# Understanding Power Splitters

Save this PDF as:
Size: px
Start display at page:

## Transcription

1 Understanding Power Splitters How they work, what parameters are critical, and how to select the best value for your application. Basically, a 0 splitter is a passive device which accepts an input signal and delivers multiple output signals with specific phase and amplitude characteristics. The output signals theoretically possess the following characteristics: equal amplitude 0 phase relationship between any two output signals high isolation between each output signal insertion loss as follows: Number of Theoretical Output Ports Insertion Loss (db) Since the 0 power splitter is a reciprocal passive device it may be used as a power combiner simply by applying each signal singularly into each of the splitter output ports. The vector sum of the signals will appear as a single output at the splitter input port. The power combiner will exhibit an insertion loss that varies depending upon the phase and amplitude relationship of the signals being combined. For example, in a 2 way 0 power splitter/combiner, Fig. 1 if the two input signals are equal in amplitude and are in-phase then the insertion loss is zero. However, if the signals are 180 out-of-phase the insertion loss is infinite. And, if the two signals are at different frequencies, the insertion loss will equal the theoretical insertion loss shown above. The power combiner will also exhibit isolation between the input ports. The amount of isolation will depend upon the impedance termination at the combiner output or sum port. For example, in the 2 way 0 power splitter/combiner of Fig. 1 if port S is open then the isolation between ports A and B would be 6dB. And, if port S is terminated by a matched impedance (for maximum power transfer) then the isolation between ports A and B would be infinite. This document and its contents are the property of Mini-Circuits. Sheet 1 of 8

2 Fig. 1. When used as a 0 power splitter, the input is applied to port S and equal outputs appear at ports A and B. When used as a power combiner, both inputs are applied to ports A and B and the sum taken from port S. The following signal processing functions can be accomplished by power splitter/combiners: 1. Add or subtract signals vectorially. 2. Obtain multi in-phase output signals proportional to the level of a common input signal. 3. Split an input signal into multi-outputs. 4. Combine signals from different sources to obtain a single port output. 5. Provide a capability to obtain RF logic arrangements. Let's analyze a basic power slitter. Fig. 2. Basic 2 way 0 power splitter, simple "T". The most basic form of a power splitter is a simple "T" connection, which has one input and two outputs as shown in Fig. 2. If the "T" is mechanically symmetrical, a signal applied to the input will be divided into two output signals, equal in amplitude and phase. The arrangement is simple and it works, with limitations. The two obvious limitations are poor isolation and impedance mismatch. First, let s consider isolation. Suppose, for example, that two antennas were fed to a receiver input using a simple "T" as a combiner. If one antenna appears as a short at its resonant frequency, it would load down the other antenna and, in effect, wipe out the receiver input. However, a properly designed power combiner would provide high isolation between inputs so that the antenna "short condition" at one input would have little influence on the other input and would cause approximately a 3:1 VSWR mismatch at the output port, in this case, the receiver input. This document and its contents are the property of Mini-Circuits. Sheet 2 of 8

3 In a simple "T" circuit power combiner the isolation between input ports will depend upon the impedance termination at the output port. If the output port is open then the input ports would have zero isolation between them. And, if the output port is terminated by a matched impedance the isolation would be 3dB. Improving upon the simple "T" circuit, consider the basic lumped element power splitter/combiner circuit of Fig. 3. The transformer has an equal number of turns from the center tap to each end. Therefore, as an auto transformer (2 to 1 turns. ratio) the impedance across the output ends is 4 times larger than the impedance across the center tap to one end. Fig. 3. In a two-way splitter/combiner, equal and opposite currents flow through the internal resistor and transformer, cancel each other, and provide high isolation between ports A and B. Now, consider the second serious limitation of a simple "T", which still exists with the circuit in Fig. 3: impedance mismatch at the input. In a 50-ohm system, each output would be connected to a 50-ohm impedance, thus offering a 25- ohm impedance to the input port. Thus, the impedance looking into the common or input port would present a mismatch in a 50-ohm system. To correct this mismatch, a 25 to 50-ohm matching transformer would be necessary as shown in Fig. 4. Fig. 4. T1 is a 2:1 impedance matching transformer in the input circuit of the power splitter/combiner. This document and its contents are the property of Mini-Circuits. Sheet 3 of 8

