22.7 ALKYLATION OF ESTER ENOLATE IONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "22.7 ALKYLATION OF ESTER ENOLATE IONS"

Transcription

1 1084 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND H H CA CL CoA + enol form of acetyl-coa _ C N NH acetyl-coa carboxylase H H R H carboxybiotin HN NH _ LC LCH LCLCoA + H H malonyl-coa R H biotin Provide a curved-arrow mechanism for this reaction, using B3 as a base (which is part of the enzyme) and BH as its conjugate acid..7 ALKYLATIN F ETER ENLATE IN ections.4.6 described reactions in which enolate ions react as nucleophiles at the carbonyl carbon atom. This section considers two reactions in which enolate ions are used as nucleophiles in N reactions. A. Malonic Ester ynthesis Diethyl malonate (malonic ester), like many other b-dicarbonyl compounds, has unusually acidic a-hydrogens. (Why?) Consequently, its conjugate-base enolate ion can be formed nearly completely with alkoxide bases such as sodium ethoxide. _ Et3_ + Et LC LCH LC LEt Et L H + Et LC LCH LC LEt enolate ion of diethyl malonate diethyl malonate pk a = 1.9 (.64a) The conjugate-base anion of diethyl malonate is nucleophilic, and it reacts with alkyl halides and sulfonate esters in typical N reactions. uch reactions can be used to introduce alkyl groups at the a-position of malonic ester. Na CH CH _ 3CH(C Et) + CH L Br CH + Na Br _ EtH 3 CHCH(C Et) (83% yield) (.64b) Further Exploration. Malonic Ester Alkylation As this example shows, even secondary halides can be used in this reaction. (ee Further Exploration..) The importance of this reaction is that it can be extended to the preparation of carboxylic acids. aponification (ec. 1.7A) of the diester and acidification of the resulting solution gives a substituted malonic acid derivative. Recall that heating any malonic acid derivative causes it to decarboxylate (ec. 0.11). The result of the alkylation, saponification, and decar-

2 .7 ALKYLATIN F ETER ENLATE IN 1085 boxylation sequence is a carboxylic acid that conceptually is a substituted acetic acid an acetic acid molecule with an alkyl group on its a-carbon. protonation decarboxylation (ec. 0.11) CH CHCH(C Et) NaH H CH CHCH(C _ Na ) H 3 CH CHCH(C H) heat ester saponification (ec. 1.7A) CH CHCH C H + C The overall sequence of ionization, alkylation, saponification and decarboxylation starting from diethyl malonate (Eqs..64a c) is called the malonic ester synthesis. Notice that the alkylation step of the malonic ester synthesis (Eq..64b) results in the formation of a new carbon carbon bond. The anion of malonic ester can be alkylated twice in two successive reactions with different alkyl halides (if desired) to give, after hydrolysis and decarboxylation, a disubstituted acetic acid. This possibility allows us to think of any disubstituted acetic acid in terms of diethyl malonate and two alkyl halides, as follows (X = halogen): acetic acid unit a substituted acetic acid (.64c) R L CH L C H R R LC(C Et) R CH (C Et), R LX, R L X (.65) If the alkyl halides RLX and R9LX are among those that will undergo the N reaction, then the target carboxylic acid can in principle be prepared by the malonic ester synthesis. This analysis is illustrated in tudy Problem.4. tudy Problem.4 utline a malonic ester synthesis of the following carboxylic acid: (CH ) 4 CH L C H -methylheptanoic acid olution Using the analysis in the text, identify the acetic acid unit in the carboxylic acid. The two alkyl groups in this case, a methyl group and a pentyl group are derived from alkyl halides. derived from I (CH ) 4 L CH L C H derived from (CH ) 4 Br substituted acetic acid

3 1086 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND This analysis leads to the following synthesis: formation of the enolate ion formation of the enolate ion introduction of the second alkyl group NaEt CH CH (C Et) 3 (CH ) 3 CH Br NaEt H (CH ) 3 CH CH(C Et) 3 C L I EtH EtH diethyl malonate introduction of the first alkyl group (CH ) 3 CH C(C Et) + NaI (80% yield) (.66) Ester saponification, acidification, and decarboxylation, as in Eq..64c, give the desired product. The two enolate-forming and alkylation reactions must be performed as separate steps. Adding two different alkyl halides and two equivalents of NaEt to malonic ester at the same time would not give the desired product. (Why?) PRBLEM.33 Indicate whether each of the following compounds could be prepared by a malonic ester synthesis. If so, outline a preparation from diethyl malonate and any other reagents. If not, explain why. (a) 3-phenylpropanoic acid (b) -ethylbutanoic acid (c) 3,3-dimethylbutanoic acid.34 Give the product of the following reaction sequence and explain your answer. NaEt NaH HCl CH (C Et) + BrCH CH CH Cl (C 5 H 8 ) EtH heat.35 (a) When the conjugate-base enolate of diethyl malonate is treated with bromobenzene, no diethyl phenylmalonate is formed. Explain why bromobenzene is inert...ch(cet) +CH(CEt) Br + Br diethyl phenylmalonate (b) When the same enolate ion is treated with bromobenzene and a catalytic amount of Pd[P(t-Bu) 3 ] 4, diethyl phenylmalonate is formed in excellent yield. Explain the role of the catalyst with a mechanism. B. Direct Alkylation of Enolate Ions Derived from Monoesters In the synthesis of carboxylic acids by malonic ester alkylation, a LC Et group is wasted because it is later removed. Why not avoid this altogether and alkylate directly the enolate ion of an acetic acid ester? B 3 + LR (a base) _ H C LCLR + BL H CH CH CH L I CH CH CH LCH L C LR + I _ (.67)

