these significant influences in the standard. Mechanical requirements and respective test procedures defined in this standard: General mechanical requirements: Mechanical environment, design of the meter 164

178 Enclosures: Requirements, Mechanical tests (spring hammer test, shock test, oscillating test) Windows Terminals, terminal block(s) and protective earth conductor terminal Terminal cover Air gaps and creepage distances: Minimum values (see tables 4 and 5) Meters in insulation material housing of protection class II Heat and fire resistance Protection against ingress of moisture and dust Displaying of measured values Output installation and function control: Mechanical, electric and optical characteristics Labeling: Rating plates, connecting diagrams and terminal denotation Attendant information: Manual contents 78. DIN EN : Electricity metering equipment (A.C.) - Part 3 - Particular requirements - Static meters for active energy (class indexes A, B and C) Scope of this standard: This standard applies to newly produced electronic meters for active energy with accuracy class indexes A, B and C for domestic, industrial and light industry use. Their field of application is the measurement of the A.C. current active energy in 50Hz grids. It defines special requirements and procedures for type tests and differentiates between meters of accuracy classes A, B and C, directly connected meters, converter counters and meters for operation in grids with or without earth-fault neutralizers. The electronic meters consist of a readings recorder and at least one counter assembled together in an enclosure and are used indoor as well as outdoor. The standard applies to operation displays and test ports. 165

179 This standard does NOT apply to active energy meters with terminal voltages exceeding 600V, portable meters and reference standard meters. Short Description of Standard: This standard basically consists of various descriptions of type tests with the respective values and thresholds being provided in multiple tables. The meters have to meet the following demands: Power consumption: Total error of measurement not exceeding 5%, absorbed active and apparent power in each voltage path according to table 1 / current path according to table 2 A.C. voltage test: Test voltage has to be sinusoidal (frequency: 45 Hz - 65 Hz, time: 1 min), voltage supply source providing at least 500 VA, A.C. voltage test according to table 3 Requirements of DIN EN Demands for accuracy and tests: Thresholds of the percentage error of measurement with variable load Repeat accuracy: At least 3 measurements have to be done on each of the test points. Thresholds of the additional percentage error of measuring caused by variation of influencing values Maximum permissible error (MPE): A formula to determine the compound error of measurements is provided. Consequence of long term disturbances Short time over-currents: Must not damage the counter. After being restored the counter has to work according to its operating condition. Remark: All testing values and thresholds are defined within tables 4 to 14. The meter has to be tested with its enclosure and fixed meter cap. All parts intended to be grounded have to be grounded. 166

180 Before the start of any test the circuits have to be switched on for a sufficient time to gain thermal stability. If multiphase meters are used, the phase sequence has to conform to the connection circuit diagram and all voltages and currents have to be symmetric. Tests to determine the consequences of influencing values: variation of temperature, voltage or frequency Test of consequences of long term disturbances: high variation of voltage, inverted phase sequence (only three-phase meters), voltage unbalance (only three-phase meters), self-heating, earth connection, accuracy with presence of harmonics, influence of D.C. current and even-numbered harmonics in A.C. current paths, unevennumbered harmonics and harmonic undershoots in A.C. current paths, interference resistance against external magnetic D.C. field/grid-frequent magnetic fields/irradiated electromagnetic HF-fields, operation of additional attachments, interference resistance against electric quick transients or bursts/conductor bound disturbances induced by HF-fields/damped oscillation. Test of starting and open-circuit operation constraint: operating state of the meter, open-circuit operation constraint test, starting. In addition the standard provides definitions for short term over-currents and meter constants. Requirements to guarantee consistency and reliability of the meter are provided as well as demands concerning the software and the protection against manipulation. Necessary specifications that are mentioned within the standard: labeling of the functions realized by the software, labeling and protection of the software, labeling and protection of relevant functions for measurement, setup of parameters, setup of performance data, protection against improper influence of irrelevant software in terms of measurement and protection against improper influence by connection of other devices. 167

181 Plugs, socket-outlets and couplers Standards DIN EN , DIN EN and VDE-AR-E apply to plugs and socket-outlets, electric couplers and appliance couplers under different operation conditions, such as different operating voltage, currents and temperatures, etc. Standard DIN EN applies to double-pole appliance couplers just for A.C. currents. The abstracts of these standards are as follows: 79. DIN EN : Plugs, socket-outlets and couplers for industrial purposes - Part 1 - General requirements Scope of this standard: This standard applies to plug devices (plugs and socket-outlets, electric couplers and appliance couplers) with a nominal operating voltage of up to 690 V D.C. or A.C., 500 Hz and nominal currents of up to 250 A that are basically designed for industrial purposes indoor or outdoor. The devices are used in an ambient temperature between -25 C and + 40 C. Plug devices described in this standard have terminals without screws or insulation penetrating terminals with a nominal current of up to 16 A for series I and 20 A for series II. The standard does not exclude the use of these plug devices on construction sites, in agriculture sites, industrial establishments or in domestic work. This standard does NOT apply to plug devices that are predominantly designed for domestic work or similar purposes Short description of standard: Remark: Each clause of this standard also contains testing methods for the respective contents at the end of the clause (written in italics). 168

182 The standard defines several terms concerning plug devices, e.g. appliance coupler, switched socket-outlet, retaining device, etc. Plug devices have to be designed and built according to their purpose and in a way that they do not cause danger for the user or the environment. Wires used to test the devices have to be made of copper and have to be conforming to IEC 60227, IEC and IEC Preferred nominal operating voltage ranges and currents can be taken from the tables in clause 5. Plug devices are categorized by: Usage: Plugs, socket-outlets, couplers, appliance couplers Degree of protection: See IEC Existence of protective contacts Connection type of the wire Existence and type of interlock Type of terminals Connector type for terminals without screws and insulation penetrating terminals All plug devices have to be labeled with nominal currents and voltages, symbol for the kind of current, nominal frequency (if higher than 60 Hz), name or trademark of the manufacturer, type label (might be the order number), symbol for degree of protection and symbol pointing to the protective contact setting. The standard contains detailed information about all labels (caption, contents, symbols, etc.). Plug devices have to be designed in a way that no active parts of socket-outlets, couplers, plugs or appliance couplers, partially or completely in contact with their complementary parts, are tangible after their destined connection. 169

183 There must not be any chance of contact between the terminal of a plug or appliance connector and the terminal of a socket-outlet or coupler, as long as one of the terminals is tangible. Further information about protection against electric shock and the installment of protective earthing conductors can be looked up in clauses 9 and 10. Types of terminals and terminal tests defined in the standard: Screw terminals Terminals without screws Insulation penetrating terminals (IPT) Mechanical tests of terminals Voltage drop tests of terminals without screws and insulation penetrating terminal Tests for insulation penetrating terminals transmitting contact pressure through isolated parts Remark: Each section contains very detailed definitions of the respective terminal (characteristics, dimensions, connection, special operation requirements, etc.). Socket-outlets and couplers deviating from the requirements defined in this standard need to have an interlock. Plug devices with enclosures made of rubber or thermoplastic materials or rubberlike parts (e.g. seal rings or discs) have to be sufficiently resistant to age. Tangible surfaces of plug devices have to be free of groin, burr or any other form of sharp edges. Screws still have to be easily accessible. The user must not be able to change the setting of the protective contact or the N- contact. The degree of protection for plug devices has to be ensured at any time (with or without plugs or appliance connectors connected to socket-outlets or couplers). 170

184 Remark: Further information for the design of the different terminal types can be looked up in clauses 15, 16 and 17. Plugs and couplers must have a strain relief appliance designed in a way that the conductor is not able to have contact with tangible metal parts or inner metal parts, if connected to tangible metal parts (exception: a connection to the inner protective earth conductor exists). Plug devices have to be equipped with flexible conductors ( IEC ). Different types can be identified in table 9 mentioning nominal currents and nominal cross sections. The conductor connected to the protective earth conductor terminal has to be marked with the color combination green-yellow. Screws transmitting contact pressure and screws with a cross section dimension of under 3.5 mm used at the installment of the plug device have to be inserted into a metal nut or insert. The contact pressure must not be transmitted via insulation, pure mica or similar materials (exception: ceramics or sufficient suspension in the metal parts). Active parts, except for terminals, have to be made of copper, copper alloy (at least 50% copper) or another metal (at least as corrosion-resistant as copper, no inferior mechanical characteristics). Interlocks have to withstand a limited short circuit current of at least 10 ka. The operation of plug devices defined in this standard is not influenced by electromagnetic disturbances during conventional use. The plug devices do not emit electromagnetic disturbances themselves during permanent use. Very detailed test procedures and requirements are defined for (clauses 18 to 29): Protection type and degree of protection: Refers to IEC Leakage resistances and withstand voltages 171

185 Switching capacity (especially for plug devices without interlock) Performance during operation: Mechanical, electrical and thermal stress has to be resisted without exceptional wear or other damaging consequences. Rise of temperature Flexible conductors and their connection: Tensile tests and torque tests Mechanical stability Screws, active parts and connections: Withstand of mechanical wear Leakage distances, air gaps and distances over casting compounds Heat, fire and creep resistance Corrosion and rust protection Withstand test with limited short circuit current Remark: Each section contains detailed information, testing requirements and tables providing values, such as testing voltages, nominal currents, frequencies, etc. In addition several figures and test setups are given. 80. DIN EN : Plugs, socket-outlets, vehicle couplers and vehicle inlets - Conductive charging of electric vehicles - Part 1 - Charging of electric vehicles up to 250 A a.c. and 400 A d.c. Scope of this standard: This standard is applicable to plugs, socket-outlets, vehicle couplers, vehicle plugs and cables for electric vehicles used in charging systems with conductive energy transmission and control equipment with the following maximum voltage and current ratings: 690 V ac (50 Hz or 60 Hz) and 250 A 600 V dc and 400 A Systems described in this standard are meant to be used in circuits described in ( IEC ). Remark: this standard is closely linked to ( VDE AR-E and IEC ) 172

186 Short description of standard: Plug systems have to be designed in a way that can assure that no danger is caused by normal use, neither to the user nor the environment. This can be assured by tests described in this standard, where all tests are type tests of sets of three devices under test. This standard gives very detailed information for plug design, so all necessary safety requirements can be met by the final product. Furthermore, this standard gives very detailed information of all kinds of electrical, mechanical and other general tests that have to be performed in order to assure conformity. The explanation is valid for a great variety of different plugs. Four different vehicle couplers have to exist: Basic interface (B) for charging modes 1, 2, 3 ( IEC ) and up to 32 A Universal interface for 32 A AC current(u 32 ) Universal interface for high power AC (U A ) Universal interface for high power DC (U D ) Three different vehicle plugs have to exist: Universal interface U A Universal interface U D Basic interface (B) Universal plugs have to have up to 12 contacts; the basic plugs have up to 8. The usage of the different contacts is defined within the standard for both types of plugs. Plugs of type B only have to be compatible to sockets of type B, where as plugs of type U A have to be compatible to U A and U 32. The same is valid for type U D. U A and U D may not be compatible. Plugs and sockets have to be labeled accordingly to this standard. The following information has to be included using specified symbols: One symbol describing the type of plug (B, UA, UD, U32) 173

187 Rated current in A Rated voltage in V Name or brand of producer or responsible dealer Description of type which may be the article number Sized, position and layout of labels are explicitly defined within this standard. 81. VDE-AR-E : Plugs, socked outlets, vehicle couplers and vehicle inlets - conductive charging of electric vehicles - Part Dimensional interchange ability requirements for pin and contact-tube accessories Scope of this standard: This standard applies to vehicle plug systems with pins and contact tubes with a maximum rated voltage of 500 VAC, 50 Hz or 60 Hz, and a maximum rated current of 63A (rotating three phase) or 70 A (single phase), that are intended to conductively charge electric vehicles. They are applied in circuits described in ( IEC ). The standard applies to plugs operated at ambient temperatures of -30 C to 50 C and connected to wires made of copper or copper alloy. The system is able to bi-directionally transfer power, which is controlled by data exchange. Plug systems may be used for charging modes 1 to 3, case A to C, according to ( IEC ) and are recommended for current ratings described above. Short description of standard: Preliminary remark: This standard strongly references IEC , please always observe both standards. Rated values used: 0 to 30 V (signal and control purpose) AC voltages less than or equal to 500 V 174

