24 Uses of Turing Machines


 Lucinda Potter
 2 years ago
 Views:
Transcription
1 Formal Language and Automata Theory: CS Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss the uses of Turing Machine as an enumerator and a function computer We will also give an introduction to Universal Turing machines 242 Turing machine as an Enumerator Simply put, an Enumerator is a Turing machine with an output printer The Turing machine can use the printer as an output device to print strings The following diagram gives a schematic of an enumerator : # a b write only once tape FSC work tape Figure : Schematic of an Enumerator The language enumerated by an enumerator E is the collection of strings that it eventually prints out E may generate the strings in any order, possibly with repetitions We must also note that there is no input to an enumerator Also, if the enumerating TM does not halt, it may print an infinite list of strings A formal definition of an enumerator follows 242 Definition An enumerator E is a 6tuple where is the finite set of states;
2 Page 2 of 0 Uses of Turing Machines is the print tape alphabet, not containing the blank symbol ; is the work tape alphabet, where is the initial state ; is the final state and ; is the transition function for the two tape device ; 2422 Example If then the enumerator will output the following strings : '&(&(&(&! # % Theorem A language is Turingrecognizable if and only if some enumerator enumerates it Proof of (IF: To show that if an enumerator E enumerates a language L, there is a Turing Machine M which recognizes L Given an input string, we design * in the following way : Run E to enumerate the next string + of Compare it with 2 If,+ accept, else goto * Proof of (ONLY IF: To show that if a Turing machine recognizes a language, there is an enumerator for '&(&(&(& Let 0/ be a list of all possible strings in 2 One can readily construct an enumerator 354 which generates such a sequence An enumerator 3 for * works as follows: Repeat the following for 679 ;: ;< >=&(&(&(&(& Run * for 6 steps on each input %/ '&(&(&(&(&(& 2 If any computation is accepted, print out the ; If * out accepts a particular string it eventually appears on the list generated by 3A4, after which it is printed 243 Turing Machine as a function computer Let us first take a look at what a partial function is  Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India
3 Chapter 24: Uses of Turing Machines Page 3 of 0 / / Definition A function A B is called a partial function if A, there is at most one element B Note that it is possible that a certain element of A may not be mapped to any element in B An example of a partial function has been represented below A B A partial function Figure 2: An example of a partial function is said to be Turing computable if there exists a TM *, where halt state; such that &(&(&(&(& / '&(&(&(& '&(&(&(& where + / and / Below is an example with the addition function # q h Figure 3: Addition function Hence, a function n is computed by a TM if is also computed by a TM where '&(&(&(&(&(&(& > > '&(&(&(&(&(& Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India
4 Page 4 of 0 Uses of Turing Machines Here is the encoding of in We now move on to Universal Turing Machines 244 Universal Turing Machines A Universal Turing Machine is one which can accept the description of another Turing machine as input and simulate the operation of that Turing machine To construct a universal TM we need to devise an encoding scheme to serve all TM s Let us first discuss a few notations Since we are going the encode the description of a TM, we need to standardize our notation of the state transition function Note that can be represented in more than one ways as shown below i a b, M p ii a iii a,b M M,N q Figure 4: Different notations for We propose the following representations for the above (p,a = (q,b,m (p,a = (q,a,m (p,a = (q,a,m, (p,b = (q,b,n Let us consider the following language ,+ The state transition diagram of a TM * which accepts can be represented as below  0, R L 0 R q p f a 0 R f r Figure 5: State transition diagram for * We now give the formal description of * : * Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India
5 Chapter 24: Uses of Turing Machines Page 5 of 0 We define an encoding alphabet and propose the following encoding scheme:, # ## #%# To distinguish between two symbols of the same field we use the encoding string and to distinguish between two different fields we use Hence the state transition functions are encoded as % Now the description of * can be encoded as : # #% %#% This is followed by the encoded strings of each of the state transition functions and finally A universal TM expects a description of any TM * followed by an input string which is the encoded form of an input to * operates on the entire input string in the same way as * operates on,ie, accepts (or rejects the input string only if * accepts (or rejects &(&(&(&(& Name of the Scribe Dept of Computer Science & Engg IIT Kharagpur, India
Enforcing Security Policies. Rahul Gera
Enforcing Security Policies Rahul Gera Brief overview Security policies and Execution Monitoring. Policies that can be enforced using EM. An automata based formalism for specifying those security policies.