4 Let's examine how this circuit enables high isolation between ports A and B. As a power combiner, an input signal applied to port A will cause a current to flow through the transformer and experience a 180 phase shift by the time it arrives at port B. Similarly, a current will also flow through the resistor, R int and will not experience a phase shift by the time it arrives at port B. When R int equals the impedance value across the transformer ends then, the currents appearing at port B will be equal in amplitude but opposite in phase and cancel. The net result is that no voltage appears at port B from the input signal applied at port A. Thus, there is theoretically infinite isolation between the ports. Further examining the circuit of Fig. 4, let's determine the theoretical insertion loss between port S and ports A and B. As a power splitter, a signal applied at port S will be split so that identical signals appear at ports A and B, due to the circuit symmetry. If the impedance values are matched then maximum power transfer will take place and half the input power would appear at each port resulting in a 3dB theoretical loss at each port. Furthermore, under the conditions described the circuit is lossless since the voltage across R int is zero. Let's take an example to illustrate the concepts described. Suppose we have a 50 ohm system so that ports A and B are each terminated in 50 ohms. They appear across the transformer in series so that a 100 ohm transformer impedance is required for optimum power match. Since the transformer has a 4 to 1 impedance ratio, the impedance at port S is 25 ohms. In this example we must add a 2 to 1 (50 to 25 ohm) transformer at port S so that the S port impedance is matched to the 50 ohm system. The connection of 2 to 1 transformer T1 is shown on Figure 4. Remembering the value of R int equals the transformer impedance (to obtain maximum isolation), R int equals 100 ohms. We have now completely specified the circuit values of the 50-ohm 2 way 0 power splitter/combiner. Mismatch effect on isolation Consider the ideal situation in a two-way power combiner where there is infinite isolation between the two input ports. A signal applied to port A will be routed to port S, minus a 3dB loss in the internal resistor; since isolation is perfect, none of the input signal will reach the other input port. Now, if port S is properly terminated, the sum signals will be absorbed and nothing will be reflected back to the input ports. Fine, as long as port S is properly terminated and thus no mismatch. Now, let's consider two examples of mismatch at port S, one slight and another large. Assume a + 20dBm signal is applied to port A; with perfect isolation, none of this signal reaches port B. Since there is a 3dB loss between input A and port S due to the loss in the internal resistor, + 17dBm arrives at port S ignoring any slight transformer loss. If a slight impedance mismatch exists at port S, which causes a -20dB signal reflection, then a signal of - 3dBm (+ 17dBm attenuated by 20dB) is sent back to ports A and B. This -3dBm signal experiences a 3dB loss as it is fed to port B, and the mismatch has now resulted in a -6dB signal at input B from port A. Now isolation between both input ports is not infinite; there is a +20dBm signal at port A and a -6dBm signal at port B for an isolation of 26dB. Reason? Slight impedance mismatch at port S. This document and its contents are the property of Mini-Circuits. Sheet 4 of 8