188 20 A, 32 A or 63 A single-phase or three-phase currents 70 A single-phase currents Only charging modes 1 to 3 for currents up to 32 A (single-phase and three-phase) are allowed as well as currents up to 70 A (single-phase only). Mode 1 may be prohibited in some countries. The interface has to have up to 7 current or signal contacts with a well defined mechanical allocation of the contacts for rotating currents. Positions are defined within VDE-AR-E Data transmission and pilot control contact have to be used according to ( IEC ). For mode 1 and mode 2 any standardized plug / plug-in system may be used on grid side. For mode 3 the vehicle plug may be used on grid side to allow for cables with the same plugs on both ends. Contacts of plugs and plug-ins have to be labeled. Protective earth conductors have to have at least the same cross section as line conductors and have to be marked green/yellow. Physical dimensions are defined within this standard. Drawings are included, but may not be copied. Test criteria are defined, please note that these may differ from ( IEC ). 175

189 82. DIN EN : Appliance couplers for household and similar general purposes - Part 1 - General requirements Scope of this standard: This standard applies to double-pole appliance couplers just for A.C. currents (rated voltage up to 250 V, rated current up to 16 A) for household and similar purposes used for the connection of a flexible cable with electric devices or other electric installations to a power connection of 50 Hz or 60 Hz. Connector plugs have to be a constructional unit with the device/other installation or have to be installed in it. Ambient temperatures of appliance couplers described in this standard should not exceed 25 C. Short Description of Standard: The standard defines several terms concerning appliance couplers, e.g. different terminal forms, holding fixture, connector plug, etc. The standard rated voltage is 250 V. Standard rated currents are 0.2 A, 2.5 A, 6 A, 10 A and 16 A. All type tests mentioned in this standard are performed with A.C. currents and 50 Hz or 60 Hz and with an ambient temperature of (20 ± 5) C. Detailed information about all type test and routine test conditions can be found in clause 5 and annex A. Classification of appliance couplers: Highest temperature at the pin bases of the respective appliance couplers: Cold conditions (pin temperature up to 70 C), warm conditions (pin temperature up to 120 C), hot conditions (pin temperature up to 155 C) Type of connecting device: Protection classes I and II 176

190 Type of connection of the flexible cable: Re-connectable appliance couplers, non-re-connectable appliance couplers Coupler sockets have to be labeled with their rated current in Ampere (exception: 0.2 A coupler sockets), rated voltage in Volt, symbol for kind of current, name/trademark/origin of the manufacturer or responsible merchant, type symbol and an identification to specify adequate types of conductors for terminals without screws (conform to IEC clause 7.5). Appliance couplers have to be conforming to standard specification sheets C1 to C24 that are attached to this standard. Clause 9.1 assigns every appliance coupler type to its respective sheet. Single-pole connections between connector plugs and coupler sockets must not be possible ( IEC 60083). Furthermore it must not be possible to connect coupler sockets for connection of protection class II devices to coupler plugs for other devices, to connect coupler sockets for cold conditions to coupler plugs for warm or hot conditions, to connect coupler sockets for warm conditions to coupler plugs for hot conditions or to connect coupler sockets to coupler plugs with a higher rated current than the coupler socket. Appliance couplers have to be constructed in a way that no active parts of coupler plugs are tangible, if the coupler socket is partly or completely in contact with the plug. Active parts, the protective contact and metal parts connected with the contact must not be tangible after proper assembly. Appliance couplers with protective contact have to be constructed in a way that the connection of the protective contact is established before the conducting contacts are energized. When taken off the conducting contacts have to disconnect before the connection of the protective contacts is interrupted. Remark: Detailed information and test requirements about terminals, connections and the construction of appliance couplers can be found on clauses 12 and

191 Further requirements for appliance couplers and respective tests defined in this standard: Moisture resistance Leakage resistance and withstand voltage: The leakage resistance has to be at least 5 MΩ; table 2 defines the maximum diameters of flexible cables Required forces for insertion and take-off of coupler sockets: Maximum removal forces for multi-pin devices are 50 N (0.2 A, 2.5 A, 6 A, 10 A) and 60 N (16 A); minimum removal forces for single-pin devices are 1.5 N (0.2 A, 2.5 A, 6 A, 10 A) and 2 N (16 A) Contacts characteristics: Contacts and pins have to be sliding contacts; the contact pressure between contacts and pins must not depend on the flexibility of the insulating material Heat resistance of appliance couplers for warm and hot conditions Breaking capacity Behavior during intended operation: Withstand of mechanical, electrical and thermal stress without excessive abrasion or damaging consequences Rise of temperature: Contacts and conducting parts have to be designed to avoid extensive heating as a consequence of current conduction Connection of flexible cables: Flexible cables have to be conforming to IEC or IEC 60245; coupler socket types, flexible cable types and their respective minimum nominal diameters are provided in table 4, 5 and 6; connection of non-re-connectable coupler socket and re-connectable coupler sockets Mechanical strength Heat resistance and ageing Screws, conducting parts and connections: Electrical or mechanical connections have to withstand mechanical stress during intended operation; forbidden materials and screws for certain applications Leakage distances, air gaps and distances by insulation: Minimum distances are defined in table 9 Heat, moisture and leakage current resistance of insulating materials: The standard refers to the test procedures of IEC

192 Rust protection: All iron parts have to be sufficiently protected against rust EMC requirements: Interference resistance and transient emissions Remark: The standard provides very detailed specifications and test procedures for each of the sections mentioned above exchange stations There are no specific standards about battery exchange stations. Battery recycling and disposal Since 1991 the European Union (EU) enacted regularly directives concerning batteries. The EU member states are obliged to implement these directives into national laws. Consequently German battery ordinance [Batterieverordnung (BattV)] exist since 1998 which commits the battery industry to collect used batteries and assure their recycling. In 2006 a stricter regulation, the directive 2006/66/EC, was enacted by the EU. Based on this directive, the German battery law [Batteriegesetz (BattG)] came into force in December 2009, and commits producers and traders of all kinds of batteries to take back used batteries after EOL. Treatment and recycling is mandatory and forbids any land filling or incineration of identifiable portable and industrial batteries. The qualification of a battery recycling process is measured by a recycling efficiency, which has to reach at least 50 wt-%. The current EU directive 2006/66/EC and its national implementations in the EU regulate in detail battery recycling. Therefore is little need and room for further regulations by technical standards, ordinances or recommendations of battery associations. Only few documents were found for Li-Ion batteries in the scope of this study. The technical standards of the DIN EN set and accordingly VDE 0510 with the topic Safety requirements for secondary batteries and battery installations refer to the EU directive 2006/66/EC. The DIN EN applies to all kinds of secondary batteries and therefore includes also Li-Ion batteries. The DIN EN set include 179

193 a Part 1 from 2008 which addresses to general safety information, a Part 2 from 2001 which addresses to stationary batteries, a Part 3 from 2003 which addresses to traction batteries and a Part 4 from 2007 which addresses Batteries for use in portable appliances. In the following are quotations listed from Part 1 to 4 with the references to the EU batteries directives: 83. DIN EN : Safety requirements for secondary batteries and battery installations Part 1, Chapter 13 aspects to disposal and to environment Werden verbrauchte Zellen oder Batterien entsorgt oder wiederverwertet ist folgende EG-Richtlinie zu beachten: Richtlinien 2006/66/EG des Europäischen Parlaments und des Rates über Batterien und Akkumulatoren sowie Altbatterien und Akkumulatoren (Aufhebung der Richtlinie 91/157/EWG). Part 2, Chapter 13.2 dismantling, disposal and reuse of batteries : Die Demontage und Entsorgung von stationären Batterien darf nur durch ausgebildetes Personal erfolgen. Folgende EG-Richtlinien müssen eingehalten werden: - 91/157/EWG (Richtlinie des Rates) Batterien und Akkumulatoren mit gefährlichen Stoffen - 93/86/EWG (Richtlinie des Rates) Angleichung an den technischen Fortschritt der Richtlinie 91/157/EWG Part 3, Chapter 12.2 dismantling, disposal and recycling of batteries Die Demontage und Entsorgung von Batterien darf nur von qualifizierten Personen durchgeführt werden. Folgende EC-Verordnungen sind zu beachten: - 91/157 (EEC, council directive) Batteries and accumulators containing certain dangerous substances - 93/86 (EEC, commission directive) 180

194 Adapting to technical progress Council Directive 91/157/EEC on batteries and accumulators containing certain dangerous substances Part 4, Chapter 10 Labeling and disposal of batteries for hand-held use Wenn verbrauchte Zellen oder Batterien entsorgt und weiterverwertet werden sollen, müssen die folgenden Richtlinien der Europäischen Union beachtet werden: - 91/157/EEC ( council directive) Batteries and accumulators containing certain dangerous substances - 93/86/EEC (commission directive) Adaptation to technical progress Council Directive 91/157/EEC 3.2 Standards under development in Germany and EU Standards ISO and -2 are under development. There are also a Proposal to TC 21A/WG 5 that is about the safety requirements for secondary lithium batteries used in hybrid vehicles and mobile applications, and ISO/DIS Draft that is specifies test procedures for lithium-ion battery packs and systems, to be used in electrically propelled road vehicles. 84. ISO and -2 (under development): Road vehicles - Communication protocol between electric vehicles and grid - Part 1 - Definitions and use-cases; Part 2 - Sequence diagrams and communication layers Scope of this standard: It will apply to the interface of road vehicles and the supply grid providing a communication protocol. There is a proposal to TC 21A/WG 5, it is identically with the German pre norm VDE V It is about: 181

195 85. Proposal to TC 21A/WG 5(2008): Safety requirements for secondary lithium batteries for hybrid vehicles and mobile applications Scope of this standard: This standard specifies requirements and tests for secondary lithium batteries to ensure their safe operation in automotive engineering. The provisions are valid for the intended use as well as for simple, reasonably foreseeable misuse. This standard applies to working voltages from 60 V DC up to V DC in any type of hybrid vehicles, electric vehicles and similar applications licensed for public transport. This standard deals with cells and batteries containing lithium in any form, including lithium metal, lithium alloy or lithium ion systems. Lithium metal and lithium alloy primary electrochemical systems use lithium metal or a lithium alloy, respectively, as the negative electrode. Lithium ion secondary electrochemical systems use intercalation compounds (intercalated lithium exists in anionic or quasi-atomic form within the lattice of the electrode material) in the positive and the negative electrodes. This standard also applies to lithium polymer cells and batteries which are considered either as primary lithium metal cells and batteries or as secondary lithium ion cells and batteries, depending on the material used for the negative electrode. This standard addresses the safety of secondary lithium cells and batteries in their applications. Thus it is especially intended as a guideline for manufacturers producing batteries or battery banks from single cells or batteries. 182

196 ISO/DIS is a draft international standard: 86. ISO/DIS Draft: Electrically propelled road vehicles - Test specification for lithium-ion traction battery systems - Part 2 - High energy applications Scope of this standard: This standard specifies test procedures for lithium-ion battery packs and systems, to be used in electrically propelled road vehicles. The specified test procedures shall enable the user of this standard to determine the essential characteristics on performance, reliability and abuse of lithium-ion battery packs and systems. The user shall also be supported to compare the test results achieved for different battery packs and systems. Therefore the objective of this standard is to specify standard test procedures for the basic characteristics on performance, reliability and abuse of lithium-ion battery packs and systems. This standard enables setting up a dedicated test plan for an individual battery pack or system subject to an agreement between customer and supplier. If required, the relevant test procedures and/or test conditions of lithium-ion battery packs and systems may be selected from the standard tests provided in this standard to configure a dedicated test plan. 183

197 Figure 4 Test overview in ISO/DIS Draft NOTE Testing on cell level is under consideration in IEC. International Working Group: ISO/TC 22/SC 21 Electrically propelled road vehicles National Working Group: NA AA Elektrische Straßenfahrzeuge There are also some European activities on defining of recycling efficiency. The European directive 2006/66/EC provides for recycling and collecting targets to be reached by 2011 and 2012 respectively at the latest. It has been set that any process for the recycling of batteries will be obliged to reach a recycling efficiency of 65% by average weight for lead-acid batteries, 75% for nickel-cadmium and 50% for other battery types. Due to various reasons the recycling efficiency of a process cannot be measured reliably, so that it has to be calculated. But while the recycling targets have been fixed, it has not been defined how the recycling efficiency is calculated. Up to now no agreement on a calculation method for recycling efficiencies regarding battery recycling processes have been finalized. However the calculation method will have a major impact on the battery recycling industry in Europe. Critical points that have to be reflected by an equation are for example the definition of system bounda- 184