4 .7 ALKYLATIN F ETER ENLATE IN 1087 At one time this idea could not be used in practice because enolate ions derived from esters, once formed, undergo another, faster reaction: Claisen condensation with the parent ester (ec..5a). The direct alkylation shown in Eq..67 is so attractive, however, that chemists continued efforts to find conditions under which it would work. It was discovered in the early 1970s that a family of very strong, highly branched nitrogen bases, such as the following two examples, can be used to form stable enolate ions rapidly at -78 C from esters. Li _ 3 N Li _ 3 N lithium diisopropylamide (LDA) lithium cyclohexylisopropylamide (LCHIA) pk a of conjugate acids: 35 (Do not confuse the term amide in the names of these bases with the carboxylic acid derivative. This term has a double usage. As used here, an amide is the conjugate-base anion of an amine.) The conjugate acids of these bases are amines, which have pk a values near 35. Because esters have pk a values near 5, these amide bases are strong enough to convert esters completely into their conjugate-base enolate ions. The ester enolate anions formed with these bases can be alkylated directly with alkyl halides. Notice that esters with quaternary a-carbon atoms can be prepared by this method. (These compounds cannot be prepared by the malonic ester synthesis. Why?) a quaternary a-carbon C LEt H -78 C LCHIA THF < 15 min Li C LEt.. + H 3 C L I DM H 3 C L C LL C L Et + LiI ethyl -methylpropanoate NH ethyl,-dimethylpropanoate (ethyl pivalate) (87% yield) (.68) The nitrogen bases themselves are generated from the corresponding amines and butyllithium (a commercially available organolithium reagent) at -78 C in tetrahydrofuran (THF) solvent. -78 C THF N LH + CH CH CH LLi N 3 _ Li + CH CH (.69) This method of ester alkylation is considerably more expensive than the malonic ester synthesis. It also requires special inert-atmosphere techniques because the strong bases that are used react vigorously with both oxygen and water. For these reasons, the malonic ester syn-

5 1088 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND thesis remains very useful, particularly for large-scale syntheses. However, for the preparation of laboratory samples, or for the preparation of compounds that are unavailable from the malonic ester synthesis, the preparation and alkylation of enolate ions with amide bases is particularly valuable. The possibility of the Claisen condensation as a side reaction was noted in the discussion of Eq..67. The use of a very strong amide base avoids the Claisen condensation for the following reason. The reaction is run by adding the ester to the base. When a molecule of ester enters the solution, it can react either with the strong base to form an enolate ion or with a molecule of already formed enolate ion in the Claisen condensation. The reaction of esters with strong amide bases is so much faster at -78 C than the Claisen condensation that the enolate ion is formed instantly and never has a chance to undergo the Claisen condensation. In other words, the Claisen condensation is avoided because the ester and its enolate ion are never present simultaneously (except for an instant) in the reaction flask. Another potential side reaction is the nucleophilic reaction of the amide base (or even its conjugate acid amine, which is, after all, still a base) at the ester carbonyl group. Because amines react with esters to give products of aminolysis (ec. 1.8C), it might be reasonable to expect the conjugate bases of amines very strong bases indeed to react even more rapidly with esters. That this does not happen is once again the result of a competition. When an amide base reacts with the ester, it can either remove a proton or react at the carbonyl carbon. A reaction at the carbonyl carbon is retarded by van der Waals repulsions between groups on the carbonyl compound and the large branched groups on the bases. (These van der Waals repulsions have been aptly termed F-strain, or front strain. ) For such a branched amide base to react at the carbonyl carbon is somewhat like trying to put a dinner plate into the coin slot of a vending machine. If the amide base could be in contact with the ester long enough, it would eventually react at the carbonyl carbon; but the base instead reacts more rapidly a different way: It abstracts an a-proton. Reaction with a tiny hydrogen does not involve the van der Waals repulsions that would occur if the base were to react at the carbonyl carbon. Hence, the amide base takes the path of least resistance: It forms the enolate ion. Notice that van der Waals repulsions are used productively in this example to avoid an undesired reaction. PRBLEM.36 utline a synthesis of each of the following compounds from either diethyl malonate or ethyl acetate. Because the branched amide bases are relatively expensive, you may use them in only one reaction. (a) % (b) CH CH (c) C H 5 CH L C H $ CH L C H C H 5 L C L C Et ) CH CH valproic acid (used in treatment of epilepsy) %.37 The reactions of ester enolate ions are not restricted to simple alkylations. With this in mind, suggest the structure of the product formed when the enolate ion formed by the reaction of tert-butyl acetate with LCHIA reacts with each of the following compounds at -78 C followed by dilute HCl. (a) acetone (b) benzaldehyde.38 Predict the product formed when the conjugate-base enolate ion of ethyl -methylpropanoate (shown in Eq..68) is treated with bromobenzene and a catalytic amount of Pd[P(t-Bu) 3 ] 4, and explain the role of the catalyst.

