/ DSM / IRAMIS / LLB)

Size: px
Start display at page:

Download "/ DSM / IRAMIS / LLB)"

Transcription

1 RESIDUAL STRESSES ANF Métallurgie Fondamentale Vincent Klosek (CEA / DSM / IRAMIS / LLB) 23/10/ NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 1

2 INTRODUCTION Residual Stresses? Static multiaxial stresses within an isolated solid in mechanical equilibrium, neither subjected to external force nor to external moment Result from the thermo-mechanical history of the considered material 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 2

3 REMINDERS (?) A da M n B T (M, n) =σ n 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 3

4 REMINDERS (?) 1 t ε( X ) = ( ξ ( X ) + ξ ( X )) 2 1D ε = lim x 0 u x = du dx M 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 4

5 REMINDERS (?) Constitutive Laws Local relations between σ, ε and T Thermoelasticity in the framework of infinitesimal strain theory ( linearized relation): σ = A : ε k ( T T 0 ) Isotropic elastic material, isothermal transformation: ij = λ ( ε ε ε ) δij + µε ij σ 2 Young modulus: Poisson ratio: µ (3λ + 2µ ) E = λ + µ ν = λ 2 ( λ + µ ) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 5

6 RESIDUAL STRESSES? g rot (rot d ε) = 0 total stress free ε = ε + ε elastic accommodation 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 6

7 RESIDUAL STRESSES? Strain Incompatibility Application of a compatible strain field to a heterogeneous material: σ B A B A A+B A A σ res 0 B σ res ε RESIDUAL STRESSES 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 7

8 RESIDUAL STRESSES? Main sources various scales Atomic scale: point defects (very local influence) Single crystal scale: dislocations, precipitates, etc Polycrystal scale: Plastic strain incompatibilities phase transformations thermal strains Badulescu et al. (2011) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 8

9 RESIDUAL STRESSES? Various scales res I σ ( X) = σ ( X) + σ ( X) + σ ( X) II III 1st order stresses: in equilibrium at the whole sample scale ( scale considered by engineers for structures calculations) I 1 res σ ( X ) = σ ( X ) V 2 nd order stresses: in equilibrium at the scale of a group of crystallites σ II 3 rd order stresses: in equilibrium at the scale of a crystallite Defects of crystallographic lattice (dislocations, precipitates, vacancies, grain boundaries, etc ) III V 1 res ( X) = v σ ( X) res σ ( X) = σ ( X) ( σ ( X) + σ ( X)) v I II 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 9

10 RESIDUAL STRESSES? Why evaluating them is so important?... Strongly influence the mechanical behaviour of a component - harmful: premature fracture (fatigue, cracking, etc ) - favourable: example of prestress treatments (shot peening, etc ) Significant effects on performance, safety, reliabillity of a component, a structure. Improvement of the processes (thermal or mechanical treatment required?...) At a more fundamental point of view: Understanding of the physical deformation mechanisms, and how they interact 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 10

11 RESIDUAL STRESSES? Examples of significant manifestations Drying of wood Silver Bridge (WV, USA), 1967 Stress-induced corrosion 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 11

12 DETERMINATION METHODS Experimental determination of elastic strains Destructive or semi-destructive methods Non destructive methods 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 12

13 DETERMINATION METHODS (semi-) destructive methods Principle: some matter is removed mechanical equilibrium is affected system tends to reach a new equilibrium it changes its shape Hole drilling method (incremental or not) or ring core method plane stress approximation, isotropic elasticity law, empirical coefs to determine Contour method 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 13

14 DETERMINATION METHODS Non destructive methods Ultrasonic technique dependence of the propagation velocity of ultrasonic waves on stress state (non linear elasticity, use of acoustoelastic coefficients) Barkhausen noise (ferromagnetic materials) Discontinuous motion of Bloch walls stress inverse magnetostrictive effect technique very sensitive to microstructural defects ( tricky to isolate contributions) Raman spectrometry dependence of optic phonon frequencies on stress state Diffraction Crystal lattice is used as a strain gauge 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 14

15 DIFFRACTION METHODS Theory of diffraction by distorted crystals (Krivoglaz, 1969) Diffraction vector K = g + s Bragg: I 0 s = 0 (non distorted perfect crystal) Scattered intensity (normalised): I ( K ) 2πin s 2πi u K = e e dxdn deformed 8 NOVEMBRE initial atom 2012 positions CEA 23 OCTOBRE 2012 PAGE 15 u( x, n) = u( x) u( x n)