198 ries, of battery elements and components to be considered and those to be neglected, of assigning material values to the input and output materials and of ensuring a transferability of the equation to all related battery systems [Fri2007]. BIPRO was assigned by the European Commission to compile a Study on the calculation of recycling efficiencies and implementation of export article (Art. 15) of the Batteries Directive 2006/66/EC. This study is not only a compilation of technical data and information but also at providing the basis for a European Commission policy proposal on: 1. a method for calculation of the recycling efficiencies laid down in Part B of Annex III of the Batteries Directive (2006/66/EC); 2. an appropriate recording/reporting format to be used by recycling facilities; 3. a description of minimum treatment requirements concerning Part A of Annex III of the Batteries Directive (2006/66/EC); 4. criteria to assess equivalent conditions that the recycling operations need to meet when waste batteries and accumulators are exported out of the community; 5. a set of practical sound evidence that should be provided in order to prove compliance with these criteria. Detailed technical information compiled in the report as practical and factual information source concerns particularly 6. Information on BAT 7. Description of the core elements of BAT 185

199 4. Comparison of standards in China and in Germany/EU for vehicle batteries 4.1 Introduction of standards for vehicle batteries in China In order to promote the development of the traction battery and electric vehicle, the China Automobile Standard Committee SC - Electric Vehicle began to work on some relevant standards since the 9th Five-Year Plan. In 2001, four traction battery standards for electric vehicles GB/T , GB/T , GB/Z and GB/Z were approved and issued by the competent authorities, three of which were organized and centralized by Automotive Standard Committee. During the 10th Five-Year Plan, China witnessed the great development of the electric vehicles (including traction battery). The technologies from four standards that are mentioned above could not meet the needs in this industrial. The four standards in automotive industrial QC/T , QC/T , QC/T and QC/T , worked out by China Automotive Standard Committee and Electric Vehicles Subcommittee according to the demand of the Development and Reform Commission and Ministry of Science & Technology under the advanced technologies, have become the supporting files of the Development and Reform Commission to promote electric vehicles. In section 4.3, the Chinese electrical vehicle battery standard QC/T is compared with the electrical vehicle battery standards in Germany and EU. The detailed Chinese electrical vehicle battery standard QC/T is as follows: QC/T Scope of this standard This standard defines the requirements, testing methods, checking rules, symbols, package, transport and storage of Li-ion battery used in electric vehicles. The nominal voltage of single battery is 3.6 V (battery package is N 3.6 V). 186

200 2 Test methods and requirements 2.1 single battery Appearance Check appearance Requirement: No deformation or crack: clean, neat, reliable connection, symbol clearance Polarity Check polarity Requirement: The polarity is correct with clear positive and negative symbols Size and mass Measure size and mass: Requirement: in accordance with technologies provided by the manufacturer Discharge capacity at 20 C Test method: Charge - 1/3C discharge (20 C ± 5 C) to 3 V or other limited voltage given by the battery manufacturer - Calculate capacity, 5 times was permitted. Requirement: no less than rated value and no more than 110% of rated value Discharge capacity at 20 C Test method: Charge - storage for 20 h at (-20 C ± 2 C) - 1/3C discharge (-20 C ± 2 C) to 2.8 V or other limited voltage given by the battery manufacturer - Calculate capacity. 187

201 Requirement: no less than 70% of rated value Discharge capacity at 55 C Test method: Charge - storage for 5 h at 55 C ± 2 C - 1/3C discharge (55 C ± 2 C) to 3.0 V or other limited voltage given by the battery manufacturer - Calculate capacity. Requirement: no less than 95% of rated value Rate discharge capacity at 20 C Test method: Charge - 1.5C discharge (20 C ± 5 C) to 3 V or other limited voltage given by the battery manufacturer - Calculate capacity. Requirement: no less than 90% of rated value. Test method: Charge - 4C discharge (20 C ± 5 C) to 2.8 V or other limited voltage given by the battery manufacturer - Calculate capacity. Requirement: no less than 80% of rated value Charge maintenance and recovery at normal and high temperatures Test method at room temperature: Charge - storage for 28 d at 20 C ± 5 C - 1/3C discharge (20 C ± 5 C) to 3 V or other limited voltage given by the battery manufacturer. - charge maintenance performance can be demonstrated in terms of percentage - Charge - storage for 28 d at 20 C ± 5 C - 1/3C discharge(20 C ± 5 C) to 3 V or other limited voltage given by 188

202 the battery manufacturer - charge maintenance performance can be demonstrated in terms of percentage Test method at high temperature: Charge - storage for 7 d at 55 C ± 2 C - recovery 5 h at 20 C ± 5 C - 1/3C discharge (20 C ± 5 C) to 3.0 V or other limited voltage given by the battery manufacturer. - charge maintenance performance can be demonstrated in terms of percentage - Charge - 1/3C discharge (20 C ± 5 C) to 3.0 V or other limited voltage given by the battery manufacturer - charge maintenance performance can be demonstrated in terms of percentage. Requirement: charge maintenance rate and recovery performance are no less than 80% and 90% of rated values respectively at normal and high temperatures Storage Test method: Charge - 1/3C discharge(20 C ± 5 C)for 2 h - storage for 90 d at 20 C ± 5 C - Charge - 1/3C discharge(20 C ± 5 C) to 3.0 V or other limited voltage given by the battery manufacturer - charge maintenance performance can be demonstrated in terms of percentage. 5 times was permitted. Requirement: Capacity recovery performance is no less than 95% of rated value Cycle life Charge - 0.5C discharge (20 C ± 2 C) to 80% of rated value - charge - repeat 24 times - stop the test if it is less than 80% of rated value. Requirement: 189

203 Cycle life is no less than 500 times Safety performance a) over discharge: Test method: Charge - 1/3C discharge (20 C ± 5 C) to 0 V Requirement: No explosion, no fire and no leakage. b) Over charge: Test method (high energy battery): 1C charge to 5 V or for 90 min Test method (high power battery): 3C charge to 10 V. Requirement: No explosion, no fire. c) Short circuit: Test method: Charge - short circuit t for 10 min. Requirement: No explosion, no fire. d) Drop 190

204 Test method: Charge - free drop (20 C ± 5 C) to 20 mm hard wood floor from 1.5 m, once at each side. Requirement: No explosion,no fire and no leakage. e) Heat Test method: Charge - placed in thermo tank (85 C ± 2 C) for 120 min Requirement: No explosion; no fire. f) Extrusion Test method: Charge - perpendicular to pole plate; extrusion head area is no less 20 cm 2. Continue the operation till the shell blasts or short circuit inside takes place. Requirement: No explosion, no fire. g) Prickling Test method: 191

205 Charge - prick with diameter 3 mm diameter 8 mm steel needle, at 10 mm/s - 40 mm/s, perpendicular to the plate. Requirement: No explosion, no fire. 2.2 Battery module (5 or more batteries- connection in series) Appearance Test method Check appearance Requirement: No deformation or crack: clean, neat, reliable connection, symbol clearance Polarity Test method: Check polarity Requirement: The polarity is correct with clear positive and negative symbols Size and mass Test method: Measure size and mass. Requirement: in accordance with technologies provided by the manufacturer. 192

206 2.2.4 Discharge capacity at 20 C Test method: Charge - 1/3C discharge (20 C ± 5 C) to the n X 3 V or to 2.5 V for single battery - record voltage and temperature. Requirement: Battery module (5 or more batteries), no less than rated value and no more than 110% of rated value Simple simulate cycle Test method: Charge - test cycle Figure 5 High energy battery test cycle (x-axis: time (min); y-axis: discharge current (I 3 )) 193

207 Figure 6 High power battery test cycle (x-axis: time (s); y-axis: current (I 3 )) Requirement: Pulses are not less than 4 analyze data Resistance to vibration Test method: Charge - vibration (1/3C discharge, up and down, 10 Hz - 55 Hz, 30 m/s 2,2 h,10 times). Requirement: Battery module (5 or more batteries).no current step, abnormal voltage, no deformed, no leak, reliable connection, Structural integrate, no release. 194

208 2.2.7 Safety performance a) Discharge: Test method: Charge - 1/3C discharge (20 C ± 5 C) to 0 V Requirement: No explosion, no fire, and no leakage. b) Charge: Test method (high energy battery): 1C charge to 5 V or for 90 min Test method (high power battery): 3C charge to 10 V. Requirement: No explosion, no fire. c) Short circuit: Test method: Charge - short circuit for 10 min. Requirement: No explosion, no fire. 195

209 d) Heat Test method: Charge - placed in thermo tank (85 C ± 2 C) for 120 min Requirement: No explosion, no fire. e) Extrusion Test method: Charge - one side is plate, the other sketch plate. The diameter of extrusion head is 70 mm, and the space is 30 mm extrusion plate profile is 300 mm l50 mm. Perpendiculars to the direction of arrange. - 85% of the original size,for 5 min. - 50% of the original size. No explosion, no fire. f) Prickling Test method: Charge - prick with φ3 mm - φ8 mm steel needle, at 10 mm/s - 40 mm/s, perpendicular to the plate, no less than 3 single batteries Requirement: No explosion, no fire 196

210 4.2 Introduction of standards for vehicle batteries in Germany and EU In section 4.3 the standards in Germany and EU for the electrical vehicle battery IEC , ISO , ISO and VDA are compared with the Chinese standard QC/T , and the detailed introductions for these four standards in Germany and EU are as follows: IEC Secondary batteries for the propulsion of electric road vehicles IEC Part 3: Performance and life testing (traffic compatible, urban use vehicles) This standard is related to all secondary batteries for propulsion, including Li. Scope This part of IEC is applicable to performance and life testing of electrical energy storage systems for general purpose, traffic compatible, light urban use electric road vehicles that are designed for transportation of passengers or goods in city centre driving. This part is not applicable to systems for specialist vehicles such as public transport vehicles, refuse collection vehicles, scooters or large commercial vehicles. The figures chosen as generally representative of town operation are as follows: Average road speed: 30 km/h. Energy consumption, from the battery: 100 Wh/t km. Capacity Test It is used a Dynamic Stress Test (DST) established by the United States Advanced Battery Consortium (USABC), in turn based on the earlier Simplified Federal Urban Driving Cycle (SFUDS) test cycle with 20 different power discharge and charge steps. Normal power test Maximum power capability 24 kw and the maximum regenerative power is 14.7 kw. 197

211 High Power test Maximum power capability 100 kw and the maximum regenerative power is 50 kw. Energy Content The test cycle values that were used, the total number of micro-cycles, the total watthours (Wh) removed during the discharge portions of the test and the total Wh returned during the simulated regenerative braking portions of the test shall be recorded and declared. The battery energy content shall be declared as the net Wh output i.e., the difference between the total Wh removed and the total Wh returned. Life testing The battery shall be discharged with the DST-cycle until 80% of its benchmark energy content is removed. The battery shall then be recharged. Every 50 cycles, the battery energy content shall be determined using the benchmark test cycle. During this test, a continuous record of battery system voltage shall be made so that other battery system parameters may be determined. In addition, the total number of micro-cycles, the total Wh removed and the total Wh returned shall be recorded and declared as the battery energy content at this stage of the life test programme. Maximum power and battery resistance Maximum deliverable power is defined, as the power at which the current (Ipk) that is drawn depresses the battery terminal voltage to 2/3 of the open circuit value. I pk = 2 V oc /3 R batt P max = 2 V oc I pk /3 R batt is the calculated battery resistance; 198