5 What about a more serious mismatch? Suppose the + 17dBm signal arrives at port S and a mismatch produces a -10dB signal reflection. Now +7dBm is fed back to port B (+17dBm with 10dB loss); add the additional return 3dB loss, and a +4dBm signal appears at port B. Now isolation is only 16dB, the difference between port A's 20dBm and the 4dBm signal at port B due to the mismatch. Important point: make sure port S is properly matched to eliminate reflections and thus maintain high isolation. Mismatch at either port A or B is not critical if port S of a power combiner is properly matched. If cancellation through the transformer and internal resistor is taking place, there will not be any voltage drop across port A and B and thus no effect on isolation. Let's take it one step further and assume port S and port A are properly terminated but port B is shorted. As a power combiner, port A would still be isolated from port B and "would not see the short at port B. "However, the impedance looking into the S port of the power combiner would be lower. As an example, for a 50 ohm power combiner the impedance at the S port would change from 25 ohms to 8 1/3 ohms as the termination impedance at port B changes from 50 ohms to a short. Mismatch effect on insertion loss For the power splitter of Fig. 4, consider the situation where one output port, B, is shorted. A signal applied to port S would result in half the power appearing at each port, A and B. Since port B is shorted, all the power appearing there would be reflected back into the power splitter. Half of this power reflected would be dissipated in the internal resistor and the other half would appear at port S. The power loss within the power splitter would therefore be 1/4 or 6dB below the signal power originally applied to port S. In a practical power splitter/combiner where R int does not exactly equal the impedance across the transformer, there would be less than a 3dB loss at port A because part of the reflected power from port B would appear at port A. What limits the power rating? The power handling capability of a power splitter/combiner is basically determined by the internal resistor across the transformer and the transformer's core and wire size. When used as power splitter, the core of the transformer may saturate at the lower frequency end of the operating band if the designated power rating is exceeded; signal distortion and reduction in isolation may result. At high RF frequencies, usually small diameter wire is used thus limiting the safe current level that can flow before failure. In a power combiner application, the power loss across the internal resistor must also be considered in addition to the transformer core effects. For example, in a 2 way power combiner, the internal resistor must be able to dissipate half the power applied to each port. The specifications for the internal load dissipation rating for each power combiner N way group is given on the individual specification pages. If an application demands an internal resistor power rating larger than available as a standard catalog item, Mini-Circuits can supply a unit without an internal resistor. And a higher power rating resistor can be out-boarded. Of course, the performance of the final combination will depend on the external resistor's characteristics, the way it is wired, and its capacitance to the board on which it is mounted. This document and its contents are the property of Mini-Circuits. Sheet 5 of 8

6 How to measure isolation The isolation of the two-way splitter/combiner is obtained by measuring the attenuation between ports A and B when the common port is terminated in the correct value of impedance, generally 50 ohms. An RF generator signal is applied to port A and an RF voltmeter reading is taken at port B. The difference in db represents the isolation between the two ports. When high isolations are encountered, in the range of 50dB, the accuracy of the measurement can be improved by replacing the RF voltmeter with a spectrum analyzer and/or by inserting a filter between the port A (or B) and the RF voltmeter. The filter reduces the effects of harmonics from the RF generator. This is especially significant when the isolation of the power splitter/combiner differs by more than 10dB over the frequency range covering the RF generator frequency and its harmonics. The technique for measuring isolation of more than a two-way splitter/combiner is exactly the same as that just described; just make sure all unused ports are terminated with the appropriate impedance. However, the accuracy of this termination impedance is not very critical since there is usually high isolation between ports. It is quite important, however, that the terminating impedance at the common or S-port be very accurate. Deviations from the correct impedance value will cause significant errors. Typically, a termination impedance with a VSWR of 1.05 to 1 is used at Mini-Circuits for isolation testing. How to measure insertion loss To measure insertion loss, first terminate all ports properly with 50 (or 75) ohm pads and then set the RF generator to the test frequency. An RF voltmeter reading is taken at port A and then at port S. The difference between the two levels, in db, represents the insertion loss of the splitter. Repeat for ports B and S. Fig. 5. To improve insertion loss measurement, first a 3dB standard attenuation is placed between points A and S, and an RF voltmeter reading is taken. Then the attenuator is removed and the power splitter/combiner is connected to A, B, and S. Although the above procedure is simple, the accuracy of the measurement is limited by the accuracy of the RF voltmeter. An improved technique requires a standard 3dB attenuator placed between test points A and S (see Fig. 5) with the two-way power splitter disconnected from the test set-up. The RF generator level is set so that the RF voltmeter reading is near the top of the scale, its most accurate region. Then, the 3dB standard attenuator is removed and the power This document and its contents are the property of Mini-Circuits. Sheet 6 of 8

### Understanding Power Splitters

Understanding Power Splitters how they work, what parameters are critical, and how to select the best value for your application. Basically, a 0 splitter is a passive device which accepts an input signal

### Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

### Improve Two-Tone, Third-Order Intermodulation Testing

Improve Two-Tone, Third-Order Intermodulation Testing First, it's important to define the significance of input levels. Then, details on the measurement technique will be given. Two-tone, third-order intermodulation