6 .7 ALKYLATIN F ETER ENLATE IN 1089 C. Acetoacetic Ester ynthesis Recall that b-keto esters, like malonic esters, are substantially more acidic than ordinary esters (Eq..5c, p. 1074) and are completely ionized by alkoxide bases. Et _ LCH LC LEt LH L LCH 3 + Et + H 3 C C LC LEt ethyl acetoacetate pk a = 10.7 ethanol pk a = 16 (.70) The enolate ions derived from b-keto esters, like those from malonate ester derivatives, can be alkylated by primary or unbranched secondary alkyl halides or sulfonate esters. _ LCH LC LEt + 3Br LCH CH CH H + Na Br _ 3 C LC LCH LC LEt 3 3 Na 1-bromobutane CH CH CH ethyl -acetylhexanoate (70% yield) (.71) Dialkylation of b-keto esters is also possible. LEt NaEt (1 equiv.) LC LCH _ H 3 C LC LEt (CH ) 3 I Claisen condensation LCH LC LEt (CH ) 3 NaEt first alkylation H 3 CL I second alkylation LCL C L Et (CH ) 3 (.7) Alkylation of a Dieckmann condensation product is the same type of reaction: L H L C Et NaEt Br CH CH CH CH L L C Et (.73) (from a Dieckmann condensation) ethyl -oxo-1-propylcyclopentanecarboxylate (85% yield) Like esters of substituted malonic acids, the alkylated derivatives of ethyl acetoacetate can be hydrolyzed and decarboxylated to give ketones. Ester saponification and protonation gives a substituted b-keto acid; and b-keto acids spontaneously decarboxylate at room temperature (ec. 0.11). This series of reactions is illustrated as carried out on the product of Eq..71:

7 1090 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND LCH LC LEt CH CH CH NaH, H ester saponification H, H 3, heat protonation and decarboxylation LCH CH CH CH + C + EtH (.74) The alkylation of ethyl acetoacetate followed by saponification, protonation, and decarboxylation to give a ketone is called the acetoacetic ester synthesis. The alkylation part of this sequence, like the alkylation of diethyl malonate, involves the construction of new carbon carbon bonds. Whether a target ketone can be prepared by the acetoacetic ester synthesis can be determined by mentally reversing the synthesis. R R R LC LC L H R LC LC L C Et R R replace with L C Et R LC LCH L C Et, R LBr, R L Br R R LC LCH L C Et, R L Br R R LC LCH L C Et, R L Br (.75) TUDY GUIDE LINK.6 Further Analysis of the Claisen Condensation This analysis involves replacing an a-hydrogen of the target ketone with a LC Et group. This process unveils the b-keto ester required for the synthesis. The b-keto ester, in turn, can either be prepared directly by a Claisen condensation or can be prepared from other b-keto esters by alkylation or dialkylation with appropriate alkyl halides, as indicated by the possibilities in Eq..75. tudy Problem.5 utline a preparation of -methyl-3-pentanone by a reaction sequence that involves at least one Claisen condensation. olution The discussion in the text leads to the following analysis: H CH C L C L -methyl-3-pentanone C Et CH C L C L A where the symbol, as usual, means implies as a starting material. The b-keto ester A cannot be prepared directly by a Claisen condensation because it would require a crossed Claisen condensation (see Eq..61, p. 1079), and because the reaction could not be made irreversible by deprotonation. A second option is to provide one of the methyl groups by alkylation of the enolate ion derived from b-keto ester B:

8 .7 ALKYLATIN F ETER ENLATE IN 1091 C Et CH C L C L A C Et CH C L CH L,H 3 C LI B The enolate ion of compound B, in turn, can be prepared directly by the Claisen condensation of ethyl propionate. (This follows from the analysis shown in Eq..61, p ) CH C Et ethyl propionate NaEt (1 equiv.) EtH C Et H L CH C L C L CH 3 C I 3 A _ enolate ion of B aponifying A and acidifying the solution will give the b-keto acid, which will decarboxylate spontaneously under the acidic reaction conditions to give the desired ketone. C Et CH C L C L A C_ NaH H 3 CH L C L CH 3 CH C 3 -C H CH C L C L target molecule Further Exploration.3 Alkylation of Enolate Ions Derived from Ketones Do not let the large number of reactions in this chapter obscure a very important central theme: Enolate ions are nucleophiles, and they do many of the things that other nucleophiles do, such as addition to carbonyl groups, nucleophilic acyl substitution, N reactionswithalkyl halides, and so on. The reactions of enolate ions presented here are only a small fraction of those that are known. Yet if you grasp the central idea that enolate ions are nucleophiles, and if you understand the other reactions of nucleophiles, you should have little difficulty understanding (and perhaps even predicting) other reactions of enolate ions. PRBLEM.39 utline a synthesis of each of the following compounds from ethyl acetoacetate and any other reagents. (a) 5-methyl--hexanone (b) 4-phenyl--butanone.40 utline a synthesis of each of the following compounds from a b-keto ester; then show how the b-keto ester itself can be prepared. (a) (b) PhCH CH L C L CH PhCH L C L CH Ph.41 Predict the outcome of the following reaction by identifying A, then B, then the final product. (Hint: How do nucleophiles react with epoxides under basic conditions?) H 3 C $ $ A + C L CH B (C 9 H 14 4 ) EtH H 3 C $ $ diethyl malonate NaEt EtH A

Chapter 22 Carbonyl Alpha-Substitution Reactions

Chapter 22 Carbonyl Alpha-Substitution Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic

More information

Under acidic conditions, carbonyl compounds are protonated on O first, then weak base deprotonates at the α-c to give enol.

Under acidic conditions, carbonyl compounds are protonated on O first, then weak base deprotonates at the α-c to give enol. Substitution reactions of carbonyl compounds at the α-position Carbonyl compounds are acidic at α-c (e.g. C 2 C ); this is because of the electrophilic nature of carbonyl C= bond. The pka values of simple

More information

23.7 ALKYLATION AND ACYLATION REACTIONS OF AMINES

23.7 ALKYLATION AND ACYLATION REACTIONS OF AMINES 3.7 ALKYLATIN AND ACYLATIN REACTIN F AMINE 1131 organic phase organic phase organic phase CH 3 (CH ) 6 CH Br CH 3 (CH ) 6 CH Br CH 3 (CH ) 6 CH CN R 4 P Br R 4 P CN R 4 P Br Na CN Na Br Na Br aqueous phase

More information

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES 10 APTER 1 TE EMITRY F ARBXYLI AID DERIVATIVE TUDY GUIDE LIK 1.5 Esters and ucleophiles 1.17 Give the structure of the product in the reaction of each of the following esters with isotopically labeled

More information

O O HO, H 2 O. OR (2) One of the pair must form an enol MUCH more easily than the other

O O HO, H 2 O. OR (2) One of the pair must form an enol MUCH more easily than the other Carbonyl Condensation Reactions (Conjugate Addition) If we look at resonance structures for conjugated carbonyl compounds (often called α,β-unsaturated compounds), we ll see that there are TW sites for

More information

Carboxylic Acid Derivatives and Nitriles

Carboxylic Acid Derivatives and Nitriles Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with

More information

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS 0. ULFNATE AND INRGANIC ETER DERIVATIVE F ALCL 44 R 2 C L CR 2 carbocation Lewis acid base association X (halide ion) 2 $ R 2 C L CR 2 R R X C A C $ alkyl halide R R alkene $ $ Brønsted acid base reaction

More information

2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2

2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2 1. To convert a nitrile to a primary amine you must: A) hydrolyze it with water. B) oxidize it with chromic acid. C) reduce it with hydrogen or lithium aluminum hydride. D) substitute it with an alkyl

More information

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids.

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. R Carboxylic acids are classified according to the substituent

More information

Chapter 18. Reactions of Aldehydes and Ketones

Chapter 18. Reactions of Aldehydes and Ketones hapter 18. Reactions of 1 Aldehydes and Ketones Reaction of a nucleophile with an aldehyde or ketone gives an alkoxide, and subsequent hydrolysis leads to an alcohol. This chapter will define differences

More information

Introduction to Oil Chemistry and Transesterification. John Bush Colorado School of Mines, Golden, CO

Introduction to Oil Chemistry and Transesterification. John Bush Colorado School of Mines, Golden, CO Introduction to Oil Chemistry and Transesterification John Bush Colorado School of Mines, Golden, CO john.a.bush@gmail.com Atoms and Elements Elements are the fundamental substances that compose matter

More information

UNIT (9) CARBOXYLIC ACIDS, ESTERS, AMINES, AND AMIDES

UNIT (9) CARBOXYLIC ACIDS, ESTERS, AMINES, AND AMIDES UNIT (9) CARBXYLIC ACIDS, ESTERS, AMINES, AND AMIDES 9.1 Carboxylic Acids The functional group in carboxylic acids is called the carboxyl group. A carboxyl group is a carbonyl group (C = ) with a hydroxyl

More information

(b) (1S,2S)-2-methylcyclohexanecarboxylic acid. (b) CH 3 CH 2 CHCN CH 2 CH 3. (d) 2-ethylbutanenitrile