212 V oc is the calculated open circuit voltage of the battery; I pk is the calculated peak current at maximum power; P max is the calculated maximum power of the battery. Charging/discharging tests Charge efficiency during normal operation calculated by recording the energy input to the battery and the energy output from the battery during discharge/charge cycle, SOC 100% to 0%. The charge efficiency may be determined for discharge to other states of charge (e.g. 20%) Rapid charging 40% SOC to 80% SOC, in accordance with the instructions of the battery manufacturer Regenerative braking charge The charge acceptance capabilities of the battery during normal regenerative braking shall be assessed by inspection of voltage and current measured during the benchmark capacity testing cycles of the life test programme. Partial discharge testing The battery or sub-module shall be discharged to the end of the micro-cycle representing 20% of the benchmark capacity i.e., to 80% DOD, and then recharged in the normal way. This test shall be repeated a total of 20 times at a rate of one test cycle per day. This test may be repeated using 50% SOC as the depth of discharge, if required. Self discharge Rest period: 720 h (30 days), preferred values for alternative durations are 2 days and 5 days. SOC: 100% T: RT, preferred values for alternative temperatures are 20 C and + 40 C. 199

213 Capacity loss testing Certain batteries may suffer permanent capacity loss following a period of standing without use. Details of the test procedure to determine this permanent loss are under consideration. Operational extremes of use Continuous discharge at maximum drive system power (e.g. prolonged hill climbing) 100% SOC battery shall be discharged at the maximum power level of the drive system. The test shall be terminated when any of the limits imposed by the battery manufacturer are reached. Recharge at maximum regenerative power as a function of state of charge (0%, 25%, 50%, 75% or 100%) 15 min with power in step 19 (highest reg. power: 14.7 kw or 50 kw) of the DST-cycle. Thermal tests (especially for HT-batteries) Thermal cycling There are conditions under which the batteries can be thermally cycled. The details of this test remain to be determined. Thermal losses The battery 100% SOC shall be allowed to stand and the average power input required maintaining the operating temperature over a period of 24 h shall be measured and declared as the thermal loss of the system. 200

214 ISO Electrically propelled road vehicles - Test specification for lithiumion traction battery packs and systems ISO Part 1: High power applications This standard is related only to Li-ion traction battery packs and systems and not to cells. Scope of standard This Standard specifies test procedures for lithium-ion battery packs and systems, to be used in electrically propelled road vehicles. The specified test procedures shall enable the user of this standard to determine the essential characteristics on performance, reliability and abuse of lithium-ion battery packs and systems. Figure 7 Overview on test procedures in ISO

215 Standard cycle (SC) To ensure the same initial condition for each test of a battery pack or system: T: RT Discharge: C1 is recommended, discharge till the specifications given by the supplier. Charge: According to the specifications given by the supplier Energy and capacity test The three hour rate (C/3) is used as reference for static capacity and energy measurement for packs and systems. T: - 18 C, 0 C, RT, 40 C Discharge: 1C (standard), 10C, 20C and/or if applicable the maximum C rate as permitted by the supplier. The test shall be terminated on supplier specified discharge voltage (depending on discharge rates). Power and internal resistance test The objective of this profile is to demonstrate the discharge pulse power and regenerative charge pulse power capabilities at various SOC. T: - 18 C, 0 C, RT, 40 C SOC: 80%, 65%, 50%, 35%, 20% (20% only if the maximum discharge current is 10C, to avoid a deep discharge). Discharge: constant current at levels given by the supplier s maximum rated pulse discharge current I max with an upper limitation of 400 A. Pulse duration: 0.1 s, 2 s, 10 s and 18 s Reg. charge: constant current 75% of the discharge current. Pulse duration: 0.1 s, 2 s, and 10 s No load capacity loss test 202

216 This test is to measure battery systems capacity loss when the battery system is not used for an extended period of time, analogous to the situation that occurs when a vehicle is not driven for such a period and the battery system is not placed on charge. Rest period: 24 h (1 day), 168 h (7 days) and 720 h (30 days). SOC: 80% Temperatures: RT and 40 C. Capacity loss at storage test This test is to measure battery system capacity loss when the battery system is stored for an extended period of time, analogous to the situation that occurs when the battery system is shipped from a manufacturer to a customer. This test applies to battery systems only. Rest period: 720 h (30 days) SOC: 50% T: 45 C Cranking power at low temperatures test The aim is to generate a data basis including time depending power output at low temperatures. This test applies to battery systems only. T: - 18 C, also - 30 C if agreed by the supplier SOC: 20% or the lowest SOC level specified by the supplier Discharge: Constant voltage discharge at the lowest permitted system discharge voltage level according to the supplier (e.g. 2.5 V per cell, but not less than 55% of maximum charging voltage) Time: 5 s 203

217 Sampling rate: 50 ms Cranking power at high temperature test The aim is to generate a data basis including time depending power output at high temperatures. This test applies to battery systems only. T: 50 C, or maximum temperature specified by the supplier SOC: 20% or the lowest SOC level specified by the supplier Discharge: Constant voltage discharge at the lowest permitted system discharge voltage level according to the supplier (e.g. 2.5 V, but not less than 55% of max. charging voltage) Time: 5 s Sampling rate: 50 ms Energy efficiency ( ) test The battery efficiency affects directly the fuel consumption and emission levels of the HEV. The test simulates a dynamic drive profile. T: 0 C, RT, 40 C, SOC: 35%, 50%, 65% Profile: 20C 10 s discharge pulse, followed by a rest of 40 s, followed by 20C 10 s charge ( regenerative ) pulses. 204

218 t end t t start t U I end start U I discharge charge dt dt Cycle life test Energy throughput has a significant influence for the life-time of a battery. The applied high C-rates and SOC-swing cover the vehicle demands. T: RT and 40 C (i.e. RT during rest periods, certain higher during operation). Life time cycles: discharge-rich profile where the discharge amount is slightly larger than the charge amount, from an upper SOC to a lower SOC, given by the customer, otherwise SOC 80% to 30%. Plus charge-rich profile where the charge amount is slightly larger than the discharge amount from a lower SOC to a higher SOC, given by the customer, otherwise SOC 30% to 80%. Figure 8 Lifetime cycles defined in ISO

219 Cycling time: 22 h of cycling and at the end of the charge-rich profile 2 h rest time for equilibration of cell voltages and temperature Reliability test procedures Dewing test (temperature change) This test simulates the use of the system/component under high ambient humidity. The failure modes addressed are electrical malfunction(s) caused by moisture (e.g. leakage current caused by a printed circuit board which is soaked with moisture). This test applies to battery pack and systems. Perform the test in reference to IEC , T: upper temperature + 80 C, Cycle numbers: 5 For detailed test description see ISO Vibration test This test checks the battery for malfunctions and breakage caused by vibration. Vibration of the body is random vibration induced by rough-road-driving as well as internal vibration of the power train. The main failures to be identified by this test are breakage and loss of electrical contact. The vibration test is composed of two parts. Part 1 Part 2 is intended to test the behaviour of the overall battery pack due to the big mass of the battery the maximum test frequency is limited to 200 Hz, is intended to test separately the behaviour of the electric and electronic devices due to the low masses the test frequency is increased to 1000 Hz. 206

220 Duration: test duration per spatial direction of 21 h (one sample), 15 h (two identical samples) or 12 h (three identical samples) Thermal shock cycling test This test checks mainly the thermal stability of the battery materials. SOC: 50% T-cycling: 80 C to - 40 C (time to reach each temperature extreme shall be 30 min or less), the battery shall remain at each extreme for a minimum of one hour. A total of five thermal cycles shall be performed. Mechanical shock The load occurs, e.g. when driving over a curbstone at high speed. Failure mode is a mechanical damage of components due to the resulting high accelerations. Acceleration from the shock in the test shall be applied in the same direction as the acceleration of the shock that occurs in the vehicle. If the direction of the effect is not known, the battery shall be tested in all six spatial directions. SOC: 50% Figure 9 Mechanical shock definition in ISO

221 Abuse test procedures Short circuit With the short circuit test procedure it is intended to check the functionality of the overcurrent protection device. This test applies to battery packs and systems. T: Nominal operating temperature SOC: 100% Conductor: 100 mω Time: hard short in less than one second for 10 min Overcharge protection test With the overcharge test procedure it is intended to check the functionality of the overcharge protection function. This test applies to battery systems only. T: RT SOC: 100% Integrated, passive circuit protection devices: Yes Battery system shall be controlled by the BMS Charge current: recommended 5C Max. charge voltage: battery system voltage + 20% of battery system voltage Duration: continue charging until BMS interrupt the charging Max. duration: terminated when the SOC level is above 130% or when cell temperature levels are above 55 C. Overdischarge protection test With the overdischarge protection test procedure it is intended to check the functionality of the overdischarge protection function. 208

222 This test applies to battery systems only. T: RT SOC: 100% Integrated, passive circuit protection devices: Yes Battery system shall be controlled by the BMS: Yes Discharge current: recommended 1C Duration: continue charging until BMS interrupt the charging Max. duration: achievement of 25% of the nominal voltage level or 30 min after passing the normal discharge limits Figure 10 Assignment of tests to systems and pack in ISO The results of the abuse tests are classified by severity levels (see the following table). 209

223 Figure 11 Classification of Criteria and Efffect in ISO ISO Electrically propelled road vehicles - Test specification for lithiumion traction battery packs and systems ISO Part 2: High energy applications This standard is related only to Li-ion traction battery packs and systems and not to cells. Scope of this standard This Standard specifies test procedures for lithium-ion battery packs and systems, to be used in electrically propelled road vehicles. The specified test procedures shall enable the user of this standard to determine the essential characteristics on performance, reliability and abuse of lithium-ion battery packs and systems. Standard cycle (SC) To ensure the same initial condition for each test of a battery pack or system T: RT Discharge: C/3 is recommended, discharge till the specifications given by the supplier. 210

224 Charge: C/3 is recommended, charge till the specifications given by the supplier. Energy and capacity test The three hour rate (C/3) is used as reference for static capacity and energy measurement for packs and systems. T: - 25 C, - 10 C, 0 C, RT, 40 C Discharge: C/3 (standard), 1C, 2C and if applicable the maximum C rate as permitted by the supplier Terminated on supplier specified discharge voltage (depending on discharge rates). Power and internal resistance test The objective of this profile is to demonstrate the discharge pulse power and regenerative charge pulse power capabilities at various SOC. T: - 25 C, - 18 C, - 10 C, 0 C, RT, 40 C SOC: 90%, 70%, 50%, 35%, 20% (20% only if the maximum discharge current is 5C, to avoid a deep discharge). Discharge: constant current at levels given by the supplier s maximum rated pulse discharge current Imax with an upper limitation of 400 A. Pulse duration 0.1 s, 2 s, 10 s, 18 s, 18.1 s, 20 s, 30 s, 60 s, 90 s and 120 s and Reg. charge: constant current 75% of the discharge current. Pulse duration: 0.1 s, 2 s, 10 s and 20 s. Energy efficiency at fast charging test The energy efficiency at fast charging test at different fast charging levels has a significant influence to the overall vehicle efficiency, which affects directly the fuel consumption and emission levels of the HEV. 211

225 This test applies to battery systems only. T: RT and 0 C Charge: 1C, 2C, and I max Charging procedure: According to suppliers recommendation Initial starting SOC: SOC value after a C/3 discharge No load SOC loss The purpose of this test is to measure the capacity loss of a battery system if is not used for an extended period of time. This test refers to a scenario that a vehicle is not driven for a longer time period. This test applies to battery systems only. T: RT and 40 C SOC: 100% or by supplier and customer agreement. Rest period: 48 h (2 day), 168 h (7 days) and 720 h (30 days). SOC loss at storage The purpose of this test is to measure the capacity loss at storage of a battery system if is stored for an extended period of time. This test refers to a scenario when the battery system is shipped from a supplier to a customer. This test applies to battery systems only. T: 45 C. SOC: 50% or by supplier and customer agreement. Rest period: 720 h (30 days). 212

226 Cycle life test Energy throughput has a significant influence for the life-time of a battery. The applied high C-rates and SOC-swing cover the vehicle demands. Electric vehicle applications T: between RT and 40 C (i.e. RT during rest periods, certain higher during operation). Test profile: dynamic discharge profile A, where the amount of discharged energy is significantly lower than the dynamic discharge profile B. dynamic discharge profile B, where the amount of discharged energy is significantly higher than the dynamic discharge profile A. Test cycle: Start-SOC is defined by the customer otherwise at SOC 100%. Profile A + profile B + profile A down to an SOC defined by the customer otherwise to SOC 20% or to the lower voltage limit specified by the supplier + charge according to the supplier to the upper limit of SOC. total time for one cycle (discharge [A, B, A], charge including a rest time for cell balancing) to 8 hours. These cycles are to repeat for 28 days. Plug-in hybrid electric vehicle applications T: between RT and 40 C (i.e. RT during rest periods, certain higher during operation). Test profile: Electric vehicle discharge profiles: dynamic discharge profile A, where the amount of discharged energy is significantly lower than the dynamic discharge profile B. dynamic discharge profile B, where the amount of discharged energy is significantly higher than the dynamic discharge profile A. Charge sustaining cycles: 213