More informationComposability of InfiniteState Activity Automata*
Composability of InfiniteState Activity Automata* Zhe Dang 1, Oscar H. Ibarra 2, Jianwen Su 2 1 Washington State University, Pullman 2 University of California, Santa Barbara Presented by Prof. HsuChun
More informationMarkov Algorithm. CHEN Yuanmi December 18, 2007
Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also
More informationDiagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity
More informationChapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
More informationHonors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
More informationAlgebraic Computation Models. Algebraic Computation Models
Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms
More informationReliability Guarantees in Automata Based Scheduling for Embedded Control Software
1 Reliability Guarantees in Automata Based Scheduling for Embedded Control Software Santhosh Prabhu, Aritra Hazra, Pallab Dasgupta Department of CSE, IIT Kharagpur West Bengal, India  721302. Email: {santhosh.prabhu,
More informationQNAT. A Graphical Queuing Network Analysis Tool for General Open and Closed Queuing Networks. Sanjay K. Bose
QNAT A Graphical Queuing Network Analysis Tool for General Open and Closed Queuing Networks Sanjay K. Bose QNAT developed at  Dept. Elect. Engg., I.I.T., Kanpur, INDIA by  Sanjay K. Bose skb@ieee.org
More informationThe Model Checker SPIN
The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPINIntroduction Introduction SPIN (Simple(
More informationLecture 1: Oracle Turing Machines
Computational Complexity Theory, Fall 2008 September 10 Lecture 1: Oracle Turing Machines Lecturer: Kristoffer Arnsfelt Hansen Scribe: Casper KejlbergRasmussen Oracle TM Definition 1 Let A Σ. Then a Oracle
More informationLecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
More informationTHE TURING DEGREES AND THEIR LACK OF LINEAR ORDER
THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER JASPER DEANTONIO Abstract. This paper is a study of the Turing Degrees, which are levels of incomputability naturally arising from sets of natural numbers.
More informationAutomata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
More informationLecture 2: August 29. Linear Programming (part I)
10725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.
More informationKS3 Computing Group 1 Programme of Study 2015 2016 2 hours per week
1 07/09/15 2 14/09/15 3 21/09/15 4 28/09/15 Communication and Networks esafety Obtains content from the World Wide Web using a web browser. Understands the importance of communicating safely and respectfully
More informationTheoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
More informationChapter 1. Computation theory
Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.
More informationCompiler Construction
Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F021 Compiler overview source code lexical analysis tokens intermediate code generation
More informationComputability Classes for Enforcement Mechanisms*
Computability Classes for Enforcement Mechanisms* KEVIN W. HAMLEN Cornell University GREG MORRISETT Harvard University and FRED B. SCHNEIDER Cornell University A precise characterization of those security
More informationThe P versus NP Solution
The P versus NP Solution Frank Vega To cite this version: Frank Vega. The P versus NP Solution. 2015. HAL Id: hal01143424 https://hal.archivesouvertes.fr/hal01143424 Submitted on 17 Apr
More informationwhat operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
More informationSimulationBased Security with Inexhaustible Interactive Turing Machines
SimulationBased Security with Inexhaustible Interactive Turing Machines Ralf Küsters Institut für Informatik ChristianAlbrechtsUniversität zu Kiel 24098 Kiel, Germany kuesters@ti.informatik.unikiel.de
More informationTHE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES
THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES ANDREW E.M. LEWIS 1. Introduction This will be a course on the Turing degrees. We shall assume very little background knowledge: familiarity with
More informationProduct, process and schedule design II. Chapter 2 of the textbook Plan of the lecture:
Product, process and schedule design II. Chapter 2 of the textbook Plan of the lecture: Process design Schedule design INDU 421  FACILITIES DESIGN AND MATERIAL HANDLING SYSTEMS Product, process and schedule
More informationCHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
More information1 Description of The Simpletron
Simulating The Simpletron Computer 50 points 1 Description of The Simpletron In this assignment you will write a program to simulate a fictional computer that we will call the Simpletron. As its name implies
More informationAlgorithms are the threads that tie together most of the subfields of computer science.
