22.7 ALKYLATION OF ESTER ENOLATE IONS

Size: px
Start display at page:

Download "22.7 ALKYLATION OF ESTER ENOLATE IONS"

Transcription

1 1084 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND H H CA CL CoA + enol form of acetyl-coa _ C N NH acetyl-coa carboxylase H H R H carboxybiotin HN NH _ LC LCH LCLCoA + H H malonyl-coa R H biotin Provide a curved-arrow mechanism for this reaction, using B3 as a base (which is part of the enzyme) and BH as its conjugate acid..7 ALKYLATIN F ETER ENLATE IN ections.4.6 described reactions in which enolate ions react as nucleophiles at the carbonyl carbon atom. This section considers two reactions in which enolate ions are used as nucleophiles in N reactions. A. Malonic Ester ynthesis Diethyl malonate (malonic ester), like many other b-dicarbonyl compounds, has unusually acidic a-hydrogens. (Why?) Consequently, its conjugate-base enolate ion can be formed nearly completely with alkoxide bases such as sodium ethoxide. _ Et3_ + Et LC LCH LC LEt Et L H + Et LC LCH LC LEt enolate ion of diethyl malonate diethyl malonate pk a = 1.9 (.64a) The conjugate-base anion of diethyl malonate is nucleophilic, and it reacts with alkyl halides and sulfonate esters in typical N reactions. uch reactions can be used to introduce alkyl groups at the a-position of malonic ester. Na CH CH _ 3CH(C Et) + CH L Br CH + Na Br _ EtH 3 CHCH(C Et) (83% yield) (.64b) Further Exploration. Malonic Ester Alkylation As this example shows, even secondary halides can be used in this reaction. (ee Further Exploration..) The importance of this reaction is that it can be extended to the preparation of carboxylic acids. aponification (ec. 1.7A) of the diester and acidification of the resulting solution gives a substituted malonic acid derivative. Recall that heating any malonic acid derivative causes it to decarboxylate (ec. 0.11). The result of the alkylation, saponification, and decar-

2 .7 ALKYLATIN F ETER ENLATE IN 1085 boxylation sequence is a carboxylic acid that conceptually is a substituted acetic acid an acetic acid molecule with an alkyl group on its a-carbon. protonation decarboxylation (ec. 0.11) CH CHCH(C Et) NaH H CH CHCH(C _ Na ) H 3 CH CHCH(C H) heat ester saponification (ec. 1.7A) CH CHCH C H + C The overall sequence of ionization, alkylation, saponification and decarboxylation starting from diethyl malonate (Eqs..64a c) is called the malonic ester synthesis. Notice that the alkylation step of the malonic ester synthesis (Eq..64b) results in the formation of a new carbon carbon bond. The anion of malonic ester can be alkylated twice in two successive reactions with different alkyl halides (if desired) to give, after hydrolysis and decarboxylation, a disubstituted acetic acid. This possibility allows us to think of any disubstituted acetic acid in terms of diethyl malonate and two alkyl halides, as follows (X = halogen): acetic acid unit a substituted acetic acid (.64c) R L CH L C H R R LC(C Et) R CH (C Et), R LX, R L X (.65) If the alkyl halides RLX and R9LX are among those that will undergo the N reaction, then the target carboxylic acid can in principle be prepared by the malonic ester synthesis. This analysis is illustrated in tudy Problem.4. tudy Problem.4 utline a malonic ester synthesis of the following carboxylic acid: (CH ) 4 CH L C H -methylheptanoic acid olution Using the analysis in the text, identify the acetic acid unit in the carboxylic acid. The two alkyl groups in this case, a methyl group and a pentyl group are derived from alkyl halides. derived from I (CH ) 4 L CH L C H derived from (CH ) 4 Br substituted acetic acid