227 plug-in discharge-rich profile where the discharge amount is slightly larger than the charge amount. plug-in charge-rich profile where the charge amount is slightly larger than the discharge amount Test cycle: Start-SOC is defined by the customer otherwise at SOC 100%. Discharge by performing the power profile cycling for EV- batteries (profile A + profile B + profile A) down to an SOC determined by the lower limit for the charge depleting operation of 30% SOC or as specified by the customer, followed by the plug-in discharge-rich and the plug-in chargerich profile. The SOC swing range during the charge sustaining cycling shall be defined by the customer, otherwise the cycle test shall be performed between 25% and 35% SOC for the next following 2 hours. Figure 12 Test cycle in ISO Within the next step, the battery system shall be charged according to the suppliers recommendation to the upper limit of SOC (100% SOC) with the requirement to maintain the total time for the test cycle to 8 hours. These cycles are to repeat for 28 days. 214

228 Reliability test procedures Dewing test (temperature change) This test simulates the use of the system/component under high ambient humidity. The failure modes addressed are electrical malfunction(s) caused by moisture (e.g. leakage current caused by a printed circuit board which is soaked with moisture). This test applies to battery pack and systems. Perform the test in reference to IEC , T: upper temperature + 80 C, Cycle numbers: 5 For detailed test description see ISO Thermal shock cycling test This test checks mainly the thermal stability of the battery materials. SOC: 80% T-cycling: 85 C or T max as specified between supplier and customer to - 40 C (time to reach each temperature extreme shall be 30 min or less) The battery shall remain at each extreme for a minimum of one hour. A total of five thermal cycles shall be performed. Vibration test This test checks the battery for malfunctions and breakage caused by vibration. Vibration of the body is random vibration induced by rough-road-driving as well as internal vibration of the power train. The main failures to be identified by this test are breakage and loss of electrical contact. The vibration test is composed of two parts. Part 1 is intended to test the behaviour of the overall battery pack 215

229 Part 2 Duration: Due to the big mass of the battery the maximum test frequency is limited to 200 Hz, is intended to test separately the behaviour of the electric and electronic devices Due to the low masses the test frequency is increased to 2000 Hz. test duration per spatial direction of 21 h (one sample), 15 h (two identical samples) or 12 h (three identical samples) Mechanical shock The load occurs, e.g. when driving over a curbstone at high speed. Failure mode is a mechanical damage of components due to the resulting high accelerations. Acceleration from the shock in the test shall be applied in the same direction as the acceleration of the shock that occurs in the vehicle. If the direction of the effect is not known, the battery shall be tested in all six spatial directions. SOC: 50% Figure 13: Shock test in ISO Abuse test procedures Short circuit With the short circuit test procedure it is intended to check the functionality of the overcurrent protection device. 216

230 This test applies to battery packs and systems. T: Nominal operating temperature SOC: 100% Conductor: /- 10 mω Time: hard short in less than one second for 10 min, Overcharge protection test With the overcharge test procedure it is intended to check the functionality of the overcharge protection function. This test applies to battery systems only. T: RT SOC: 100% Integrated, passive circuit protection devices: Yes Battery system shall be controlled by the BMS, Charge current: recommended 2C Max. charge voltage: battery system voltage + 20% of battery system voltage Duration: continue charging until BMS interrupt the charging Max. duration: terminated when the SOC level is above 130% or when cell temperature levels are above 55 C. Overdischarge protection test With the overdischarge protection test procedure it is intended to check the functionality of the overdischarge protection function. This test applies to battery systems only. T: RT 217

231 SOC: 100% Integrated, passive circuit protection devices: Yes Battery system shall be controlled by the BMS, Discharge current: recommended 1C Duration continue charging until BMS interrupt the charging Max. duration: achievement of 25% of the nominal voltage level or 30 min after passing the normal discharge limits Figure 14 Test matrix in ISO VDA TEST SPECIFICATION FOR LI-ION BATTERY SYSTEMS FOR HEVs (for safety equivalent to SAE J2464) This specification is written by the German car manufacturer, united in the German Verband der Automobilindustrie VDA (German Society of Car Industry). This VDA specification is an adaption of USABC and FreedomCAR test procedures. The Abuse Test Manual of the VDA specification is e.g. completely took over from FreedomCAR; see: Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications. Issue: SAND , June

232 Figure 15 Overview of test procedures Standard cycle (SC) To ensure the same initial condition for each test of a battery pack or system T: RT Discharge: C1 is recommended, discharge till the specifications given by the supplier. Charge: According to the specifications given by the supplier Rest period after charge: 30 minutes. 219

233 Energy and capacity test The three hour rate (C/3) is used as reference for static capacity and energy measurement for packs and systems. T: - 25 C, RT, 40 C Discharge: 1C (standard), 10C, 20C and/or if applicable the maximum C rate as permitted by the supplier Terminated on supplier specified discharge voltage (depending on discharge rates). Power and internal resistance test The objective of this profile is to demonstrate the discharge pulse power and regenerative charge pulse power capabilities at various SOC. T: - 10 C, 0 C, RT, 40 C SOC: 80%, 65%, 50%, 35%, 20% (20% only if the maximum discharge current is 10C, to avoid a deep discharge). Discharge: constant current at levels given by the supplier s maximum rated pulse discharge current I max with an upper limitation of 400 A. pulse duration: 2 s, 10 s and 18 s Reg. charge: constant current 75% of the discharge current. pulse duration: 10 s Energy efficiency test The battery efficiency affects directly the fuel consumption and emission levels of the HEV. T: 10 C, RT, 40 C, SOC: 35%, 50%, 65% 220

234 Profile: 20C 10 s discharge pulse, followed by a rest of 40 s, followed by 20C 10 s charge ( regenerative ) pulses. Cold and hot cranking test The aim is to generate a data basis including time depending power output at low and hot temperatures. Power is an important issue at low temperature but at high temperatures safety and lifetime consideration are additional to take in account. This test applies to battery systems only. Cold cranking: T: - 30 C SOC: lowest SOC level allowable as specified by the supplier (minimum state of charge). Discharge: Constant voltage discharge at the lowest permitted system discharge voltage level according to the supplier (e.g. 2.5 V per cell, but not less than 55% of maximum charging voltage) for 5 s Sampling rate: 50 ms Hot cranking: T: 70 C SOC: lowest SOC level allowable as specified by the supplier (minimum state of charge). Discharge: Constant power (15 kw max, 5 kw min) discharge for 5 s Sampling rate: 50 ms The pulse power level required for 5 s pulses is 5 kw (minimum power-assist) or 15 kw (maximum power-assist). 221

235 Self discharge test This test is to measure battery systems capacity loss when the battery system is not used for an extended period of time, Rest period: 1 h, 6 h, 24 h (1 day), 48 h (2 days) and 168 h (7 days). If the self discharge rate after 7 days is less than 5% of the rated capacity, add a further self discharge rest period of 336 h. SOC: 70% Temperatures: 0 C, RT and 40 C. Abuse Testing of Electrical Energy Storage Systems (EESS) Abuse testing is performed to characterize EESS responses to off-normal conditions or environments. All required abuse testing of the VDA Test Procedure related to module or pack level, are based on the following test manual: FreedomCAR: Electrical Energy Storage System - Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications. Issue: SAND , June 2005 Mechanical Abuse Tests Reference to FreedomCAR EESS Abuse Test Manual 3 Controlled Crush Reference to FreedomCAR EESS Abuse Test Manual 3.1 Crush: between a flat platen and a textured platen (see following Figure). 1st step: displacement of 15% of the module s height for 5 minutes. 2nd step: displacement of 50% of the module s height or a force of 1000 times the module s mass 222

236 Figure 16 Crush test textured platen surface Penetration Reference to FreedomCAR EESS Abuse Test Manual 3.2 Penetrate the device under test with a mild steel (conductive) pointed rod that has been electrically insulated from the test article. Penetration rate: Rod diameter: Min. penetration depth: 8 cm/sec. cell - 3 mm through unit module/pack - 20 mm cell - through unit module/pack - through three units or 100 mm Drop Reference to FreedomCAR EESS Abuse Test Manual 3.3 Destructive free drop from a pre-determined height onto a centrally located, cylindrical steel object (e.g., a telephone pole). 223

237 Figure 17 Drop test impact The height of the drop should be determined by evaluating credible abuse conditions during the manufacture, assembly, and normal use of the battery EESS. The EESS shall impact across the radius of the cylindrical object. A horizontal impact with an equivalent velocity change is acceptable. Drop high: Cylinder radius: not to exceed 10 m 150 mm Immersion Reference to FreedomCAR EESS Abuse Test Manual 3.4 With the EESS at nominal operating temperature in its normal operating orientation, immerse the EESS in water for a minimum of two hours, or until any visible reactions have stopped. The water must completely submerge the EESS. T: 25 C Water: nominal composition of seawater Duration: 2 h Roll-over Simulation Reference to FreedomCAR EESS Abuse Test Manual

238 Rotate the EESS one complete revolution in a continuous, slow-roll fashion, and observe if any materials leak from the EESS. Then rotate the EESS in 90 increments for one full revolution. Duration: 1 min continuous slow-roll 1 h in each 90 position Mechanical Shock Reference to FreedomCAR EESS Abuse Test Manual 3.6 There are 3 mechanical shock tests distinguished by velocity change and maximum duration. For the low-level mechanical shock test it is expected that the EESS survives without any damage incurred. Mid-level shocks are more severe; the EESS may be inoperable after such testing. Figure 18 Shock test matrix Thermal Abuse Tests Reference to FreedomCAR EESS Abuse Test Manual 4 Thermal Stability Reference to FreedomCAR EESS Abuse Test Manual

239 The battery fully charged and at its normal operating temperature, increase the temperature in specified increments until selfheating is detected. The temperature is to increase from 30 C to 200 C at a constant heating rate of 5 to 10 C/min depends on the sample. Figure 19 Heat-up rates and durations Simulated Fuel Fire Reference to FreedomCAR EESS Abuse Test Manual 4.2 This experiment uses radiant heat to simulate fuel fire conditions and is called a Radiant Heat test in earlier documentation. SOC: 100% Heating profile: RT => 890 C within 90 seconds. Hold the programmed temperature for 10 minutes or until another condition occurs. 226

240 Elevated Temperature Storage Reference to FreedomCAR EESS Abuse Test Manual 4.3 Storage duration: 2 month or if 80% of the rated capacity is not returned during the weekly testing SOC: see the following table T: see the following table Figure 20 SOCs and ambient environments for elevated temperature storage tests Rapid Charge / Discharge Reference to FreedomCAR EESS Abuse Test Manual 4.4 Charge/discharge cycles: 20 charge/discharge cycles using the manufacturer s recommended charge algorithm and a discharge rate comparable to a 3-kW constant power rate. Do not allow a rest period between charge and discharge. SOC: 100% T: nominal operating temperature Thermal controls: disabled 227

241 Thermal Shock Cycling Reference to FreedomCAR EESS Abuse Test Manual 4.5 Thermal cycles: 5 thermal cycles between 80 C to - 40 C; time to reach each temperature extreme shall be 30 minutes or less is preferable. SOC: 50% Thermal controls: disabled Electrical Abuse Tests Reference to FreedomCAR EESS Abuse Test Manual 5 Overcharge Reference to FreedomCAR EESS Abuse Test Manual 5.1 Overcharge is considered an abuse condition for batteries. Overcharge scenarios differ for EV (vehicle is left plugged, relatively low current about 60 A) and HEV applications via high-current (100 + A) short-duration pulses from the regenerative braking or via lower current (50-90 A), continuous recharge from the engine). PHEVs should be tested according to the EV. EV test description T: designed operating temperature SOC: 100% SOC Overcharge profile: overcharge at constant current of 32 A and voltage not to exceed 450 V (the power level of a standard 60 A/240 V AC wall outlet) till 200% SOC, for 4 hours, or until the test article fails. 228