(b) (1S,2S)-2-methylcyclohexanecarboxylic acid. (b) CH 3 CH 2 CHCN CH 2 CH 3. (d) 2-ethylbutanenitrile hem 226 Problem Set #10 Fundamentals of rganic hemistry, 4 th edition, John McMurry. hapter 10 1. Give IUPA names for compounds - (e). (c) 3 3 2 3-methylbutanoic acid Br 3 2 2 4-bromopentanoic acid 3 2

More information

Chapter 7 - Alkenes and Alkynes I

Chapter 7 - Alkenes and Alkynes I Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Alkynes contain a C C triple bond

Alkynes contain a C C triple bond Chapter 8: Alkynes: an introduction to organic synthesis Alkynes contain a C C triple bond Acetylene: H-C C-H is the common name for ethyne, used as a torch fuel Alkyne nomenclature follows normal hydrocarbon

More information

Chapter 22 (Enolate Chemistry) Reaction Summary

Chapter 22 (Enolate Chemistry) Reaction Summary Chem 360 Jasperse Ch. 22 Notes Answers. Enolate Chemistry 1 Chem 360-Jasperse Chapter 22 (Enolate Chemistry) eaction Summary PTN as ELECTPILE 1., -Base-catalyzed keto-enol equilibrium -know mech (either

More information

Alkynes and Their Reactions

Alkynes and Their Reactions Alkynes and Their Reactions Naming Alkynes Alkynes are named in the same general way that alkenes are named. In the IUPAC system, change the ane ending of the parent alkane name to the suffix yne. Choose

More information

Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Nomenclature

More information

Aldol Condensation Notes

Aldol Condensation Notes Reminder: These notes are meant to supplement, not replace, the laboratory manual. Aldol Condensation Notes History and Application Many aldehydes have distinctive strong odors. Benzaldehyde smells like

More information

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of Alkynes An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of acetaldehyde, acetic acid, vinyl chloride O O H

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Writing a Correct Mechanism

Writing a Correct Mechanism Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

(Woods) Chem-131 Lec-15 09-4 Carboxyllic acid 1. Carboxylic Acid Derivatives Esters, Acid Anhydrides, Amides, and Acid Halides

(Woods) Chem-131 Lec-15 09-4 Carboxyllic acid 1. Carboxylic Acid Derivatives Esters, Acid Anhydrides, Amides, and Acid Halides (Woods) Chem-131 Lec-15 09-4 Carboxyllic acid 1 Carboxylic Acid Derivatives Esters, Acid Anhydrides, Amides, and Acid Halides The oxidation state of carbon in a carboxylic acid is the highest of the organic

More information

Protonation. favored H 3 O + R O O H

Protonation. favored H 3 O + R O O H arboxylic Acids arboxylic acids have one property that distinguishes them from most other organic compounds they re acidic. Now not as acidic as fuming sulfuric acid, but still pretty darned acidic. The

More information

Chem 2425 Review Test 2

Chem 2425 Review Test 2 Name: Class: Date: Chem 2425 Review Test 2 Draw structures corresponding to each of the given names. 1. 2-phenyl-2-propanol 2. 2, 4, 6-trinitrophenol 3. tetrahydrofuran 4. allyl benzyl ether 5. diethyl

More information

2.7 Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition

2.7 Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition 2.7 Acids and Bases: The Brønsted-Lowry Definition Two frequently used definitions of acidity The Brønsted-Lowry definition Lewis definition Brønsted-Lowry acid A substance that donates a hydrogen ion

More information

Introduction to Biodiesel Chemistry Terms and Background Information

Introduction to Biodiesel Chemistry Terms and Background Information Introduction to Biodiesel Chemistry Terms and Background Information Basic rganic Chemistry rganic chemistry is the branch of chemistry that deals with organic compounds. rganic compounds are compounds

More information

ALCOHOLS: Properties & Preparation

ALCOHOLS: Properties & Preparation ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.

More information

Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations SHORT ANSWER Exhibit 11-1 Circle your response in each set below. 1. Circle the least

More information

Organic Chemistry II with Dr Roche

Organic Chemistry II with Dr Roche Organic Chemistry II with Dr Roche Lecture Notes Email http://roche.camden.rutgers.edu alroche@camden.rutgers.edu Office SCI-311 Labs SCI 328/309/319 Office Phone 856-225-6166 Text (a) Organic Chemistry

More information

Chemistry of the Functional Group

Chemistry of the Functional Group Name Lab Day Chemistry of the Functional Group Introduction: rganic molecules comprised only of carbon and hydrogen would be relatively unreactive and biologically unimportant. Inclusion of atoms of other

More information

Organic Chemistry II / CHEM 252 Chapter 20 Amines

Organic Chemistry II / CHEM 252 Chapter 20 Amines Organic Chemistry II / CHEM 252 Chapter 20 Amines Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Nomenclature Nomenclature Primary amines are named in systematic (IUPAC)

More information

It does not react N.R.