Algorithms Algorithms 1 Algorithms are the threads that tie together most of the subfields of computer science. Something magically beautiful happens when a sequence of commands and decisions is able to
More information2.1 Complexity Classes
15859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
More informationType of addressing in IPv4
Type of addressing in IPv4 Within the address range of each IPv4 network, we have three types of addresses: Network address  The address by which we refer to the network Broadcast address  A special
More informationNotes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
More informationData Modeling. Database Systems: The Complete Book Ch. 4.14.5, 7.17.4
Data Modeling Database Systems: The Complete Book Ch. 4.14.5, 7.17.4 Data Modeling Schema: The structure of the data Structured Data: Relational, XMLDTD, etc Unstructured Data: CSV, JSON But where does
More informationMATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
More informationIntroduction to NPCompleteness Written and copyright c by Jie Wang 1
91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use timebounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of
More informationProbabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I
Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 525 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with
More informationComplexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
More informationOn String Languages Generated by Spiking Neural P Systems
On String Languages Generated by Spiking Neural P Systems Haiming Chen 1, Rudolf Freund 2, Mihai Ionescu 3, Gheorghe Păun 4,5, Mario J. PérezJiménez 5 1 Computer Science Laboratory, Institute of Software
More informationRegression Verification: Status Report
Regression Verification: Status Report Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung 20131211 1/22 Introduction How to prevent regressions in software
More informationTesting LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN02015 HUT, Finland
More informationArithmetic Coding: Introduction
Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation
More informationAutomatic Test Data Synthesis using UML Sequence Diagrams
Vol. 09, No. 2, March April 2010 Automatic Test Data Synthesis using UML Sequence Diagrams Ashalatha Nayak and Debasis Samanta School of Information Technology Indian Institute of Technology, Kharagpur
More informationCOMPUTER SCIENCE TRIPOS
CST.98.5.1 COMPUTER SCIENCE TRIPOS Part IB Wednesday 3 June 1998 1.30 to 4.30 Paper 5 Answer five questions. No more than two questions from any one section are to be answered. Submit the answers in five
More informationFactoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
More informationProcess signifies that some transformation of data takes place. The number in the space at the top is used in multilevel DFDs (see below).
Data Online Flow Diagrams s used in DFDs All DFDs are made up of just four key symbols, a notation which allows the system to be represented in enough detail to convey its meaning, but without adding unnecessary
More informationFormal Grammars and Languages
Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More informationCOMPUTER SCIENCE STUDENTS NEED ADEQUATE MATHEMATICAL BACKGROUND
COMPUTER SCIENCE STUDENTS NEED ADEQUATE MATHEMATICAL BACKGROUND Hasmik GHARIBYAN PAULSON Computer Science Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407,
More information2.3 WINDOWTOVIEWPORT COORDINATE TRANSFORMATION
2.3 WINDOWTOVIEWPORT COORDINATE TRANSFORMATION A worldcoordinate area selected for display is called a window. An area on a display device to which a window is mapped is called a viewport. The window
More informationInformation Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture  17 ShannonFanoElias Coding and Introduction to Arithmetic Coding
More informationUsing Patterns and Composite Propositions to Automate the Generation of Complex LTL
University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 812007 Using Patterns and Composite Propositions to Automate the Generation of Complex
More information1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
More informationUnit 6. Loop statements
Unit 6 Loop statements Summary Repetition of statements The while statement Input loop Loop schemes The for statement The do statement Nested loops Flow control statements 6.1 Statements in Java Till now
More informationNetwork (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,
More informationLecture 4: BK inequality 27th August and 6th September, 2007
CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound
More informationCS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015
CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 Course Info Instructor: Prof. Marvin K. Nakayama Office: GITC 4312 Phone: 9735963398 Email: marvin@njit.edu (Be sure
More informationWelcome to... Problem Analysis and Complexity Theory 716.054, 3 VU
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: bvogt@ist.tugraz.at office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html
More informationAlgorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
More informationLempelZiv Coding Adaptive Dictionary Compression Algorithm
LempelZiv Coding Adaptive Dictionary Compression Algorithm 1. LZ77:Sliding Window LempelZiv Algorithm [gzip, pkzip] Encode a string by finding the longest match anywhere within a window of past symbols
More informationSecrecy for Bounded Security Protocols With Freshness Check is NEXPTIMEcomplete
Journal of Computer Security vol 16, no 6, 689712, 2008. Secrecy for Bounded Security Protocols With Freshness Check is NEXPTIMEcomplete Ferucio L. Țiplea a), b), Cătălin V. Bîrjoveanu a), Constantin
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationThe Little Man Computer
The Little Man Computer The Little Man Computer  an instructional model of von Neuman computer architecture John von Neuman (19031957) and Alan Turing (19121954) each independently laid foundation for
More informationPROCESS AND TRUTHTABLE CHARACTERISATIONS OF RANDOMNESS
PROCESS AND TRUTHTABLE CHARACTERISATIONS OF RANDOMNESS ADAM R. DAY Abstract. This paper uses quick process machines to provide characterisations of computable randomness, Schnorr randomness and weak randomness.