242 HEV test description T: designed operating temperature SOC: 100% SOC Overcharge profile: overcharge at constant current of 32 A. Upper limit for the power- supply voltage should not exceed the maximum voltage delivered by the HEV s energy generation source (e.g., ICE or regenerative braking). Continue charging to 200% SOC or the test article fails. Short Circuit Reference to FreedomCAR EESS Abuse Test Manual 5.2 T: Nominal operating temperature SOC: 100% Conductor: 5 mω For test articles with 5 mω internal resistance, use a conductor of 1/10 the minimum resistance of the test article Time: hard short in less than one second for 10 min Overdischarge Reference to FreedomCAR EESS Abuse Test Manual 5.3 T: designed operating temperature SOC: 0% SOC Overdischarge profile: overdischarge with the C/1 rate for 1.5 hours or until 50% of all subassemblies (for module- or pack-level tests) have achieved voltage reversal for 15 minutes. 229

243 Partial Short Circuit Reference to FreedomCAR EESS Abuse Test Manual 5.4 Partial short circuit test is designed to evaluate the effects of short circuits that occur across a significant portion of, but not the entire, test unit. T: Nominal operating temperature SOC: 100% Conductor: 5 mω For test articles with 5 mω internal resistance, use a conductor of 1/10 the minimum resistance of the test article Time: hard short in less than one second for 10 min Test units: see the following table: Figure 21 Number and type devices to be shorted Minimum Abuse Testing on Module Level Prior to EESS Parameter Testing At least the following abuse testing activities on module level ( 500 Wh module) shall be reported by the EESS supplier prior to the EESS parameter testing activities: Mechanical Abuse Tests: - Controlled crush in X- and Y-direction of the module according to Nail penetration according to Thermal Abuse Tests: - Thermal stability according to Simulated fuel fire according to

244 Electrical Abuse Tests: - Overcharge according to Short Circuit according to Over discharge according to Figure 22 Hazard levels Life Time - Accelerated Calendar Life Time Test This test is aimed at testing the calendar life time of the battery under test within a shortened period of time. The test procedure is based on the LIBERAL test procedures for accelerated life testing of Li-Ion batteries. The batteries should be stored at T: 60 C. SOC 80% SOC 231

EV charging. How EVs are charged? What are the most important international charging standards? Juha Vesa SESKO Development Manager 27.5.

EV charging. How EVs are charged? What are the most important international charging standards? Juha Vesa SESKO Development Manager 27.5. EV charging How EVs are charged? What are the most important international charging standards? Juha Vesa SESKO Development Manager 27.5.2016 1 Content Short survey on standardization What is a standard?

More information

(PREVIEW) Indian Standard COMMON SPECIFICATION FOR HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR STANDARDS

(PREVIEW) Indian Standard COMMON SPECIFICATION FOR HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR STANDARDS (PREVIEW) Indian Standard COMMON SPECIFICATION FOR HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR STANDARDS IS 12729:2004 IEC 60694(2002) 1.1 Scope This International Standard applies to a.c. switchgear and controlgear,

More information

Standardization in Electric Vehicles

Standardization in Electric Vehicles Standardization in Electric Vehicles Paulo G. Pereirinha 1,2,3, João P. Trovão 1,2, 1 IPC-ISEC, Polytechnic Institute of Coimbra, R. Pedro Nunes, P-3030-199 Coimbra, Portugal 2 Institute for Systems and

More information

Commission communication in the framework of the implementation of the Council Directive 89/336/EEC (2002/C 190/03)

Commission communication in the framework of the implementation of the Council Directive 89/336/EEC (2002/C 190/03) 10.8.2002 Official Journal of the European Communities C 190/5 Commission communication in the framework of the implementation of the Council Directive 89/336/EEC (2002/C 190/03) (Text with EEA relevance)

More information

Krav til sikkerhed for sekundære batterier og installationer af batterier Del 2: Stationære batterier

Krav til sikkerhed for sekundære batterier og installationer af batterier Del 2: Stationære batterier Dansk standard DS/EN 50272-2 1. udgave 2001-08-10 Krav til sikkerhed for sekundære batterier og installationer af batterier Del 2: Stationære batterier Safety requirements for secondary batteries and battery

More information

The car safety and more

The car safety and more Making electrotechnology work for you. The car safety and more IEC work in support of the automotive industry and electric cars Scope of IEC work Literally dozens of Technical Committees and thousands

More information

WG 4 Benchmark paper. Standardization and Certification

WG 4 Benchmark paper. Standardization and Certification WG 4 Benchmark paper Standardization and Certification Benchmark paper on the main requirements for the development of electromobility on a European and international scale Working Group 4 Standardization

More information

IEC PROJETOS EM VOTAÇÃO JULHO E AGOSTO. IEC 60034-1 Ed.13: Rotating electrical machines - Part 1: Rating and performance.

IEC PROJETOS EM VOTAÇÃO JULHO E AGOSTO. IEC 60034-1 Ed.13: Rotating electrical machines - Part 1: Rating and performance. IEC PROJETOS EM VOTAÇÃO JULHO E AGOSTO IEC/TC 2 - Rotating machinery IEC 60034-1 Ed.13: Rotating electrical machines - Part 1: Rating and performance. IEC 60034-12 Ed.3: Rotating electrical machines -

More information

What do SAE standards offer the Automotive Electronics industry?

What do SAE standards offer the Automotive Electronics industry? What do SAE standards offer the Automotive Electronics industry? Just about everything. Volume 2, 2009 SAE standards stand ready to serve industry s growing need for globally harmonized standards solutions.

More information

Power in electrical safety Electrical safety for hybrid and electric vehicles

Power in electrical safety Electrical safety for hybrid and electric vehicles Power in electrical safety Electrical safety for hybrid and electric vehicles Bender Germany www.bender-de.com Draft H. Sellner 4 March 2009 No. 1 Overview 1. General 2. Drive concepts 3. Standards 4.

More information

Solutions for E-Mobility

Solutions for E-Mobility Solutions for E-Mobility Qatar PHOENIX CONTACT in dialog with customers and partners worldwide Phoenix Contact is a worldwide market leader in the field of electrical engineering, electronics, and automation.

More information

IEC and CISPR Standards

IEC and CISPR Standards IEC and CISPR Standards With thanks to Gideon Wiid, PhD student, and Paul van der Merwe EE Eng, 2 May, 2007 EMC Definition: Electromagnetic compatibility itself is defined as [1]: "the ability of an equipment

More information

Connection method for charging systems a key element for electric vehicles

Connection method for charging systems a key element for electric vehicles Connection method for charging systems a key element for electric vehicles By Claude Ricaud and Philippe Vollet > Abstract At the heart of the energy and environmental challenges, the electric vehicle

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 61400-2 Second edition 2006-03 Wind turbines Part 2: Design requirements for small wind turbines This English-language version is derived from the original bilingual publication

More information

Road Vehicles - Diagnostic Systems

Road Vehicles - Diagnostic Systems SSF 14230 Road Vehicles - Diagnostic Systems Keyword Protocol 2000 - Part 1 - Physical Layer Swedish Implementation Standard Document: SSF 14230-1 Status: Issue 3 Date: October 22, 1997 This document is

More information

VDE Prüf- und Zertifizierungsinstitut GmbH VDE Testing and Certification Institute

VDE Prüf- und Zertifizierungsinstitut GmbH VDE Testing and Certification Institute VDE Prüf- und Zertifizierungsinstitut GmbH VDE Testing and Certification Institute 1. VDE-Institute Introduction 2. Battery Applications 3. Battery Performance Testing 4. Example Of The Battery Efficiency

More information

Normas IEC en el TC 23 Electrical accessories - accesorios eléctricos

Normas IEC en el TC 23 Electrical accessories - accesorios eléctricos 1 er Foro del Comité Electrotécnico Mexicano Normalización internacional - Productos confiables - Instalaciones eléctricas seguras Normas IEC en el TC 23 Electrical accessories - accesorios eléctricos

More information

EMI in Electric Vehicles

EMI in Electric Vehicles EMI in Electric Vehicles S. Guttowski, S. Weber, E. Hoene, W. John, H. Reichl Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25, 13355 Berlin, Germany Phone: ++49(0)3046403144,

More information

Testing and Certification Procedure

Testing and Certification Procedure A PM 101E April 2011 Guideline for the Testing and Certification Procedure of the VDE Testing and Certification Institute (VDE Institute) (For information purpose only. In any case the German version shall

More information

Vibration Test for Large Lithium-ion Battery Assemblies on UN Transportation Manual of Tests & Criteria JARI

Vibration Test for Large Lithium-ion Battery Assemblies on UN Transportation Manual of Tests & Criteria JARI Vibration Test for Large Lithium-ion Battery Assemblies on UN Transportation Manual of Tests & Criteria JARI Battery Transportation Working Group Working Group on the Testing of and Criteria for Lithium

More information

Focus Group on European Electro-Mobility. Standardization for road vehicles and associated infrastructure. Report

Focus Group on European Electro-Mobility. Standardization for road vehicles and associated infrastructure. Report Focus Group on European Electro-Mobility Standardization for road vehicles and associated infrastructure in response to Commission Mandate M/468 concerning the charging of electric vehicles Version 2 -

More information

How To Understand The Electrical Power Supply Of A Power Supply System

How To Understand The Electrical Power Supply Of A Power Supply System 17 Circuit diagram symbols E 18 CIRCUIT DIAGRAM SYMBOLS electrical network elements three-phase line or cable single-phase line or cable short circuit earth electrode outgoing feeder supply incoming feeder

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD IEC 61892-7 INTERNATIONAL STANDARD Edition 2.0 2007-11 Mobile and fixed offshore units Electrical installations Part 7: Hazardous areas INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE XA ICS 47.020.60

More information

Guide to the electrical parameter classifications of IEC 60950 and IEC 62368 safety standards

Guide to the electrical parameter classifications of IEC 60950 and IEC 62368 safety standards Guide to the electrical parameter classifications of IEC 60950 and IEC 62368 safety standards Abstract This Guide is an informative listing of selected terms and definitions found in IEC Glossary entry

More information

Unified requirements for systems with voltages above 1 kv up to 15 kv

Unified requirements for systems with voltages above 1 kv up to 15 kv (1991) (Rev.1 May 2001) (Rev.2 July 2003) (Rev.3 Feb 2015) Unified requirements for systems with voltages above 1 kv up to 15 kv 1. General 1.1 Field of application The following requirements apply to

More information

Three-phase monitoring relay CM-PFE

Three-phase monitoring relay CM-PFE Data sheet Three-phase monitoring relay CM-PFE The CM-PFE is a three-phase monitoring relay that monitors the phase parameter phase sequence and phase failure in three-phase mains. 2CDC 251 005 S0012 Characteristics

More information

Emergency Response. Prepared for Fire Service, Law Enforcement, Emergency Medical, and Professional Towing Personnel by American Honda Motor Co., Inc.

Emergency Response. Prepared for Fire Service, Law Enforcement, Emergency Medical, and Professional Towing Personnel by American Honda Motor Co., Inc. Emergency Response Guide 2013 Prepared for Fire Service, Law Enforcement, Emergency Medical, and Professional Towing Personnel by American Honda Motor Co., Inc. Introduction This guide has been prepared

More information

The Tesla Roadster battery pack is comprised of about 6800 of these 18650 cells, and the entire pack has a mass of about 450kg.