### Low Cost, Triple Balanced, LTCC Mixer

Low Cost, Triple Balanced, LTCC Mixer Introduction Double Balanced Mixers are used widely in frequency translation applications. Some of the advantages of the double balanced mixer are good L-R and L-I

### Fig 1a: Two-tone signal at the input of mixer. Fig 1b: Signals at the output of mixer

Figure of Merit of Mixer Intermod Performance (AN-00-001) Radha Setty, Daxiong Ji and Harvey Kaylie Mini-Circuits, Brooklyn, NY 11235 Introduction With increased demand on communication systems, today

### How to select a mixer

How to select a mixer Select the proper mixer for your needs. There are hundreds of models available. Under-specify and face marginal performance, over-specify and pay for more than you need. Here's the

### 0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts

### BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer

### Application Note on Transformers (AN-20-002)

Application Note on Transformers (AN20002) 1 Introduction The purpose of this application note is to describe the fundamentals of RF and microwave transformers and to provide guidelines to users in selecting

### AN1991. Audio decibel level detector with meter driver

Rev. 2.1 20 March 2015 Application note Document information Info Keywords Abstract Content SA604A, LM358, RSSI, cellular radio The SA604A can provide a logarithmic response proportional to the input signal

### APPLICATION NOTES POWER DIVIDERS. Things to consider

Internet Copy Rev A Overview Various RF applications require power to be distributed among various paths. The simplest way this can be done is by using a power splitter/divider. Power dividers are reciprocal

### SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.

### MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

### Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist.

Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist. Abstract. I have been asked to put together a detailed article on a SWR meter. In this article I will deal

### Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

### Automatic compression measurement using network analyzers

Automatic compression measurement using network analyzers Introduction The dynamic range of an amplifier is determined by noise figure and compression. In multi carrier applications third order intercept

### SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated

### Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the

### Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

### Current Probes. User Manual

Current Probes User Manual ETS-Lindgren L.P. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall

### Optimizing IP3 and ACPR Measurements

Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.

### SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider

DATA SHEET SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider Applications TD-LTE systems Satellite communications 2.4 GHz ISM band Features Low insertion loss: 0.3 db @ 2.5 GHz High isolation:

### Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

### Balun Parameter Definitions & Measurement May 2004

Balun Parameter Definitions & Measurement May 2004 Differential circuits are becoming more widely used in RF circuits for the same reason that they have been used for years in lower frequency circuits.

### WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.

WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,

### Optimizing VCO PLL Evaluations & PLL Synthesizer Designs

Optimizing VCO PLL Evaluations & PLL Synthesizer Designs Today s mobile communications systems demand higher communication quality, higher data rates, higher operation, and more channels per unit bandwidth.

### Silicon Schottky Barrier Diode Bondable Chips and Beam Leads

DATA SHEET Silicon Schottky Barrier Diode Bondable Chips and Beam Leads Applications Detectors Mixers Features Available in both P-type and N-type low barrier designs Low 1/f noise Large bond pad chip

### Enhancing Second Harmonic Suppression in an Ultra-Broadband RF Push-Pull Amplifier

Enhancing Second in an Ultra-Broadband RF Push-Pull Amplifier By Gavin T Watkins Abstract By incorporating an An ultra-broadband push-pull amplifier operating over a bandwidth of attenuator and delay line

### Line Reactors and AC Drives

Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

### RF Communication System. EE 172 Systems Group Presentation

RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components

### Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

### RLC Series Resonance

RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

### Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

### TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

### How RF Transformers Work

How RF Transformers Work Applications for RF transformers RF transformers are widely used in electronic circuits for : Impedance matching to achieve maximum power transfer and to suppress undesired signal

### PIEZO FILTERS INTRODUCTION

For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

### SKY13380-350LF: 20 MHz-3.0 GHz High Power SP4T Switch With Decoder

DATA SHEET SKY13380-350LF: 20 MHz-3.0 GHz High Power SP4T Switch With Decoder Applications GSM/WCDMA/EDGE datacards and handsets Mobile high power switching systems Features Broadband frequency range:

### Capacitor Self-Resonance

Capacitor Self-Resonance By: Dr. Mike Blewett University of Surrey United Kingdom Objective This Experiment will demonstrate some of the limitations of capacitors when used in Radio Frequency circuits.