16 DIFFRACTION METHODS -Intensity distribution I(K) directly related to the projection of the relative displacement between atoms u along K Directional measurement! ε KK ( x) = 1 K ² K ε(x) K = u K lim n 0 nk - Homogeneous deformation diffraction peak shift (back to Bragg law!) - Diffraction technique only sensitive to elastic strains! 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 16

17 DIFFRACTION METHODS Selectivity of diffraction methods: Strain is measured for grains in diffraction condition only!!! K 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 17

18 DIFFRACTION METHODS Selectivity of diffraction methods: Strain is measured for grains in diffraction condition only!!! K 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 18

19 DIFFRACTION METHODS What do we measure?... 1st order moment 2 nd order (centered) moment (1) µ + = s I( s) ds (pos. of the «gravity centre» of the peak (2) µ + = s ² I( s) ds («peak width») Strain along K averaged over the diffracting volume Variance of elastic strains along K over the diffracting volume ε KK = d d hkl 0 hkl ε KK Ω = θ = tanθ 0 (1) µ K If homogeneous strain over Ω! ε = 2 KK Ω µ K ² (2) Ideal for coupling with homogenization techniques! 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 19

20 DIFFRACTION METHODS Interpretation of peak shifts Stress at a given point x: = with σ = 0 σ( x) B( x) : σ + σ ( x) res res σ σ = 0 + General Formulation : Strain: ε ( x) = S( x) : σ( x) K K K K K K < ε KK > Ω = : S : B : σ + : S : σ 2 Ω 2 res Ω 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 20

21 DIFFRACTION METHODS The «sin² ψ law» 1st approximation σ res = 0 < ε KK > Ω = K K : K S : B 2 Ω : σ 2 nd approximation: isotropic elasticity ε < KK > Ω = K K 2 K : S : σ 1+ ν ε KK = ( σ cos ² ϕ + σ sin 2ϕ + σ sin ² ϕ σ )sin ² ψ Ω E 1+ ν ν + σ 33 ( σ11 + σ 22 + σ 33) E E 1+ ν + ( σ13 cosϕ + σ 23 sinϕ)sin 2ψ E σ, σ σ 11 22, 33 Too often applied out of hypothesis validity 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 21

22 EXAMPLES Example 1: welding Process involving melting Temperature gradients Withdrawal during solidification Residual stresses If no cohesion (incompatibility strain field) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 22

23 EXAMPLES Determination by means of neutron diffraction Tensile residual stress tangential stress depth from inner surface (mm) axial stress (MPa) distance from centre (mm) (coll. CEA/DEN) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 23

24 EXAMPLES Example 2: Intergranular stresses in Zr SC estimates isotropic elastic behaviour T = -600 C, σ = {00.2} reflections 0 Isotropic texture αc 2α a 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 24 Coll. O. Castelnau (PIMM)

25 EXAMPLES Example 2: Intergranular stresses in Zr Experimental observations (neutron diffraction) Σ = 450 MPa (Coll. O. Castelnau (PIMM)) Importance to take microstructure into account for data analysis!!! 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 25

26 CONCLUSIONS Various scales various mechanisms : need to consider physical, chemical and mechanical phenomena (i.e. metallurgical phenomena!) Stress fields are most of the time complex and heterogeneous Characterization of residual stresses is of fundamental and applied importances (but relevant scales are not the same!) Various techniques to determine residual stresses Diffraction (RX & neutrons) allows to characterize intra- and intergranular heterogeneities ideal for coupling with micromechanical modelling BUT in every case: interpretating measurement results is far from being trivial RESIDUAL STRESS MEASUREMENT! Numerical prediction of residual stresses within components? optimization of geometries, processes, performances (ex: ) 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 26

27 PAGE 27 CEA 23 OCTOBRE 2012 Commissariat à l énergie atomique et aux énergies alternatives Centre de Saclay Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX F. +33 (0)1 XX XX XX XX DSM IRAMIS LLB 8 NOVEMBRE 2012 Etablissement public à caractère industriel et commercial RCS Paris B

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS K. Sztwiertnia Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta St., 30-059 Krakow, Poland MMN 2009

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Lecture 14. Chapter 8-1

Lecture 14. Chapter 8-1 Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 8-1 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling

More information

Damage due to fatigue occurs when loading is markedly varying in time. R decreases with time S T. MSÚ F max

Damage due to fatigue occurs when loading is markedly varying in time. R decreases with time S T. MSÚ F max 5. Fatigue of steel structures Fatigue loading, Wöhler s approach and fracture mechanics, fatigue strength, influence of notches, damage accumulation, Eurocode approach. Damage due to fatigue occurs when

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y, S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.