The Tesla Roadster battery pack is comprised of about 6800 of these 18650 cells, and the entire pack has a mass of about 450kg. The Tesla Roadster Battery System Tesla Motors August 16, 2006 By Gene Berdichevsky, Kurt Kelty, JB Straubel and Erik Toomre Summary This paper provides details about the design of the Tesla Roadster s

More information

CE Marking and Technical Standardisation

CE Marking and Technical Standardisation GAMBICA Technical Guide CE Marking and Technical Standardisation Guidelines for application to Electrical Power Drive Systems Edition 4 : 2015 CE Marking and Technical Standardisation Guidelines for application

More information

Charging what can be more simple? SAE J1772

Charging what can be more simple? SAE J1772 Charging what can be more simple? SAE J1772 Charging What Can Be More Simple? We charge our electronic devices everyday Laptops Cell phones PDAs Bluetooth devices Power tools MP3 players Toys Other Why

More information

STEP-PS/1AC/12DC/1.5. Extract from the online catalog. Order No.: 2868567. DIN rail power supply unit 12 V DC/1.5 A, primary switched-mode, 1- phase

STEP-PS/1AC/12DC/1.5. Extract from the online catalog. Order No.: 2868567. DIN rail power supply unit 12 V DC/1.5 A, primary switched-mode, 1- phase Extract from the online catalog STEP-PS/1AC/12DC/1.5 Order No.: 2868567 DIN rail power supply unit 12 V DC/1.5 A, primary switched-mode, 1- phase Commercial data EAN 4046356292924 Pack 1 pcs. Customs tariff

More information

ST Series POWER SUPPLIES USER INSTRUCTIONS

ST Series POWER SUPPLIES USER INSTRUCTIONS Introduction These instructions detail the installation and operation requirements for the ST20 & ST35 power supplies. These have been designed for operation in RV s providing a DC power system, with optional

More information

This is a preview - click here to buy the full publication TECHNICAL REPORT

This is a preview - click here to buy the full publication TECHNICAL REPORT TECHNICAL REPORT IEC TR 62066 First edition 2002-06 Surge overvoltages and surge protection in low-voltage a.c. power systems General basic information Surtensions de choc et protection contre la foudre

More information

EssPro Energy Storage Grid Substation The power to control energy

EssPro Energy Storage Grid Substation The power to control energy EssPro Energy Storage Grid Substation The power to control energy EssPro Grid gives you the power to control energy helping to keep smart grids in balance Maximizing the value and performance of energy

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 61400-1 Second edition 1999-02 Wind turbine generator systems Part 1: Safety requirements Aérogénérateurs Partie 1: Spécifications de sécurité IEC 1999 Copyright - all rights

More information

12 SOLAR PHOTOVOLTAIC POWER SUPPLY SYSTEMS by John Ware. PV modules are current-limiting

12 SOLAR PHOTOVOLTAIC POWER SUPPLY SYSTEMS by John Ware. PV modules are current-limiting 12 SOLAR PHOTOVOLTAIC POWER by John Ware IT IS PLANNED for BS 7671:2008 to include a new Section 712 providing additional requirements for safety applicable to solar photovoltaic (pv) power supply systems.

More information

PROGRAMME OF WORK FOR THE BIENNIUM 2009-2010. Work on the inclusion of ultra capacitors in the UN Model Regulations

PROGRAMME OF WORK FOR THE BIENNIUM 2009-2010. Work on the inclusion of ultra capacitors in the UN Model Regulations COMMITTEE OF EXPERTS ON THE TRANSPORT OF DANGEROUS GOODS AND ON THE GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS Sub-Committee of Experts on the Transport of Dangerous Goods

More information

Electronic timer CT-VBS.17+18 OFF-delayed without auxiliary voltage, for DC contactors Data sheet

Electronic timer CT-VBS.17+18 OFF-delayed without auxiliary voltage, for DC contactors Data sheet Characteristics Single-function OFF-delay timer for DC contactors, without auxiliary voltage Width.5 mm CDC 5 6 F3 Approvals A culus E CCC CT-VBS a Circuit diagram b Marker label Marks a CE b C-Tick Order

More information

ISO/TS/P 239 Remanufacturing of mechanical products

ISO/TS/P 239 Remanufacturing of mechanical products ISO Central Secretariat 1, ch. de la Voie-Creuse Case postale 56 CH - 1211 Genève 20 Switzerland Telephone + 41 22 749 01 11 Fax + 41 22 733 34 30 E-mail central@iso.org Web www.iso.org TS/P 239 TO THE

More information

Technical Description. Transistor D.C. Chopper Controller Type GS 24 S

Technical Description. Transistor D.C. Chopper Controller Type GS 24 S Technical Description Transistor D.C. Chopper Controller Type GS 24 S Table of contents 1. Getting started guide 2. General information 2.1. Characteristics 2.2. Accessories 3. Information about the Machine

More information

CompactLogix Power Supplies Specifications

CompactLogix Power Supplies Specifications Technical Data CompactLogix Power Supplies Specifications 1768 CompactLogix Power Supplies Catalog Numbers 1768-PA3, 1768-PB3 1769 Compact I/O Power Supplies Catalog Numbers 1769-PA2, 1769-PB2, 1769-PA4,

More information

Russian Automotive Industry: Governmental Policies and Priorities

Russian Automotive Industry: Governmental Policies and Priorities Ministry of Industry and Trade of the Russian Federation Informal document WP.29-155-39 (155 th WP.29, 15-18 November 2011, agenda item 6) Russian Automotive Industry: Governmental Policies and Priorities

More information

ABB 1. Three-phase monitoring relay CM-PFS. Data sheet. Features. Approvals. Marks. Order data. Order data - Accessories. Application.

ABB 1. Three-phase monitoring relay CM-PFS. Data sheet. Features. Approvals. Marks. Order data. Order data - Accessories. Application. 1SR 430 824 F9300 Features Monitoring of three-phase mains for phase sequence and failure Powered by the measuring circuit 2 c/o (SPDT) contacts 1 LED for status indication Approvals R: yellow LED - relay

More information

Guide to the China Compulsory Certification System December 2009 OMRON Corporation Industrial Automation Company

Guide to the China Compulsory Certification System December 2009 OMRON Corporation Industrial Automation Company Guide to the China Compulsory Certification System December 2009 OMRON Corporation Industrial Automation Company -1- Contents Page 1. What Is CCC? 3 2. Procedure for Judging If a Product Is Subject to

More information

Digital input modules

Digital input modules 8 172 TX-I/O Digital input modules TXM1.8D TXM1.16D Two fully compatible versions: TXM1.8D: 8 inputs, each with a three-color LED (green, yellow or red) TXM1.16D: As TXM1.8X, but 16 inputs, each with a

More information

RM17TE 183...528 V AC. Main. Product or component type. Product specific application. Relay monitored parameters 250 V DC 5 A DC

RM17TE 183...528 V AC. Main. Product or component type. Product specific application. Relay monitored parameters 250 V DC 5 A DC Characteristics multifunction control relay RM17-TE - range 183..528 V AC Complementary Reset time Maximum switching voltage Minimum switching current Maximum switching current [Us] rated supply voltage

More information

HERZ-Thermal Actuators

HERZ-Thermal Actuators HERZ-Thermal Actuators Data Sheet 7708-7990, Issue 1011 Dimensions in mm 1 7710 00 1 7710 01 1 7711 18 1 7710 80 1 7710 81 1 7711 80 1 7711 81 1 7990 00 1 7980 00 1 7708 11 1 7708 10 1 7708 23 1 7709 01

More information

The easy way to build switchgear and controlgear assemblies in compliance with the regulations

The easy way to build switchgear and controlgear assemblies in compliance with the regulations The easy way to build switchgear and controlgear assemblies in compliance with the regulations A guide for partially type-tested switchgear and controlgear assemblies in compliance with EN 60 439 What

More information

Electrical Contractors Association

Electrical Contractors Association Electrical Contractors Association Presents BS 7671 2008: Amendment No 1 BS 7671: 2008 Amendment No 1, 2011 IEE Wiring Regulations Now called IET Wiring Regulations History 1882 first edition of the Wiring

More information

TX OPEN RS232/485 module

TX OPEN RS232/485 module s 8 185 8185P01 TX-I/O ; DESIGO OPEN TX OPEN RS/485 module for integrating third-party systems and devices to DESIGO (V4 or higher) TXI1.OPEN Platform to integrate third-party systems and devices to the

More information

Interfacing electrification and system reliability. Earthing of AC and DC railways 4,10,13

Interfacing electrification and system reliability. Earthing of AC and DC railways 4,10,13 Interfacing electrification and system reliability Roger White Professional Head of Electrification and Plant Rail Abstract Integration is the term given to ensuring that the different elements of an electrified

More information

My first Hirschmann: The SPIDER family of switches.

My first Hirschmann: The SPIDER family of switches. My first Hirschmann: The SPIDER family of switches. Large selection of entry level switches Compact design Simple rail installation Industry standard 24 V supply voltage Plug & Play gets you up and running

More information

Electrical safety. in control and auxiliary circuits. Safety objectives

Electrical safety. in control and auxiliary circuits. Safety objectives 1 Electrical safety in control and auxiliary circuits The increasing health and safety requirements on machines and installations require comprehensive measures to protect man and machine against possible

More information

APC Matrix-UPS 5kVA 208V/240V In 120/208/240V Out

APC Matrix-UPS 5kVA 208V/240V In 120/208/240V Out APC Matrix-UPS 5kVA 208V/240V In 120/208/240V Out APC Matrix-UPS, 3750 Watts / 5000 VA,Input 208V / Output 120V, 208V, Interface Port DB-9 RS-232, SmartSlot, Extended runtime model Includes: CD with software,

More information

Optimising the daily operation of industrial trucks

Optimising the daily operation of industrial trucks Optimising the daily operation of industrial trucks Ion Drive Motive 24 V Saft Ion Drive Motive batteries eliminate the operational and cost limitations of conventional battery technology. The result is

More information

Cisco TelePresence MCU 4500 Series safety and compliance information

Cisco TelePresence MCU 4500 Series safety and compliance information Cisco TelePresence MCU 4500 Series safety and compliance information On this page: Safety information symbols Operating guidelines Safety warnings Technical specifications Compliance information WEEE information

More information

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 A

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 A 38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 A Common features Instant ejection of relay by plastic retaining clip Integral coil indication and protection circuit EMR Electromechanical Relays

More information

LITHIUM-ION ENERGY MODULES HEM & HPM SERIES

LITHIUM-ION ENERGY MODULES HEM & HPM SERIES High Efficiency by leading edge Lithium-Ion technology Maximum energy density by compact design Easy installation by central connector Highest power output by integrated energy management system Long lifetime

More information

Emergency Response Guide

Emergency Response Guide Emergency Response Guide Honda Fuel Cell Vehicle Prepared for Fire Service, Law Enforcement, Emergency Medical, and Professional Towing Personnel by American Honda Motor Co., Inc. Contents Key Components...2

More information

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec.

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec. EMC STANDARDS The EMC standards that a particular electronic product must meet depend on the product application (commercial or military) and the country in which the product is to be used. These EMC regulatory

More information

ELECTRICAL DOCUMENTATION ACCORDING TO STANDARDS

ELECTRICAL DOCUMENTATION ACCORDING TO STANDARDS ELECTRICAL DOCUMENTATION ACCORDING TO STANDARDS by Jørgen Sommer Developed in cooperation between PC SCHEMATIC A/S and EFU Danish Electricians Educational Secretariat. 1/6-2011 No part of this publication

More information

IEC 60269 gg & am STANDARD LOW VOLTAGE FUSE

IEC 60269 gg & am STANDARD LOW VOLTAGE FUSE IEC 60269 gg & am STANDARD LOW VOLTAGE FUSE. INTRODUCTION 2. INTRODUCTION TO THE IEC 60269 STANDARD 3. COMPARISON OF THE TIME CURRENT CURVES OF DIFFERENT FUSE TYPES 3.. Comparison of IEC and UL fuses 3.2.

More information

Safety of machinery Electrical equipment of machines

Safety of machinery Electrical equipment of machines BRITISH STANDARD BS EN 60204-1:2006 Safety of machinery Electrical equipment of machines Part 1: General requirements The European Standard EN 60204-1:2006 has the status of a British Standard ICS 29.020

More information

AN96-07. Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x

AN96-07. Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x On January 1, 1996, exports into Europe began facing some tough transient immunity standards. The International Electrotechnical Commission (IEC), a worldwide

More information

As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms.

As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms. Topic 6: Forms of Potential Energy As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms. Forms of potential energy include Stored Mechanical

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 61156-5 First edition 2002-03 Multicore and symmetrical pair/quad cables for digital communications Part 5: Symmetrical pair/quad cables with transmission characteristics up

More information

IEC/EN 60204-1. Appliance of reference designations on machinery in accordance with ISO/IEC/EN 81346. www.81346.com.

