24 Uses of Turing Machines

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Formal Language and Automata Theory: CS Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss the uses of Turing Machine as an enumerator and a function computer We will also give an introduction to Universal Turing machines 242 Turing machine as an Enumerator Simply put, an Enumerator is a Turing machine with an output printer The Turing machine can use the printer as an output device to print strings The following diagram gives a schematic of an enumerator :- # a b write only once tape FSC work tape Figure : Schematic of an Enumerator The language enumerated by an enumerator E is the collection of strings that it eventually prints out E may generate the strings in any order, possibly with repetitions We must also note that there is no input to an enumerator Also, if the enumerating TM does not halt, it may print an infinite list of strings A formal definition of an enumerator follows 242 Definition An enumerator E is a 6-tuple where is the finite set of states;

2 Page 2 of 0 Uses of Turing Machines is the print tape alphabet, not containing the blank symbol ; is the work tape alphabet, where is the initial state ; is the final state and ; is the transition function for the two tape device ; 2422 Example If then the enumerator will output the following strings :- '&(&(&(&! # % Theorem A language is Turing-recognizable if and only if some enumerator enumerates it Proof of (IF: To show that if an enumerator E enumerates a language L, there is a Turing Machine M which recognizes L Given an input string, we design * in the following way : Run E to enumerate the next string + of Compare it with 2 If,-+ accept, else goto * Proof of (ONLY IF: To show that if a Turing machine recognizes a language, there is an enumerator for '&(&(&(& Let 0/ be a list of all possible strings in 2 One can readily construct an enumerator 354 which generates such a sequence An enumerator 3 for * works as follows: Repeat the following for 679 ;: ;< >=&(&(&(&(& Run * for 6 steps on each input %/ '&(&(&(&(&(& 2 If any computation is accepted, print out the ; If * out accepts a particular string it eventually appears on the list generated by 3A4, after which it is printed 243 Turing Machine as a function computer Let us first take a look at what a partial function is - Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India

3 Chapter 24: Uses of Turing Machines Page 3 of 0 / / Definition A function A B is called a partial function if A, there is at most one element B Note that it is possible that a certain element of A may not be mapped to any element in B An example of a partial function has been represented below A B A partial function Figure 2: An example of a partial function is said to be Turing computable if there exists a TM *, where halt state; such that &(&(&(&(& / '&(&(&(& '&(&(&(& where + / and / Below is an example with the addition function # q h Figure 3: Addition function Hence, a function n is computed by a TM if is also computed by a TM where '&(&(&(&(&(&(& > > '&(&(&(&(&(& Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India

4 Page 4 of 0 Uses of Turing Machines Here is the encoding of in We now move on to Universal Turing Machines 244 Universal Turing Machines A Universal Turing Machine is one which can accept the description of another Turing machine as input and simulate the operation of that Turing machine To construct a universal TM we need to devise an encoding scheme to serve all TM s Let us first discuss a few notations- Since we are going the encode the description of a TM, we need to standardize our notation of the state transition function Note that can be represented in more than one ways as shown below- i a b, M p ii a iii a,b M M,N q Figure 4: Different notations for We propose the following representations for the above (p,a = (q,b,m (p,a = (q,a,m (p,a = (q,a,m, (p,b = (q,b,n Let us consider the following language -,-+ The state transition diagram of a TM * which accepts can be represented as below - 0, R L 0 R q p f a 0 R f r Figure 5: State transition diagram for * We now give the formal description of * : * Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India

5 Chapter 24: Uses of Turing Machines Page 5 of 0 We define an encoding alphabet and propose the following encoding scheme:, # ## #%# To distinguish between two symbols of the same field we use the encoding string and to distinguish between two different fields we use Hence the state transition functions are encoded as % Now the description of * can be encoded as : # #% %#% This is followed by the encoded strings of each of the state transition functions and finally A universal TM expects a description of any TM * followed by an input string which is the encoded form of an input to * operates on the entire input string in the same way as * operates on,ie, accepts (or rejects the input string only if * accepts (or rejects &(&(&(&(& Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India

Enforcing Security Policies. Rahul Gera

Enforcing Security Policies Rahul Gera Brief overview Security policies and Execution Monitoring. Policies that can be enforced using EM. An automata based formalism for specifying those security policies.

Composability of Infinite-State Activity Automata*

Composability of Infinite-State Activity Automata* Zhe Dang 1, Oscar H. Ibarra 2, Jianwen Su 2 1 Washington State University, Pullman 2 University of California, Santa Barbara Presented by Prof. Hsu-Chun

Markov Algorithm. CHEN Yuanmi December 18, 2007

Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.

Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity

Chapter 7 Uncomputability

Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology

Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information

Algebraic Computation Models. Algebraic Computation Models

Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms

Reliability Guarantees in Automata Based Scheduling for Embedded Control Software

1 Reliability Guarantees in Automata Based Scheduling for Embedded Control Software Santhosh Prabhu, Aritra Hazra, Pallab Dasgupta Department of CSE, IIT Kharagpur West Bengal, India - 721302. Email: {santhosh.prabhu,

QNAT. A Graphical Queuing Network Analysis Tool for General Open and Closed Queuing Networks. Sanjay K. Bose

QNAT A Graphical Queuing Network Analysis Tool for General Open and Closed Queuing Networks Sanjay K. Bose QNAT developed at - Dept. Elect. Engg., I.I.T., Kanpur, INDIA by - Sanjay K. Bose skb@ieee.org

The Model Checker SPIN

The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(

Lecture 1: Oracle Turing Machines

Computational Complexity Theory, Fall 2008 September 10 Lecture 1: Oracle Turing Machines Lecturer: Kristoffer Arnsfelt Hansen Scribe: Casper Kejlberg-Rasmussen Oracle TM Definition 1 Let A Σ. Then a Oracle

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER JASPER DEANTONIO Abstract. This paper is a study of the Turing Degrees, which are levels of incomputability naturally arising from sets of natural numbers.

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

Lecture 2: August 29. Linear Programming (part I)

10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

KS3 Computing Group 1 Programme of Study 2015 2016 2 hours per week

1 07/09/15 2 14/09/15 3 21/09/15 4 28/09/15 Communication and Networks esafety Obtains content from the World Wide Web using a web browser. Understands the importance of communicating safely and respectfully

Theoretical Computer Science (Bridging Course) Complexity

Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the

Chapter 1. Computation theory

Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.

Compiler Construction

Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation

Computability Classes for Enforcement Mechanisms*

Computability Classes for Enforcement Mechanisms* KEVIN W. HAMLEN Cornell University GREG MORRISETT Harvard University and FRED B. SCHNEIDER Cornell University A precise characterization of those security

The P versus NP Solution

The P versus NP Solution Frank Vega To cite this version: Frank Vega. The P versus NP Solution. 2015. HAL Id: hal-01143424 https://hal.archives-ouvertes.fr/hal-01143424 Submitted on 17 Apr

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

Simulation-Based Security with Inexhaustible Interactive Turing Machines

Simulation-Based Security with Inexhaustible Interactive Turing Machines Ralf Küsters Institut für Informatik Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany kuesters@ti.informatik.uni-kiel.de

THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES

THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES ANDREW E.M. LEWIS 1. Introduction This will be a course on the Turing degrees. We shall assume very little background knowledge: familiarity with

Product, process and schedule design II. Chapter 2 of the textbook Plan of the lecture:

Product, process and schedule design II. Chapter 2 of the textbook Plan of the lecture: Process design Schedule design INDU 421 - FACILITIES DESIGN AND MATERIAL HANDLING SYSTEMS Product, process and schedule

CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

1 Description of The Simpletron

Simulating The Simpletron Computer 50 points 1 Description of The Simpletron In this assignment you will write a program to simulate a fictional computer that we will call the Simpletron. As its name implies

Algorithms are the threads that tie together most of the subfields of computer science.

Algorithms Algorithms 1 Algorithms are the threads that tie together most of the subfields of computer science. Something magically beautiful happens when a sequence of commands and decisions is able to

2.1 Complexity Classes

15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

Data Modeling. Database Systems: The Complete Book Ch. 4.1-4.5, 7.1-7.4

Data Modeling Database Systems: The Complete Book Ch. 4.1-4.5, 7.1-7.4 Data Modeling Schema: The structure of the data Structured Data: Relational, XML-DTD, etc Unstructured Data: CSV, JSON But where does

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

Introduction to NP-Completeness Written and copyright c by Jie Wang 1

91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use time-bounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of

Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I

Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with

Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

On String Languages Generated by Spiking Neural P Systems

On String Languages Generated by Spiking Neural P Systems Haiming Chen 1, Rudolf Freund 2, Mihai Ionescu 3, Gheorghe Păun 4,5, Mario J. Pérez-Jiménez 5 1 Computer Science Laboratory, Institute of Software

Regression Verification: Status Report

Regression Verification: Status Report Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung 2013-12-11 1/22 Introduction How to prevent regressions in software

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

Arithmetic Coding: Introduction

Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation

Automatic Test Data Synthesis using UML Sequence Diagrams

Vol. 09, No. 2, March April 2010 Automatic Test Data Synthesis using UML Sequence Diagrams Ashalatha Nayak and Debasis Samanta School of Information Technology Indian Institute of Technology, Kharagpur

COMPUTER SCIENCE TRIPOS

CST.98.5.1 COMPUTER SCIENCE TRIPOS Part IB Wednesday 3 June 1998 1.30 to 4.30 Paper 5 Answer five questions. No more than two questions from any one section are to be answered. Submit the answers in five

Factoring & Primality

Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

Process signifies that some transformation of data takes place. The number in the space at the top is used in multi-level DFDs (see below).