### MEASUREMENT SET-UP FOR TRAPS

Completed on 26th of June, 2012 MEASUREMENT SET-UP FOR TRAPS AUTHOR: IW2FND Attolini Lucio Via XXV Aprile, 52/B 26037 San Giovanni in Croce (CR) - Italy iw2fnd@gmail.com Trappole_01_EN 1 1 DESCRIPTION...3

### AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design

### Application Note SAW-Components

Application Note SAW-Components Principles of SAWR-stabilized oscillators and transmitters. App: Note #1 This application note describes the physical principle of SAW-stabilized oscillator. Oscillator

### An Overview of Practical Capacitance Bridge Functioning. by Paul Moses

An Overview of Practical Capacitance Bridge Functioning by Paul Moses INTRODUCTION The laboratory has a variety of bridges, both automatic and manual which can be used to measure the capacitance and dielectric

### HP 8970B Option 020. Service Manual Supplement

HP 8970B Option 020 Service Manual Supplement Service Manual Supplement HP 8970B Option 020 HP Part no. 08970-90115 Edition 1 May 1998 UNIX is a registered trademark of AT&T in the USA and other countries.

### Field Calibration Software

SIGNAL HOUND Field Calibration Software User s Manual Version 1.1.0 7/8/2016 This information is being released into the public domain in accordance with the Export Administration Regulations 15 CFR 734

### Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

### The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

Understanding the Fundamental Principles of Vector Network Analysis Application Note 1287-1 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements

### Transmission Line Transformers

Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal Copyright 2001 John Wiley & Sons, Inc. Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9 CHAPTER SIX Transmission Line Transformers 6.1

### Current Probes, More Useful Than You Think

Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998

### Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

### Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011

Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications June 2011 Application Note Common mode chokes provide an effective EMI filtering solution for Ethernet transformer applications.

### ELECTRON SPIN RESONANCE Last Revised: July 2007

QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction

### Signal Integrity: Tips and Tricks

White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary

### Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

### Application Note Noise Frequently Asked Questions

: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

### 1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392

1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of

### Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013

Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: sbest@cushcraft.com

### The Prevention and Control of Electrostatic Discharge (ESD) (AN-40-005)

(AN-40-005) An Introduction to ESD We experience occurrences of static electricity everyday. For example, walking along a carpeted floor in a heated room during winter generates sufficient static electricity

### Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?

### USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices

USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices White Paper April 2012 Document: 327216-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

### The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam This document contains every question from the Extra Class (Element 4) Question Pool* that requires one or more mathematical

### Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness

Shielding Effectiveness Test Method Harbour s LL, SB, and SS Coaxial Cables Designs for Improved Shielding Effectiveness Harbour Industries 4744 Shelburne Road Shelburne Vermont 05482 USA 802-985-3311

### Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

### Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition

Analysis on the Class-E Power Amplifier for the Load Mismatch Condition Inoh Jung 1,1, Mincheol Seo 1, Jeongbae Jeon 1, Hyungchul Kim 1, Minwoo Cho 1, Hwiseob Lee 1 and Youngoo Yang 1 Sungkyunkwan University,

### Kit 106. 50 Watt Audio Amplifier

Kit 106 50 Watt Audio Amplifier T his kit is based on an amazing IC amplifier module from ST Electronics, the TDA7294 It is intended for use as a high quality audio class AB amplifier in hi-fi applications

### RF and Microwave Accessories. CD-ROM Catalog. Find the right component for your Rohde & Schwarz test & measurement equipment

RF and Microwave Accessories CD-ROM Catalog Find the right component for your Rohde & Schwarz test & measurement equipment Product group Typical applications Adapters Interchanging of various connector

### Agilent Balanced Measurement Example: Differential Amplifiers

Agilent Balanced Measurement Example: Differential Amplifiers Application Note 1373-7 Introduction Agilent Technologies has developed a solution that allows the most accurate method available for measuring