3 1086 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND This analysis leads to the following synthesis: formation of the enolate ion formation of the enolate ion introduction of the second alkyl group NaEt CH CH (C Et) 3 (CH ) 3 CH Br NaEt H (CH ) 3 CH CH(C Et) 3 C L I EtH EtH diethyl malonate introduction of the first alkyl group (CH ) 3 CH C(C Et) + NaI (80% yield) (.66) Ester saponification, acidification, and decarboxylation, as in Eq..64c, give the desired product. The two enolate-forming and alkylation reactions must be performed as separate steps. Adding two different alkyl halides and two equivalents of NaEt to malonic ester at the same time would not give the desired product. (Why?) PRBLEM.33 Indicate whether each of the following compounds could be prepared by a malonic ester synthesis. If so, outline a preparation from diethyl malonate and any other reagents. If not, explain why. (a) 3-phenylpropanoic acid (b) -ethylbutanoic acid (c) 3,3-dimethylbutanoic acid.34 Give the product of the following reaction sequence and explain your answer. NaEt NaH HCl CH (C Et) + BrCH CH CH Cl (C 5 H 8 ) EtH heat.35 (a) When the conjugate-base enolate of diethyl malonate is treated with bromobenzene, no diethyl phenylmalonate is formed. Explain why bromobenzene is inert...ch(cet) +CH(CEt) Br + Br diethyl phenylmalonate (b) When the same enolate ion is treated with bromobenzene and a catalytic amount of Pd[P(t-Bu) 3 ] 4, diethyl phenylmalonate is formed in excellent yield. Explain the role of the catalyst with a mechanism. B. Direct Alkylation of Enolate Ions Derived from Monoesters In the synthesis of carboxylic acids by malonic ester alkylation, a LC Et group is wasted because it is later removed. Why not avoid this altogether and alkylate directly the enolate ion of an acetic acid ester? B 3 + LR (a base) _ H C LCLR + BL H CH CH CH L I CH CH CH LCH L C LR + I _ (.67)

4 .7 ALKYLATIN F ETER ENLATE IN 1087 At one time this idea could not be used in practice because enolate ions derived from esters, once formed, undergo another, faster reaction: Claisen condensation with the parent ester (ec..5a). The direct alkylation shown in Eq..67 is so attractive, however, that chemists continued efforts to find conditions under which it would work. It was discovered in the early 1970s that a family of very strong, highly branched nitrogen bases, such as the following two examples, can be used to form stable enolate ions rapidly at -78 C from esters. Li _ 3 N Li _ 3 N lithium diisopropylamide (LDA) lithium cyclohexylisopropylamide (LCHIA) pk a of conjugate acids: 35 (Do not confuse the term amide in the names of these bases with the carboxylic acid derivative. This term has a double usage. As used here, an amide is the conjugate-base anion of an amine.) The conjugate acids of these bases are amines, which have pk a values near 35. Because esters have pk a values near 5, these amide bases are strong enough to convert esters completely into their conjugate-base enolate ions. The ester enolate anions formed with these bases can be alkylated directly with alkyl halides. Notice that esters with quaternary a-carbon atoms can be prepared by this method. (These compounds cannot be prepared by the malonic ester synthesis. Why?) a quaternary a-carbon C LEt H -78 C LCHIA THF < 15 min Li C LEt.. + H 3 C L I DM H 3 C L C LL C L Et + LiI ethyl -methylpropanoate NH ethyl,-dimethylpropanoate (ethyl pivalate) (87% yield) (.68) The nitrogen bases themselves are generated from the corresponding amines and butyllithium (a commercially available organolithium reagent) at -78 C in tetrahydrofuran (THF) solvent. -78 C THF N LH + CH CH CH LLi N 3 _ Li + CH CH (.69) This method of ester alkylation is considerably more expensive than the malonic ester synthesis. It also requires special inert-atmosphere techniques because the strong bases that are used react vigorously with both oxygen and water. For these reasons, the malonic ester syn-