Data Online Flow Diagrams s used in DFDs All DFDs are made up of just four key symbols, a notation which allows the system to be represented in enough detail to convey its meaning, but without adding unnecessary

Formal Grammars and Languages

Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

COMPUTER SCIENCE STUDENTS NEED ADEQUATE MATHEMATICAL BACKGROUND

COMPUTER SCIENCE STUDENTS NEED ADEQUATE MATHEMATICAL BACKGROUND Hasmik GHARIBYAN PAULSON Computer Science Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407,

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION A world-coordinate area selected for display is called a window. An area on a display device to which a window is mapped is called a viewport. The window

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL

University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 8-1-2007 Using Patterns and Composite Propositions to Automate the Generation of Complex

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)

Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:

Unit 6. Loop statements

Unit 6 Loop statements Summary Repetition of statements The while statement Input loop Loop schemes The for statement The do statement Nested loops Flow control statements 6.1 Statements in Java Till now

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

Lecture 4: BK inequality 27th August and 6th September, 2007

CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound

CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015

CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 Course Info Instructor: Prof. Marvin K. Nakayama Office: GITC 4312 Phone: 973-596-3398 E-mail: marvin@njit.edu (Be sure

Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU

Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: bvogt@ist.tugraz.at office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html

Algorithmic Software Verification

Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal

Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm

Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm 1. LZ77:Sliding Window Lempel-Ziv Algorithm [gzip, pkzip] Encode a string by finding the longest match anywhere within a window of past symbols

Secrecy for Bounded Security Protocols With Freshness Check is NEXPTIME-complete

Journal of Computer Security vol 16, no 6, 689-712, 2008. Secrecy for Bounded Security Protocols With Freshness Check is NEXPTIME-complete Ferucio L. Țiplea a), b), Cătălin V. Bîrjoveanu a), Constantin

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

The Little Man Computer

The Little Man Computer The Little Man Computer - an instructional model of von Neuman computer architecture John von Neuman (1903-1957) and Alan Turing (1912-1954) each independently laid foundation for

PROCESS AND TRUTH-TABLE CHARACTERISATIONS OF RANDOMNESS

PROCESS AND TRUTH-TABLE CHARACTERISATIONS OF RANDOMNESS ADAM R. DAY Abstract. This paper uses quick process machines to provide characterisations of computable randomness, Schnorr randomness and weak randomness.

03 - Lexical Analysis

03 - Lexical Analysis First, let s see a simplified overview of the compilation process: source code file (sequence of char) Step 2: parsing (syntax analysis) arse Tree Step 1: scanning (lexical analysis)

Structure of Presentation. Stages in Teaching Formal Methods. Motivation (1) Motivation (2) The Scope of Formal Methods (1)

Stages in Teaching Formal Methods A. J. Cowling Structure of Presentation Introduction to Issues Motivation for this work. Analysis of the Role of Formal Methods Define their scope; Review their treatment

On the Structure of Turing Universe: The Non-Linear Ordering of Turing Degrees

On the Structure of Turing Universe: The Non-Linear Ordering of Turing Degrees Yazan Boshmaf November 22, 2010 Abstract Turing Universe: the final frontier. These are the voyages of five mathematicians.

SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL. Department of Computer Science

SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL Department of Computer Science APPROVED: Vladik Kreinovich, Chair, Ph.D. Luc Longpré, Ph.D. Mohamed Amine Khamsi, Ph.D. Pablo

Kolmogorov Complexity and the Incompressibility Method

Kolmogorov Complexity and the Incompressibility Method Holger Arnold 1. Introduction. What makes one object more complex than another? Kolmogorov complexity, or program-size complexity, provides one of

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES

A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES THEODORE A. SLAMAN AND ANDREA SORBI Abstract. We show that no nontrivial principal ideal of the enumeration degrees is linearly ordered: In fact, below

Fixed-Point Logics and Computation

1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of

Program Equilibrium. Moshe Tennenholtz Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Haifa 32000, Israel

Program Equilibrium Moshe Tennenholtz Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Haifa 32000, Israel This work has been carried out while the author was with

Formal Verification of Software

Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification

Modeling and Performance Evaluation of Computer Systems Security Operation 1

Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system

JOINING UP TO THE GENERALIZED HIGH DEGREES

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 8, August 2010, Pages 2949 2960 S 0002-9939(10)10299-8 Article electronically published on March 29, 2010 JOINING UP TO THE GENERALIZED

A Natural Language Model of Computing with Words in Web Pages

A Natural Language Model of Computing with Words in Web Pages Zheng Ze-yu, Zhang Ping 2 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R.