More information

7.2.4 Seismic velocity, attenuation and rock properties

7.2.4 Seismic velocity, attenuation and rock properties 7.2.4 Seismic velocity, attenuation and rock properties Rock properties that affect seismic velocity Porosity Lithification Pressure Fluid saturation Velocity in unconsolidated near surface soils (the

More information

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations

More information

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux 3D plasticity 3D viscoplasticity 3D plasticity Perfectly plastic material Direction of plastic flow with various criteria Prandtl-Reuss, Hencky-Mises, Prager rules Write 3D equations for inelastic behavior

More information

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT E. Curto. p.i. Ennio Curto Via E. di Velo,84 36100 Vicenza Tel. 0444-511819 E-mail enniocurto@fastwebnet.it Key words: NDE Residual stress. New technique

More information

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures 4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

More information

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density Engineering Solid Mechanics 3 (2015) 35-42 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Tensile fracture analysis of blunt notched PMMA specimens

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS David A. Grewell Branson Ultrasonics Corporation ABSTRACT This paper reviews effects of amplitude and force control during

More information

Ultrasonic Technique and Device for Residual Stress Measurement

Ultrasonic Technique and Device for Residual Stress Measurement Ultrasonic Technique and Device for Residual Stress Measurement Y. Kudryavtsev, J. Kleiman Integrity Testing Laboratory Inc. 80 Esna Park Drive, Units 7-9, Markham, Ontario, L3R 2R7 Canada ykudryavtsev@itlinc.com

More information

Lecture 4: Thermodynamics of Diffusion: Spinodals

Lecture 4: Thermodynamics of Diffusion: Spinodals Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia Lecture 4: Thermodynamics of Diffusion: Spinodals Fick

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan Heat Treatment of Aluminum Foundry Alloys Fred Major Rio Tinto Alcan OUTLINE Basics of Heat Treatment (What is happening to the metal at each step). Atomic Structure of Aluminum Deformation Mechanisms

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Modèles thermomécaniques de grenaillage

Modèles thermomécaniques de grenaillage Modèles thermomécaniques de grenaillage by Rouquette Sébastien, Rouhaud Emmanuelle, Pron Hervé, François Manuel, Bissieux Christian & Roos Arjen Université de Technologie de Troyes, Université de Reims

More information

Handbook on the Ultrasonic Examination. Austenitic Welds

Handbook on the Ultrasonic Examination. Austenitic Welds Handbook on the Ultrasonic Examination Austenitic Welds The International Institute of Welding Edition Handbook On the Ultrasonic Examination of Austenitic Welds Compiled by COMMISSION V Testing, Measurement,

More information

AN EFFICIENT MODEL TO PREDICT GUIDED WAVE RADIATION BY FINITE-SIZED SOURCES IN MULTILAYERED ANISOTROPIC PLATES WITH ACCOUNT OF CAUSTICS

AN EFFICIENT MODEL TO PREDICT GUIDED WAVE RADIATION BY FINITE-SIZED SOURCES IN MULTILAYERED ANISOTROPIC PLATES WITH ACCOUNT OF CAUSTICS AN EFFICIENT MODEL TO PREDICT GUIDED WAVE RADIATION BY FINITE-SIZED SOURCES IN MULTILAYERED ANISOTROPIC PLATES WITH ACCOUNT OF CAUSTICS AFPAC 015 FREJUS Mathilde Stévenin Alain Lhéery Sébastien Grondel

More information

Fatigue crack propagation

Fatigue crack propagation 1 (20) Repetition Ð Crack initiation and growth Small cracks Shear driven Interact with microstructure Mostly analyzed by continuum mechanics approaches Large cracks Tension driven Fairly insensitive to

More information

RESIDUAL STRESSES AND THEIR EFFECTS ON FATIGUE RESISTANCE

RESIDUAL STRESSES AND THEIR EFFECTS ON FATIGUE RESISTANCE RESIDUAL STRESSES AND THEIR EFFECTS ON FATIGUE RESISTANCE Ali Fatemi-University of Toledo All Rights Reserved Chapter 8 Residual Stresses & Their Effects 1 RESIDUAL STRESSES AND THEIR EFFECTS ON FATIGUE