More information03  Lexical Analysis
03  Lexical Analysis First, let s see a simplified overview of the compilation process: source code file (sequence of char) Step 2: parsing (syntax analysis) arse Tree Step 1: scanning (lexical analysis)
More informationStructure of Presentation. Stages in Teaching Formal Methods. Motivation (1) Motivation (2) The Scope of Formal Methods (1)
Stages in Teaching Formal Methods A. J. Cowling Structure of Presentation Introduction to Issues Motivation for this work. Analysis of the Role of Formal Methods Define their scope; Review their treatment
More informationOn the Structure of Turing Universe: The NonLinear Ordering of Turing Degrees
On the Structure of Turing Universe: The NonLinear Ordering of Turing Degrees Yazan Boshmaf November 22, 2010 Abstract Turing Universe: the final frontier. These are the voyages of five mathematicians.
More informationSOLVING NARROWINTERVAL LINEAR EQUATION SYSTEMS IS NPHARD PATRICK THOR KAHL. Department of Computer Science
SOLVING NARROWINTERVAL LINEAR EQUATION SYSTEMS IS NPHARD PATRICK THOR KAHL Department of Computer Science APPROVED: Vladik Kreinovich, Chair, Ph.D. Luc Longpré, Ph.D. Mohamed Amine Khamsi, Ph.D. Pablo
More informationKolmogorov Complexity and the Incompressibility Method
Kolmogorov Complexity and the Incompressibility Method Holger Arnold 1. Introduction. What makes one object more complex than another? Kolmogorov complexity, or programsize complexity, provides one of
More informationDEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS
DEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsionfree abelian groups, one of isomorphism
More informationA NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES
A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES THEODORE A. SLAMAN AND ANDREA SORBI Abstract. We show that no nontrivial principal ideal of the enumeration degrees is linearly ordered: In fact, below
More informationFixedPoint Logics and Computation
1 FixedPoint Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
More informationProgram Equilibrium. Moshe Tennenholtz Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Haifa 32000, Israel
Program Equilibrium Moshe Tennenholtz Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Haifa 32000, Israel This work has been carried out while the author was with
More informationFormal Verification of Software
Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCCFCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification
More informationModeling and Performance Evaluation of Computer Systems Security Operation 1
Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system
More informationJOINING UP TO THE GENERALIZED HIGH DEGREES
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 8, August 2010, Pages 2949 2960 S 00029939(10)102998 Article electronically published on March 29, 2010 JOINING UP TO THE GENERALIZED
More informationA Natural Language Model of Computing with Words in Web Pages
A Natural Language Model of Computing with Words in Web Pages Zheng Zeyu, Zhang Ping 2 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R.