It does not react N.R. Benzene versus yclohexene versus yclohexadiene 1 l l cyclohexene l l cyclohexadiene l Expect this to react similarly "cyclohexatriene" It does not react l N.R. benzene Benzene is resonance stabilized,

More information

13.1 Alcohols and Phenols. Nomenclature. Nomenclature. Nomenclature. Alcohols possess a hydroxyl group ( OH). Hydroxyl groups in natural compounds.

13.1 Alcohols and Phenols. Nomenclature. Nomenclature. Nomenclature. Alcohols possess a hydroxyl group ( OH). Hydroxyl groups in natural compounds. 13.1 Alcohols and Phenols Alcohols possess a hydroxyl group ( OH). 13.1 Alcohols and Phenols Hydroxyl groups in natural compounds. Hydroxyl groups are extremely common in natural compounds. 13-1 13-2 13.1

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Ch17_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch17_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch17_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which molecule is a carboxylic acid? A) 1) B) C) D) E) CH3 CH2 CH2 NH2 2) Which molecule

More information

Organic Chemistry Specific Name Reactions

Organic Chemistry Specific Name Reactions Organic Chemistry Specific Name Reactions Sandmeyer Reaction Class XII The Cl, Br and CN nucleophiles can easily be introduced in the benzene ring of benzene diazonium salt in the presence of Cu(I) ion.

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

Electrophilic Addition Reactions

Electrophilic Addition Reactions Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,

More information

Alkynes: An Introduction to Organic Synthesis

Alkynes: An Introduction to Organic Synthesis Alkynes: An Introduction to Organic Synthesis Alkynes Hydrocarbons that contain carbon-carbon triple bonds Acetylene, the simplest alkyne is produced industrially from methane and steam at high temperature

More information

Nomenclature of organic compounds

Nomenclature of organic compounds P.1 Nomenclature of organic compounds A. Alkanes (C n H 2n+2 ) i. The following table give the names of some root names different number of carbon atoms of hydrocarbon. CH 4 methane C 6 H 14 hexane C 2

More information

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

Ozonolysis of Alkenes

Ozonolysis of Alkenes zonolysis of Alkenes 1 When 2-methyl-2-pentene reacts with ozone, the initial 1,2,3-trioxolane product is 144, but this rearranges to ozonide 145. If 145 is treated with hydrogen peroxide as above, one

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse

More information

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS 17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic

More information

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen 340 14. Nucleophilic substitution at C= with loss of carbonyl oxygen Ph In Chapter 13 we saw this way of making a reaction go faster by raising the energy of the starting material. We also saw that the

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

CH 102 Practice Exam 2 PCC-Sylvania

CH 102 Practice Exam 2 PCC-Sylvania CH 102 Practice Exam 2 PCC-Sylvania True/False Indicate if the statement is true or false. 1.Tertiary alcohols are not easily oxidized. 2.Secondary alcohols can be oxidized to aldehydes. 3.Primary alcohols

More information

EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT

EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT Pre-Lab Questions: None. 64 I. Background Information DIPEPTIDE RESEARCH PROJECT Methods developed by organic chemists for the synthesis of biopolymers have had

More information

Chapter 10 Introduction to Organic Chemistry: Alkanes. Organic Chemistry. 10.1 Organic Compounds. Organic vs. Inorganic.

Chapter 10 Introduction to Organic Chemistry: Alkanes. Organic Chemistry. 10.1 Organic Compounds. Organic vs. Inorganic. Chapter 10 Introduction to Organic Chemistry: Alkanes 10.1 Organic Compounds Organic Chemistry An organic compound is a compound made from carbon atoms. has one or more C atoms. has many H atoms. may also

More information

17.5 ALLYLIC AND BENZYLIC OXIDATION

17.5 ALLYLIC AND BENZYLIC OXIDATION 17.5 ALLYLI AND BENZYLI XIDATIN 803 Nuc d d Nuc d 2 3 2 overlap of 2p orbitals X d no p-orbital overlap X d (a) (b) Figure 17.2 Transition states for N 2 reactions at (a) an allylic carbon and (b) a nonallylic

More information

3.4 BRØNSTED LOWRY ACIDS AND BASES

3.4 BRØNSTED LOWRY ACIDS AND BASES 96 CAPTER 3 ACIDS AND BASES. TE CURVED-ARROW NOTATION and that the unshared electron pair (and negative charge) is shared equally by the two terminal carbons. C L C A C 1 allyl anion (c) Using the curved-arrow

More information

Learning Guide for Chapter 11 - Alkynes

Learning Guide for Chapter 11 - Alkynes Learning Guide for Chapter 11 - Alkynes Introduction to s - p 1 ybridization and geometry, Reactivity, Types of s, Cyclic s, Physical properties, Spectroscopy, Acidity, Natural occurrence and uses Nomenclature

More information

Chemistry Notes for class 12 Chapter 13 Amines

Chemistry Notes for class 12 Chapter 13 Amines 1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).