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

Lecture 12: Fundamental Concepts in Structural Plasticity

Lecture 12: Fundamental Concepts in Structural Plasticity Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled

More information

Chapter 7: Basics of X-ray Diffraction

Chapter 7: Basics of X-ray Diffraction Providing Solutions To Your Diffraction Needs. Chapter 7: Basics of X-ray Diffraction Scintag has prepared this section for use by customers and authorized personnel. The information contained herein is

More information

Size effects. Lecture 6 OUTLINE

Size effects. Lecture 6 OUTLINE Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects

More information

Material Deformations. Academic Resource Center

Material Deformations. Academic Resource Center Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin

More information

THE DETERMINATION OF DELAMINATION STRAIN ENERGY RELEASE RATE OF COMPOSITE BI-MATERIAL INTERFACE

THE DETERMINATION OF DELAMINATION STRAIN ENERGY RELEASE RATE OF COMPOSITE BI-MATERIAL INTERFACE THE DETERMINATION OF DELAMINATION STRAIN ENERGY RELEASE RATE OF COMPOSITE BI-MATERIAL INTERFACE Jaroslav Juracka, Vladimir Matejak Brno University of Technology, Institute of Aerospace Engineering juracka@fme.vutbr.cz;

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

TIE-31: Mechanical and thermal properties of optical glass

TIE-31: Mechanical and thermal properties of optical glass PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

σ y ( ε f, σ f ) ( ε f

σ y ( ε f, σ f ) ( ε f Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture

More information

This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324

This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324 Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

FATIGUE CONSIDERATION IN DESIGN

FATIGUE CONSIDERATION IN DESIGN FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes

Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes Volume 49, Number 3, 8 359 Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes Sorin PASCA, Tiberiu VESSELENYI, Virgiliu FIRETEANU Pavel MUDURA, Tiberiu TUDORACHE, Marin TOMSE

More information

Code_Aster. HSNV129 - Test of compression-thermal expansion for study of the coupling thermal-cracking

Code_Aster. HSNV129 - Test of compression-thermal expansion for study of the coupling thermal-cracking Titre : HSNV129 - Essai de compression-dilatation pour étu[...] Date : 1/1/212 Page : 1/8 HSNV129 - Test of compression-thermal expansion for study of the coupling thermal-cracking Summarized: One applies

More information

Unit 6 Plane Stress and Plane Strain

Unit 6 Plane Stress and Plane Strain Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations

More information

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

More information

FATIGUE FRACTURE IN CONCRETE STRUCTURES

FATIGUE FRACTURE IN CONCRETE STRUCTURES FATIGUE FRACTURE IN CONCRETE STRUCTURES Fabrizio Barpi and Silvio Valente Dipartimento di Ingegneria Strutturale e Geotecnica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino. E-mail:

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

Integration of manufacturing process simulation in to the process chain

Integration of manufacturing process simulation in to the process chain Integration of manufacturing process simulation in to the process chain Closing the gap between CAE supported design and manufacturing process simulation Achim Egner-Walter, Götz Hartmann, Marc Kothen

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION

ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION EPJ Web of Conferences 6, 6 38009 (00) DOI:0.05/epjconf/000638009 Owned by the authors, published by EDP Sciences, 00 ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON

More information

Stanford Rock Physics Laboratory - Gary Mavko. Basic Geophysical Concepts

Stanford Rock Physics Laboratory - Gary Mavko. Basic Geophysical Concepts Basic Geophysical Concepts 14 Body wave velocities have form: velocity= V P = V S = V E = K + (4 /3)µ ρ µ ρ E ρ = λ + µ ρ where ρ density K bulk modulus = 1/compressibility µ shear modulus λ Lamé's coefficient

More information

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633 FINITE ELEMENT : MATRIX FORMULATION Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 76 FINITE ELEMENT : MATRIX FORMULATION Discrete vs continuous Element type Polynomial approximation

More information

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783 Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial

More information

Lecture 18 Strain Hardening And Recrystallization

Lecture 18 Strain Hardening And Recrystallization -138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing

More information

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Tagung des Arbeitskreises Thermophysik, 4. 5.3.2010 Karlsruhe, Deutschland E. Kaschnitz Österreichisches Gießerei-Institut

More information

Feature Commercial codes In-house codes

Feature Commercial codes In-house codes A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

More information

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved Multiaxial Fatigue Professor Darrell Socie 2008-2014 Darrell Socie, All Rights Reserved Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE

9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE 9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE A machine part or structure will, if improperly designed and subjected to a repeated reversal or removal of an applied load, fail at a stress much lower than

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.