More informationTwodimensional Languages
Charles University Faculty of Mathematics and Physics Mgr. Daniel Průša Twodimensional Languages Doctoral Thesis Supervisor: Martin Plátek, CSc. Prague, 2004 Acknowledgements The results presented in
More informationPrime Numbers. Difficulties in Factoring a Number: from the Perspective of Computation. Computation Theory. Turing Machine 電 腦 安 全
Prime Numbers Difficulties in Factoring a Number: from the Perspective of Computation 電 腦 安 全 海 洋 大 學 資 訊 工 程 系 丁 培 毅 Prime number: an integer p> that is divisible only by and itself, ex., 3, 5, 7,, 3,
More informationTuring Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005
Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable
More informationMath/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
More informationSystem modeling. Budapest University of Technology and Economics Department of Measurement and Information Systems
System modeling Business process modeling how to do it right Partially based on Process AntiPatterns: How to Avoid the Common Traps of Business Process Modeling, J Koehler, J Vanhatalo, IBM Zürich, 2007.
More informationALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology)
ALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology) Subject Description: This subject deals with discrete structures like set theory, mathematical
More informationInformation Flows and Covert Channels
Information Flows and Covert Channels Attila Özgit METU, Dept. of Computer Engineering ozgit@metu.edu.tr Based on: Mike McNett s presentation slides CENG599 Data Security and Protection Objectives Understand
More informationCLASSES, STRONG MINIMAL COVERS AND HYPERIMMUNEFREE DEGREES
Π 0 1 CLASSES, STRONG MINIMAL COVERS AND HYPERIMMUNEFREE DEGREES ANDREW E.M. LEWIS Abstract. We investigate issues surrounding an old question of Yates as to the existence of a minimal degree with no
More informationNotes 11: List Decoding Folded ReedSolomon Codes
Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded ReedSolomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,
More informationCoding and decoding with convolutional codes. The Viterbi Algor
Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition
More informationLecture 5  CPA security, Pseudorandom functions
Lecture 5  CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.
More informationBounding Rationality by Discounting Time
Bounding Rationality by Discounting Time Lance Fortnow 1 Rahul Santhanam 2 1 Northwestern University, Evanston, USA 2 University of Edinburgh, Edinburgh, UK fortnow@eecs.northwestern.edu rsanthan@inf.ed.ac.uk
More informationModeling of Graph and Automaton in Database
1, 2 Modeling of Graph and Automaton in Database Shoji Miyanaga 1, 2 Table scheme that relational database provides can model the structure of graph which consists of vertices and edges. Recent database
More informationDegrees that are not degrees of categoricity
Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara
More informationSemantics and Verification of Software
Semantics and Verification of Software Lecture 21: Nondeterminism and Parallelism IV (Equivalence of CCS Processes & WrapUp) Thomas Noll Lehrstuhl für Informatik 2 (Software Modeling and Verification)
More informationCSG 399 Lecture. The Inductive Approach to Protocol Analysis p.1
The Inductive Approach to Protocol Analysis CSG 399 Lecture The Inductive Approach to Protocol Analysis p.1 Last Time CSP approach: Model system as a CSP process A specification is a property of traces
More informationToday s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary
Today s Agenda Quiz 4 Temporal Logic Formal Methods in Software Engineering 1 Automata and Logic Introduction Buchi Automata Linear Time Logic Summary Formal Methods in Software Engineering 2 1 Buchi Automata
More informationScanner. tokens scanner parser IR. source code. errors
Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme
More informationNotes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
More informationA. The answer as per this document is No, it cannot exist keeping all distances rational.
Rational Distance Conor.williams@gmail.com www.unsolvedproblems.org: Q. Given a unit square, can you find any point in the same plane, either inside or outside the square, that is a rational distance from
More information1 The Line vs Point Test
6.875 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Low Degree Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz Having seen a probabilistic verifier for linearity
More informationSoftware Requirements Document for a Personal Address and Phone Book Part 2: Functional Requirements
Software Requirements Document for a Personal Address and Phone Book Part 2: Functional Requirements Prepared for CS 741: Software Engineering Principles By Kasi Periyasamy Date: Sep 14, 2005 1. About
More information(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
More informationNear Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NPComplete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
More informationDEGREES OF CATEGORICITY AND THE HYPERARITHMETIC HIERARCHY
DEGREES OF CATEGORICITY AND THE HYPERARITHMETIC HIERARCHY BARBARA F. CSIMA, JOHANNA N. Y. FRANKLIN, AND RICHARD A. SHORE Abstract. We study arithmetic and hyperarithmetic degrees of categoricity. We extend
More information