Two-dimensional Languages

Charles University Faculty of Mathematics and Physics Mgr. Daniel Průša Two-dimensional Languages Doctoral Thesis Supervisor: Martin Plátek, CSc. Prague, 2004 Acknowledgements The results presented in

Prime Numbers. Difficulties in Factoring a Number: from the Perspective of Computation. Computation Theory. Turing Machine 電 腦 安 全

Prime Numbers Difficulties in Factoring a Number: from the Perspective of Computation 電 腦 安 全 海 洋 大 學 資 訊 工 程 系 丁 培 毅 Prime number: an integer p> that is divisible only by and itself, ex., 3, 5, 7,, 3,

Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005

Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

System modeling. Budapest University of Technology and Economics Department of Measurement and Information Systems

System modeling Business process modeling how to do it right Partially based on Process Anti-Patterns: How to Avoid the Common Traps of Business Process Modeling, J Koehler, J Vanhatalo, IBM Zürich, 2007.

ALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology)

ALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology) Subject Description: This subject deals with discrete structures like set theory, mathematical

Information Flows and Covert Channels

Information Flows and Covert Channels Attila Özgit METU, Dept. of Computer Engineering ozgit@metu.edu.tr Based on: Mike McNett s presentation slides CENG-599 Data Security and Protection Objectives Understand

CLASSES, STRONG MINIMAL COVERS AND HYPERIMMUNE-FREE DEGREES

Π 0 1 CLASSES, STRONG MINIMAL COVERS AND HYPERIMMUNE-FREE DEGREES ANDREW E.M. LEWIS Abstract. We investigate issues surrounding an old question of Yates as to the existence of a minimal degree with no

Notes 11: List Decoding Folded Reed-Solomon Codes

Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded Reed-Solomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,

Coding and decoding with convolutional codes. The Viterbi Algor

Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition

Lecture 5 - CPA security, Pseudorandom functions

Lecture 5 - CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.

Bounding Rationality by Discounting Time

Bounding Rationality by Discounting Time Lance Fortnow 1 Rahul Santhanam 2 1 Northwestern University, Evanston, USA 2 University of Edinburgh, Edinburgh, UK fortnow@eecs.northwestern.edu rsanthan@inf.ed.ac.uk

Modeling of Graph and Automaton in Database

1, 2 Modeling of Graph and Automaton in Database Shoji Miyanaga 1, 2 Table scheme that relational database provides can model the structure of graph which consists of vertices and edges. Recent database

Degrees that are not degrees of categoricity

Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara

Semantics and Verification of Software

Semantics and Verification of Software Lecture 21: Nondeterminism and Parallelism IV (Equivalence of CCS Processes & Wrap-Up) Thomas Noll Lehrstuhl für Informatik 2 (Software Modeling and Verification)

CSG 399 Lecture. The Inductive Approach to Protocol Analysis p.1

The Inductive Approach to Protocol Analysis CSG 399 Lecture The Inductive Approach to Protocol Analysis p.1 Last Time CSP approach: Model system as a CSP process A specification is a property of traces

Today s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary

Today s Agenda Quiz 4 Temporal Logic Formal Methods in Software Engineering 1 Automata and Logic Introduction Buchi Automata Linear Time Logic Summary Formal Methods in Software Engineering 2 1 Buchi Automata

Scanner. tokens scanner parser IR. source code. errors

Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme

Notes on NP Completeness

Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas

A. The answer as per this document is No, it cannot exist keeping all distances rational.

Rational Distance Conor.williams@gmail.com www.unsolvedproblems.org: Q. Given a unit square, can you find any point in the same plane, either inside or outside the square, that is a rational distance from

1 The Line vs Point Test

6.875 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Low Degree Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz Having seen a probabilistic verifier for linearity

Software Requirements Document for a Personal Address and Phone Book Part 2: Functional Requirements

Software Requirements Document for a Personal Address and Phone Book Part 2: Functional Requirements Prepared for C-S 741: Software Engineering Principles By Kasi Periyasamy Date: Sep 14, 2005 1. About

(Refer Slide Time: 00:01:16 min)

Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control