More information

Carboxylic Acid Structure and Chemistry: Part 2

Carboxylic Acid Structure and Chemistry: Part 2 Principles of Drug Action 1, pring 2005, Carboxylic Acids Part 2 Carboxylic Acid tructure and Chemistry: Part 2 Jack Deuiter IV. eactions of the Carboxylic Acid eactions Depending on their overall structure,

More information

ESTERIFICATION: PREPARATION OF BENZYL ACETATE MICROSCALE EXPERIMENT IV R C O R'

ESTERIFICATION: PREPARATION OF BENZYL ACETATE MICROSCALE EXPERIMENT IV R C O R' ESTERIFICATIN: PREPARATIN F BENZYL ACETATE MICRSCALE EXPERIMENT IV 39 R C R' The ester group is an important functional group that can be synthesized in a number of different ways. The low molecular-weight

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,

More information

Benzene benzene aromatic hydrocarbons aromatic not not

Benzene benzene aromatic hydrocarbons aromatic not not Benzene 1 NT 87 90 ompound 87 has the formula 6 6, is known as benzene, and it is a hydrocarbon derived from petroleum distillates. Benzene is the parent compound for a class of compounds known as aromatic

More information

KOT 222 ORGANIC CHEMISTRY II CHAPTER 17. REACTIONS of AROMATIC COMPOUNDS

KOT 222 ORGANIC CHEMISTRY II CHAPTER 17. REACTIONS of AROMATIC COMPOUNDS KOT 222 ORGANIC CEMISTRY II CAPTER 17 REACTIONS of AROMATIC COMPOUNDS 1 Electrophilic Aromatic Substitution Substitution of an electrophile for a proton on the aromatic ring. benzene s pi electrons are

More information

Substituted Alkanes. Alcohol Amine Ether Thiol

Substituted Alkanes. Alcohol Amine Ether Thiol Substituted Alkanes While alkanes have very few reactions that occur, combustion and some radical reactions, substituted alkanes display a variety of reactions and properties X ften the amount of information

More information

Avg. 16.4 / 25 Stnd. Dev. 8.2

Avg. 16.4 / 25 Stnd. Dev. 8.2 QUIZ TREE Avg. 16.4 / 25 Stnd. Dev. 8.2 xidation of Alcohols with Chromium (VI): Jones xidation 2 Alcohols are oxidized by a solution of chromium trioxide in aqueous acetone (2), in the presence of an

More information

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.

More information

Chapter 25 The Chemistry of Life: Organic Chemistry. 25.1 Some General Characteristics of Organic Molecules

Chapter 25 The Chemistry of Life: Organic Chemistry. 25.1 Some General Characteristics of Organic Molecules Chapter 25 The Chemistry of Life: Organic Chemistry general characteristics of organic molecules introduction to hydrocarbons alkanes unsaturated hydrocarbons functional groups: alcohols and ethers compounds

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

Experiment 1 Sugar! E1-1

Experiment 1 Sugar! E1-1 Experiment 1 Sugar! E1-1 E1-2 The Task The goal of this experiment is to identify the organic functional group responsible for the reaction of sugars with Fehling s reagent. Skills At the end of the laboratory

More information

Chapter 15 Acids and Bases reading guide.

Chapter 15 Acids and Bases reading guide. Chapter 15 Acids and Bases reading guide. Be active while reading the text. Take notes, think about what you ve read, and ask yourself questions while reading. Use this document as a guide for making your

More information

Chapter: Introduction to Organic Chemistry: Alkanes

Chapter: Introduction to Organic Chemistry: Alkanes Chapter: Introduction to Organic Chemistry: Alkanes Organic Chemistry An organic compound is a compound made from carbon atoms. has one or more C atoms. has many H atoms. may also contain O, S, N, and

More information

Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16)

Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16) Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16) SHORT ANSWER IUPAC Naming Instructions: Provide proper IUPAC

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

Carbonyl Chemistry (12 Lectures)

Carbonyl Chemistry (12 Lectures) arbonyl hemistry (12 Lectures) Aim of ourse Professor Donna G. Blackmond d.blackmond@imperial.ac.uk tel. 41193 oom 639 1 To build upon elements of Dr E.. Smith s and Dr. D.. Braddocks s course. To introduce

More information

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18)

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18) MULTIPLE CHICE QUESTINS Part 3: Syror och baser (Answers on page 18) Topic: Acid-Base Definitions 1. According to the Lewis definition, a base is a(n): A) Proton donor. B) Electron pair donor. C) Hydroxide

More information

Chapter 13 Carboxylic Acids, Esters, Amines, and Amides. Carboxylic Acids. Names and Sources of Some Carboxylic Acids. IUPAC Names

Chapter 13 Carboxylic Acids, Esters, Amines, and Amides. Carboxylic Acids. Names and Sources of Some Carboxylic Acids. IUPAC Names Chapter 13 Carboxylic Acids, Esters, Amines, and Amides 13.1 Carboxylic Acids Carboxylic Acids A carboxylic acid contains a carboxyl group, which is a carbonyl group (C=) attached to a hydroxyl group (

More information

CHAPTER 11 Alcohol Reactivity

CHAPTER 11 Alcohol Reactivity CHAPTER 11 Alcohol Reactivity 1 Summary Table Oxidation: Adding O, Losing H Chromic Acid (Cr(VI)) is a powerful oxidizing agent 4 Oxidation Mechanism When Aldehydes are formed by Cr(VI) in water, they

More information

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl

More information

ALKENES AND ALKYNES REACTIONS

ALKENES AND ALKYNES REACTIONS A STUDENT SHULD BE ABLE T: ALKENES AND ALKYNES REACTINS 1. Given the starting materials and reaction conditions, predict the products of the following reactions of alkenes and alkynes. Regioselective Markovnikov

More information

1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group.