### RF-Microwaves formulas - 1-port systems

RF-Microwaves formulas - -port systems s-parameters: Considering a voltage source feeding into the DUT with a source impedance of. E i E r DUT The voltage into the DUT is composed of 2 parts, an incident

### Measurement of Capacitance

Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

### Buffer Op Amp to ADC Circuit Collection

Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op

### Phase II Design for a Multiband LMR Antenna System

Phase II Design for a Multiband LMR Antenna System S. Ellingson and R. Tillman Aug 30, 2011 Contents 1 Introduction 2 2 System Design 2 3 Antenna Tuner 3 Bradley Dept. of Electrical & Computer Engineering,

### Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor

Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor Abstract This paper provides information about the NEWCARD connector and board design

### 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

### Antenna Deployment Technical Brief

ProCurve Networking Antenna Deployment Technical Brief Introduction... 2 Antenna types... 2 Omni directional antennas... 2 Directional antennas... 2 Diversity antennas... 3 High gain directional antennas...

### RF Network Analyzer Basics

RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

### Interfacing Intel 8255x Fast Ethernet Controllers without Magnetics. Application Note (AP-438)

Interfacing Intel 8255x Fast Ethernet Controllers without Magnetics Application Note (AP-438) Revision 1.0 November 2005 Revision History Revision Revision Date Description 1.1 Nov 2005 Initial Release

### DSA800 Series Spectrum Analyzer

DSA800 Series Spectrum Analyzer Configuration Guide This guide is used to help users to configure DSA800 series spectrum analyzer according to their requirements. You can get an overall understanding of

### DRIVING LOOOONG CABLES

DRIVING LOOOONG CABLES INTRODUCTION Microphone or line level cables may appear to be foolproof compared to loudspeaker cables. However, they are not. In particular you can easily encounter high frequency

### RLC Resonant Circuits

C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

### APN1009: A Varactor Controlled Phase Shifter for PCS Base Station Applications

APPLICATION NOTE APN1009: A Varactor Controlled Phase Shifter for PCS Base Station Applications Introduction Power amplifiers in today s base stations use compensation techniques to reduce distortion.

### Lock - in Amplifier and Applications

Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

### POWER LINE FILTERS FOR SWITCHING POWER SUPPLIES

POWER INE FITERS FOR SWITCHING POWER SUPPIES ing. Eugen COCA *, prof. dr. ing. Dimitrie AEXA ** * EECTRICA SA - SD SUCEAVA - ROMANIA ** U.T. Gh. Asachi IASI - ROMANIA * SEM0kV - PRAM str. Stefan cel Mare,

### VCO Phase noise. Characterizing Phase Noise

VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

### Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

### APN1001: Circuit Models for Plastic Packaged Microwave Diodes

APPLICATION NOTE APN11: Circuit Models for Plastic Packaged Microwave Diodes Abstract This paper reports on the measurement and establishment of circuit models for SOT-23 and SOD-323 packaged diodes. Results

### AN11357. BGU8009 Matching Options for 850 MHz / 2400 MHz Jammer Immunity. Document information. Keywords

BGU89 Matching Options for 85 MHz / 24 MHz Jammer Immunity Rev. 1 27 May 213 Application Note Document information Info Content Keywords LNA, GNSS, GPS, BGU89, WLAN, GSM-85, GSM-9 Abstract This document

### Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier

The AAT50 is a high efficiency, 2.5W mono class D audio power amplifier. It can be used in portable devices, such as MP4s, cell phones, laptops, GPS and PDAs. The device can work as a filterless class

### Critical thin-film processes such as deposition and etching take place in a vacuum

WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

### Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### 12. Transformers, Impedance Matching and Maximum Power Transfer

1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than

### RF IF. The World Leader in High-Performance Signal Processing Solutions. RF Power Amplifiers. May 7, 2003

The World Leader in High-Performance Signal Processing Solutions RF Power Amplifiers May 7, 2003 Outline PA Introduction Power transfer characteristics Intrinsic PA metrics Linear and Non-linear amplifiers