More information

TRANSPORT APERIODIC MEDIA COHERENT & DISSIPATIVE. Jean BELLISSARD 1 2. Collaborators:

TRANSPORT APERIODIC MEDIA COHERENT & DISSIPATIVE. Jean BELLISSARD 1 2. Collaborators: Transport Princeton Univ Dec. 12 2000 1 COHERENT & DISSIPATIVE TRANSPORT in APERIODIC MEDIA Collaborators: I. GUARNERI (Università di Como ) R. MOSSERI (CNRS, Univ. Paris VI-VII) R. REBOLLEDO (Pontificia

More information

Material data sheet. EOS CobaltChrome MP1. Description

Material data sheet. EOS CobaltChrome MP1. Description EOS CobaltChrome MP1 EOS CobaltChrome MP1 is a cobalt-chrome-molybdenum-based superalloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information

More information

Technology of EHIS (stamping) applied to the automotive parts production

Technology of EHIS (stamping) applied to the automotive parts production Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

AN EXPLANATION OF JOINT DIAGRAMS

AN EXPLANATION OF JOINT DIAGRAMS AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent

More information

Fundamentals of grain boundaries and grain boundary migration

Fundamentals of grain boundaries and grain boundary migration 1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

More information

G1RT-CT-2001-05071 D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

G1RT-CT-2001-05071 D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION D. EXAMPLES 316 WORKED EXAMPLE I Infinite Plate under fatigue Introduction and Objectives Data Analysis 317 INTRODUCTION AND OBJECTIVES One structural component of big dimensions is subjected to variable

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

Comparisons of numerical modelling of the Selective Laser Melting Laurent VAN BELLE 1, 2, a, Guillaume VANSTEENKISTE 2, b Jean-Claude BOYER 1, c

Comparisons of numerical modelling of the Selective Laser Melting Laurent VAN BELLE 1, 2, a, Guillaume VANSTEENKISTE 2, b Jean-Claude BOYER 1, c Comparisons of numerical modelling of the Selective Laser Melting Laurent VAN BELLE 1, 2, a, Guillaume VANSTEENKISTE 2, b Jean-Claude BOYER 1, c 1 Laboratoire de Mécanique des Contacts et des Structures,

More information

Introduction to X-Ray Powder Diffraction Data Analysis

Introduction to X-Ray Powder Diffraction Data Analysis Introduction to X-Ray Powder Diffraction Data Analysis Center for Materials Science and Engineering at MIT http://prism.mit.edu/xray An X-ray diffraction pattern is a plot of the intensity of X-rays scattered

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Modelling plasticity in forming processes

Modelling plasticity in forming processes F. Roters Abteilung Mikrostrukturphysik und Legierungsdesign f.roters@mpie.de damask@mpie.de 1st International Workshop on Software Solutions for Integrated Computational Materials Engineering Rolduc,

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

PREDICTION OF DISTORTIONS IN THROUGH HARDENING OF CYLINDRICAL STEEL WORKPIECES BY DIMENSIONAL ANALYSIS

PREDICTION OF DISTORTIONS IN THROUGH HARDENING OF CYLINDRICAL STEEL WORKPIECES BY DIMENSIONAL ANALYSIS PREDICTION OF DISTORTIONS IN THROUGH HARDENING OF CYLINDRICAL STEEL WORKPIECES BY DIMENSIONAL ANALYSIS C. Şimşir 1, T. Lübben 1, F. Hoffmann 1, H.-W. Zoch 1, M. Wolff 2 1 Foundation Institute of Materials

More information

Measurement of Residual Stress in Plastics

Measurement of Residual Stress in Plastics Measurement of Residual Stress in Plastics An evaluation has been made of the effectiveness of the chemical probe and hole drilling techniques to measure the residual stresses present in thermoplastic

More information

Martensite in Steels

Martensite in Steels Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used

More information

Relevant Reading for this Lecture... Pages 83-87.

Relevant Reading for this Lecture... Pages 83-87. LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient

More information