1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group. Name: Date: 1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group. 2. Which of the following statements concerning

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution

More information

ORGANIC CHEMISTRY I PRACTICE EXERCISE Elimination Reactions and Alkene Synthesis

ORGANIC CHEMISTRY I PRACTICE EXERCISE Elimination Reactions and Alkene Synthesis RGANIC CEMISTRY I PRACTICE EXERCISE Elimination Reactions and Alkene Synthesis ) ne of the products that results when -bromo-,-dimethylcyclopentane is heated in ethanol is shown below. Give a mechanism

More information

20.2 Chemical Equations

20.2 Chemical Equations All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more

More information

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes: An Introduction to Organic Synthesis Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes! Hydrocarbons that contain carbon-carbon triple bonds! Acetylene, the simplest alkyne

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water. Acids and Bases Know the definition of Arrhenius, Bronsted-Lowry, and Lewis acid and base. Autoionization of Water Since we will be dealing with aqueous acid and base solution, first we must examine the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM 210 Chemistry Homework #6 Alkanes (Ch. 10) Due: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Compounds that have the same molecular formula

More information

IUPAC System of Nomenclature

IUPAC System of Nomenclature IUPAC System of Nomenclature The IUPAC (International Union of Pure and Applied Chemistry) is composed of chemists representing the national chemical societies of several countries. ne committee of the

More information

Willem Elbers. October 9, 2015

Willem Elbers. October 9, 2015 S N 1 and S N 2 reactivity of 3 alkyl bromides Willem Elbers ctober 9, 2015 1 Abstract n this experiment, we investigate the relative reactivities of three alkyl bromides with increasing steric bulk. We

More information

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700) 750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals

More information

Alcohols An alcohol contains a hydroxyl group ( OH) attached to a carbon chain. A phenol contains a hydroxyl group ( OH) attached to a benzene ring.

Alcohols An alcohol contains a hydroxyl group ( OH) attached to a carbon chain. A phenol contains a hydroxyl group ( OH) attached to a benzene ring. Chapter : rganic Compounds with xygen Alcohols, Ethers Alcohols An alcohol contains a hydroxyl group ( H) attached to a carbon chain. A phenol contains a hydroxyl group ( H) attached to a benzene ring.

More information

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

Acids, Bases, Salts, and Buffers

Acids, Bases, Salts, and Buffers Acids, Bases, Salts, and Buffers GOAL AND OVERVIEW Hydrolysis of salts will be used to study the acid-base properties of dissolved ions in aqueous solutions. The approximate ph of these solutions will

More information

Synthesis of Isopentyl Acetate

Synthesis of Isopentyl Acetate Experiment 8 Synthesis of Isopentyl Acetate Objectives To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction. Introduction Esters are derivatives of

More information

Organic Chemistry Practice Exam #4

Organic Chemistry Practice Exam #4 rganic Chemistry 32-235 Practice Exam #4 Part 1: 1. The correct IUPAC name for the following structure is. C 2 CC 2 C C 2 5-hexen-3-ol 3-hydroxy-5-hexene (E) 4-hydroxy-1-hexene 1-hexen-4-ol (D) Isohexen-3-ol,

More information

Molecular Formula: Example

Molecular Formula: Example Molecular Formula: Example A compound is found to contain 85.63% C and 14.37% H by mass. In another experiment its molar mass is found to be 56.1 g/mol. What is its molecular formula? 1 CHAPTER 3 Chemical

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

IDENTIFICATION OF ALCOHOLS

IDENTIFICATION OF ALCOHOLS IDENTIFICATION OF ALCOHOLS Alcohols are organic compounds that which considered as derivatives of water. One of the hydrogen atoms of water molecule (H-O-H) has been replaced by an alkyl or substituted

More information

2. Organic Compounds: Alkanes and Cycloalkanes. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 3

2. Organic Compounds: Alkanes and Cycloalkanes. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 3 2. Organic Compounds: Alkanes and Cycloalkanes Based on McMurry s Organic Chemistry, 6 th edition, Chapter 3 Families of Organic Compounds Organic compounds can be grouped into families by their common

More information

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS Name INSTRUTINS --- Department of hemistry and Biochemistry SUNY/neonta hem 322 - rganic hemistry II Examination #2 - March 14, 2005 ANSWERS This examination has two parts. Part I is in multiple choice

More information