IEC/EN 60204-1. Appliance of reference designations on machinery in accordance with ISO/IEC/EN 81346. www.81346.com. www.81346.com IEC/EN 60204-1 Appliance of reference designations on machinery in accordance with ISO/IEC/EN 81346 September 2010 EU Directive 2006/42/EC on machinery Pick & Place for disc +C1 Pick & Place

More information

Power Supply Unit, Primary Switched, Narrow Design MINI-PS-12-24DC/24DC/1

Power Supply Unit, Primary Switched, Narrow Design MINI-PS-12-24DC/24DC/1 Power Supply Unit, Primary Switched, Narrow Design MINI POWER provides: Extra narrow design with widths of 22.5 mm, 45 mm, and 67.5 mm (0.886, 1.772, and 2.657 in.) Global use due to a wide-range input

More information

The Future of Battery Technologies Part I

The Future of Battery Technologies Part I Dr. Annika Ahlberg Tidblad This paper is the first in our ongoing series about batteries. This installment provides an overview of battery technologies. In future installments, we will spotlight lithium

More information

NEC Ethiopia. By: Abreham Teka, NEC Secretary, Electrical Standards Officer at Ethiopian Standards Agency (ESA) IEC Affiliate Forum New Delhi, India

NEC Ethiopia. By: Abreham Teka, NEC Secretary, Electrical Standards Officer at Ethiopian Standards Agency (ESA) IEC Affiliate Forum New Delhi, India NEC Ethiopia By: Abreham Teka, NEC Secretary, Electrical Standards Officer at Ethiopian Standards Agency (ESA) IEC Affiliate Forum New Delhi, India Ethiopia Ethiopia is a country located in the Horn of

More information

Safety information. MSX-Box. ADDI-DATA GmbH Airpark Business Center Airport Boulevard B210 77836 Rheinmünster Germany

Safety information. MSX-Box. ADDI-DATA GmbH Airpark Business Center Airport Boulevard B210 77836 Rheinmünster Germany DIN EN ISO9001:2008 certified ADDI-DATA GmbH Airpark Business Center Airport Boulevard B210 77836 Rheinmünster Germany Phone: +49 7229 1847 0 Fax: +49 7229 1847 222 E-mail: info@addi-data.com Safety information

More information

2.06. Version. Kinglong New Energy Technology Co.Ltd. Sunteams 1500 Sunteams 3000. Sunteams 4000 Sunteams 5000

2.06. Version. Kinglong New Energy Technology Co.Ltd. Sunteams 1500 Sunteams 3000. Sunteams 4000 Sunteams 5000 Photovoltaic Inverter Specification Version 2.06 1500 2000 3000 4000 5000 Kinglong New Energy Technology Co.Ltd. Kinglong New Energy Technology Co.Ltd. specification 1.1. Introduction... 3 1.1.1. Environment...

More information

RM4TG20 three-phase network control relay RM4-T - range 200..500 V

RM4TG20 three-phase network control relay RM4-T - range 200..500 V Characteristics three-phase network control relay RM4-T - range 200..500 V Complementary [Us] rated supply voltage Output contacts Setting accuracy of time delay Delay at power up Measuring cycle Marking

More information

EMOSAFE EN-100. Network Isolators for PCB assembly 1 GENERAL DESCRIPTION. Product Data Sheet ENGLISH

EMOSAFE EN-100. Network Isolators for PCB assembly 1 GENERAL DESCRIPTION. Product Data Sheet ENGLISH ENGLISH EMOSAFE EN-100 Product Data Sheet Network Isolators for PCB assembly November 2013 1 GENERAL DESCRIPTION The EMOSAFE EN-100 Network Isolator interrupts all galvanically conducting connections (conductors

More information

CONSULTATION PAPER FOR PROPOSED MODIFICATIONS TO THE TRANSMISSION CODE

CONSULTATION PAPER FOR PROPOSED MODIFICATIONS TO THE TRANSMISSION CODE CONSULTATION PAPER FOR PROPOSED MODIFICATIONS TO THE TRANSMISSION CODE Closing date for submission of representations: 30 th Sep 2014, 5 pm 18 AUG 2014 ENERGY MARKET AUTHORITY 991G Alexandra Road #01-29

More information

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 - 16 A

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 - 16 A 38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 - 16 A 38 SERIES Common features Instant ejection of relay by plastic retaining clip Integral coil indication and protection circuit EMR Electromechanical

More information

Thermistor motor protection

Thermistor motor protection Thermistor motor protection CM-E Range Thermistor motor protection Thermistor motor protection relays Benefits and advantages Selection table Operating principle and fields of application for thermistor

More information

Functional noise specifications for purchasing green low noise vehicles

Functional noise specifications for purchasing green low noise vehicles Functional noise specifications for purchasing green low noise vehicles Filip Stenlund a) Department of Acoustics, Tyréns AB Peter Myndes Backe 16, 118 86 Stockholm, Sweden It is expected that the municipalities

More information

FINAL DRAFT INTERNATIONAL STANDARD

FINAL DRAFT INTERNATIONAL STANDARD PROJECT IEC 61975 Edition 1.0 2010-05 FINAL DRAFT INTERNATIONAL STANDARD High-voltage direct current (HVDC) installations System tests INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 29.130.01; 31.080.01

More information

Elektrofahrzeug mit Range Extender die Entwicklungsherausforderung Electric Vehicle with Range Extender. The developement challenge

Elektrofahrzeug mit Range Extender die Entwicklungsherausforderung Electric Vehicle with Range Extender. The developement challenge Elektrofahrzeug mit Range Extender die Entwicklungsherausforderung Electric Vehicle with Range Extender Dr. M. Korman AVL-List GmbH The developement challenge Stärkung regionaler Kooperationen in der Elektromobilität

More information

SUBAT. "Sustainable Batteries. Action 8.1.B.1.6 Assessment of Environmental Technologies for Support of Policy Decision.

SUBAT. Sustainable Batteries. Action 8.1.B.1.6 Assessment of Environmental Technologies for Support of Policy Decision. SUBAT "Sustainable Batteries Action 8.1.B.1.6 Assessment of Environmental Technologies for Support of Policy Decision Frederic Vergels SUBAT - EU project n 5249 1 Universities SUBAT January 24 to Mach

More information

Guidance for upgrading to GB4943.1-2011 (IEC 60950-1: 2005, MOD)

Guidance for upgrading to GB4943.1-2011 (IEC 60950-1: 2005, MOD) Guidance for upgrading to GB4943.1-2011 (IEC 60950-1: 2005, MOD) Note: This guidance document is a translation of official Chinese document which is issued by CQC (China Quality Certification Center) on

More information

Operating Manual UWAPS-TINY Series

Operating Manual UWAPS-TINY Series Operating Manual UWAPS-TINY Series Powecon Oy WWW.POWECON.FI 1/9 Table of content 1 Warranty...3 2 Safety information...3 3 Abbreviations and terminology...3 4 List of appendices...4 5 Introduction...4

More information

CE Marking: Your Key to Entering the European Market

CE Marking: Your Key to Entering the European Market CE Marking: Your Key to Entering the European Market N. Gerard Zapiain U.S. Department of Commerce International Trade Administration Office of Microelectronics, Medical Equipment and Instrumentation I.

More information

Instruction manual. Electrobloc EBL 100-2

Instruction manual. Electrobloc EBL 100-2 Instruction manual 0 Manual Electrobloc EBL 100-2 Electrobloc EBL 100-2 Type no. 911.503 Table of contents 1 Introduction..........................................2 2 Safety information.....................................2

More information

EPoSS Strategy Paper Smart Systems for the Full Electric Vehicle

EPoSS Strategy Paper Smart Systems for the Full Electric Vehicle Joint EC/EPoSS Expert Workshop Smart Systems for the Full Electric Vehicle Brussels 25-26 June 2008 EPoSS Strategy Paper Smart Systems for the Full Electric Vehicle August 2008 1. Introduction Growing

More information

Solar Home System Kit Quality Standards

Solar Home System Kit Quality Standards Solar Home System Kit Quality Standards Version 1 December 2015 Lighting Global has expanded the quality assurance framework to cover solar home system kits. This document describes the Quality Standards

More information

User s Manual Before using the inverter, you need to read and save the safety instructions.

User s Manual Before using the inverter, you need to read and save the safety instructions. User s Manual Before using the inverter, you need to read and save the safety instructions. STI SERIES (STI200, STI300, STI500, STI700, STI1000) Power Frequency Pure Sine Wave Inverter The information

More information

The Sixth International Symposium on Electric Vehicle Standards and Regulations

The Sixth International Symposium on Electric Vehicle Standards and Regulations The Sixth International Symposium on Electric Vehicle Standards and Regulations 27-28 November, 2014 Shenzhen, China Advisory board: National Development and Reform Commission Ministry of Industry and

More information

SUCCESS EPCOS Capacitors

SUCCESS EPCOS Capacitors SUCCESS EPCOS Inc. Capacitors Group April, 2012 EV / HV / E-Mobility Battery charger system & Inverter On Board and Off Board Assembly Trend: Wireless Charging DC/DC Converter Filtering DC Link E-Mobility

More information

EN 50174-1 and EN 50174-2: 2008 Integrated standards for telecommunications cabling installation

EN 50174-1 and EN 50174-2: 2008 Integrated standards for telecommunications cabling installation EN 50173-1 EN 50173-2 EN 50173-3 EN 50173-4 EN 50173-5 EN 50346 EN 50174-1 EN 50174-2 EN 50174-3 DESIGN INSPECTION TESTING PLANNING INSTALLATION National Standards National Regulations EN 50174-1 and EN

More information

Type: DILM115(RAC240) Article No.: 239548 Sales text Contactor,55kW/400V,AC operated. Ordering information

Type: DILM115(RAC240) Article No.: 239548 Sales text Contactor,55kW/400V,AC operated. Ordering information Type: DILM115(RAC240) Article No.: 239548 Sales text Contactor,55kW/400V,AC operated Ordering information Connection technique Description Description Rated operational current Screw terminals 3 pole AC

More information

Waveguide Access Point WGA631. Product Guide

Waveguide Access Point WGA631. Product Guide Waveguide Access Point Product Guide Waveguide Access Point Contents 1. Description............................ 3 2. Application............................ 3 3. Technical data... 4 4. Physical interfaces......................

More information

EV Charging Standards

EV Charging Standards EV Charging Standards Professor Thomas Bräunl The University of Western Australia Technical Director WA Electric Vehicle Trial Quite a lot of progress has been made in EV charging standards over the last

More information

Safety Issues for Lithium-Ion Batteries

Safety Issues for Lithium-Ion Batteries Safety Issues for Lithium-Ion Batteries Safety Issues for Lithium-Ion Batteries Lithium-ion batteries are widely used as a power source in portable electrical and electronic products. While the rate of

More information

TECHNICAL SPECIFICATION FOR CORDLESS TELEPHONE SYSTEMS

TECHNICAL SPECIFICATION FOR CORDLESS TELEPHONE SYSTEMS TECHNICAL SPECIFICATION FOR CORDLESS TELEPHONE SYSTEMS Suruhanjaya Komunikasi dan Multimedia Malaysia Off Pesiaran Multimedia, 63000 Cyberjaya, Selangor Darul Ehsan, Malaysia Copyright of SKMM, 2007 FOREWORD

More information

40 Years of experience in EMC testing

40 Years of experience in EMC testing 40 Years of experience in EMC testing Your reference laboratory for tests of generation, propagation and reception of electromagnetic energy in civil, military and industrial applications. CESI has been

More information

Type: EASY719 DC RC Article No.: 274119. Ordering information Relay outputs Quantity 6 Power supply V DC 24 V DC. Description

Type: EASY719 DC RC Article No.: 274119. Ordering information Relay outputs Quantity 6 Power supply V DC 24 V DC. Description Type: EASY719 DC RC Article.: 274119 Ordering information Relay outputs Quantity 6 Power supply V DC 24 V DC Description 12 digital inputs (4 inputs available as analog inputs) 6 relay outputs LCD display

More information

Chrome DIN Rail Power Supply 24V 30W 1 Phase (Class II & NEC Class 2) / DRC-24V30W1AZ

Chrome DIN Rail Power Supply 24V 30W 1 Phase (Class II & NEC Class 2) / DRC-24V30W1AZ Highlights & Features Protection Class II, Double Isolation (No Earth connection is required) Universal AC input voltage without power de-rating Efficiency > 87.0% @ 115Vac & 230Vac NEC Class 2 / Limited

More information