5 1088 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND thesis remains very useful, particularly for large-scale syntheses. However, for the preparation of laboratory samples, or for the preparation of compounds that are unavailable from the malonic ester synthesis, the preparation and alkylation of enolate ions with amide bases is particularly valuable. The possibility of the Claisen condensation as a side reaction was noted in the discussion of Eq..67. The use of a very strong amide base avoids the Claisen condensation for the following reason. The reaction is run by adding the ester to the base. When a molecule of ester enters the solution, it can react either with the strong base to form an enolate ion or with a molecule of already formed enolate ion in the Claisen condensation. The reaction of esters with strong amide bases is so much faster at -78 C than the Claisen condensation that the enolate ion is formed instantly and never has a chance to undergo the Claisen condensation. In other words, the Claisen condensation is avoided because the ester and its enolate ion are never present simultaneously (except for an instant) in the reaction flask. Another potential side reaction is the nucleophilic reaction of the amide base (or even its conjugate acid amine, which is, after all, still a base) at the ester carbonyl group. Because amines react with esters to give products of aminolysis (ec. 1.8C), it might be reasonable to expect the conjugate bases of amines very strong bases indeed to react even more rapidly with esters. That this does not happen is once again the result of a competition. When an amide base reacts with the ester, it can either remove a proton or react at the carbonyl carbon. A reaction at the carbonyl carbon is retarded by van der Waals repulsions between groups on the carbonyl compound and the large branched groups on the bases. (These van der Waals repulsions have been aptly termed F-strain, or front strain. ) For such a branched amide base to react at the carbonyl carbon is somewhat like trying to put a dinner plate into the coin slot of a vending machine. If the amide base could be in contact with the ester long enough, it would eventually react at the carbonyl carbon; but the base instead reacts more rapidly a different way: It abstracts an a-proton. Reaction with a tiny hydrogen does not involve the van der Waals repulsions that would occur if the base were to react at the carbonyl carbon. Hence, the amide base takes the path of least resistance: It forms the enolate ion. Notice that van der Waals repulsions are used productively in this example to avoid an undesired reaction. PRBLEM.36 utline a synthesis of each of the following compounds from either diethyl malonate or ethyl acetate. Because the branched amide bases are relatively expensive, you may use them in only one reaction. (a) % (b) CH CH (c) C H 5 CH L C H $ CH L C H C H 5 L C L C Et ) CH CH valproic acid (used in treatment of epilepsy) %.37 The reactions of ester enolate ions are not restricted to simple alkylations. With this in mind, suggest the structure of the product formed when the enolate ion formed by the reaction of tert-butyl acetate with LCHIA reacts with each of the following compounds at -78 C followed by dilute HCl. (a) acetone (b) benzaldehyde.38 Predict the product formed when the conjugate-base enolate ion of ethyl -methylpropanoate (shown in Eq..68) is treated with bromobenzene and a catalytic amount of Pd[P(t-Bu) 3 ] 4, and explain the role of the catalyst.

6 .7 ALKYLATIN F ETER ENLATE IN 1089 C. Acetoacetic Ester ynthesis Recall that b-keto esters, like malonic esters, are substantially more acidic than ordinary esters (Eq..5c, p. 1074) and are completely ionized by alkoxide bases. Et _ LCH LC LEt LH L LCH 3 + Et + H 3 C C LC LEt ethyl acetoacetate pk a = 10.7 ethanol pk a = 16 (.70) The enolate ions derived from b-keto esters, like those from malonate ester derivatives, can be alkylated by primary or unbranched secondary alkyl halides or sulfonate esters. _ LCH LC LEt + 3Br LCH CH CH H + Na Br _ 3 C LC LCH LC LEt 3 3 Na 1-bromobutane CH CH CH ethyl -acetylhexanoate (70% yield) (.71) Dialkylation of b-keto esters is also possible. LEt NaEt (1 equiv.) LC LCH _ H 3 C LC LEt (CH ) 3 I Claisen condensation LCH LC LEt (CH ) 3 NaEt first alkylation H 3 CL I second alkylation LCL C L Et (CH ) 3 (.7) Alkylation of a Dieckmann condensation product is the same type of reaction: L H L C Et NaEt Br CH CH CH CH L L C Et (.73) (from a Dieckmann condensation) ethyl -oxo-1-propylcyclopentanecarboxylate (85% yield) Like esters of substituted malonic acids, the alkylated derivatives of ethyl acetoacetate can be hydrolyzed and decarboxylated to give ketones. Ester saponification and protonation gives a substituted b-keto acid; and b-keto acids spontaneously decarboxylate at room temperature (ec. 0.11). This series of reactions is illustrated as carried out on the product of Eq..71:

7 1090 CHAPTER THE CHEMITRY F ENLATE IN, ENL, AND a,b-unaturated CARBNYL CMPUND LCH LC LEt CH CH CH NaH, H ester saponification H, H 3, heat protonation and decarboxylation LCH CH CH CH + C + EtH (.74) The alkylation of ethyl acetoacetate followed by saponification, protonation, and decarboxylation to give a ketone is called the acetoacetic ester synthesis. The alkylation part of this sequence, like the alkylation of diethyl malonate, involves the construction of new carbon carbon bonds. Whether a target ketone can be prepared by the acetoacetic ester synthesis can be determined by mentally reversing the synthesis. R R R LC LC L H R LC LC L C Et R R replace with L C Et R LC LCH L C Et, R LBr, R L Br R R LC LCH L C Et, R L Br R R LC LCH L C Et, R L Br (.75) TUDY GUIDE LINK.6 Further Analysis of the Claisen Condensation This analysis involves replacing an a-hydrogen of the target ketone with a LC Et group. This process unveils the b-keto ester required for the synthesis. The b-keto ester, in turn, can either be prepared directly by a Claisen condensation or can be prepared from other b-keto esters by alkylation or dialkylation with appropriate alkyl halides, as indicated by the possibilities in Eq..75. tudy Problem.5 utline a preparation of -methyl-3-pentanone by a reaction sequence that involves at least one Claisen condensation. olution The discussion in the text leads to the following analysis: H CH C L C L -methyl-3-pentanone C Et CH C L C L A where the symbol, as usual, means implies as a starting material. The b-keto ester A cannot be prepared directly by a Claisen condensation because it would require a crossed Claisen condensation (see Eq..61, p. 1079), and because the reaction could not be made irreversible by deprotonation. A second option is to provide one of the methyl groups by alkylation of the enolate ion derived from b-keto ester B:

8 .7 ALKYLATIN F ETER ENLATE IN 1091 C Et CH C L C L A C Et CH C L CH L,H 3 C LI B The enolate ion of compound B, in turn, can be prepared directly by the Claisen condensation of ethyl propionate. (This follows from the analysis shown in Eq..61, p ) CH C Et ethyl propionate NaEt (1 equiv.) EtH C Et H L CH C L C L CH 3 C I 3 A _ enolate ion of B aponifying A and acidifying the solution will give the b-keto acid, which will decarboxylate spontaneously under the acidic reaction conditions to give the desired ketone. C Et CH C L C L A C_ NaH H 3 CH L C L CH 3 CH C 3 -C H CH C L C L target molecule Further Exploration.3 Alkylation of Enolate Ions Derived from Ketones Do not let the large number of reactions in this chapter obscure a very important central theme: Enolate ions are nucleophiles, and they do many of the things that other nucleophiles do, such as addition to carbonyl groups, nucleophilic acyl substitution, N reactionswithalkyl halides, and so on. The reactions of enolate ions presented here are only a small fraction of those that are known. Yet if you grasp the central idea that enolate ions are nucleophiles, and if you understand the other reactions of nucleophiles, you should have little difficulty understanding (and perhaps even predicting) other reactions of enolate ions. PRBLEM.39 utline a synthesis of each of the following compounds from ethyl acetoacetate and any other reagents. (a) 5-methyl--hexanone (b) 4-phenyl--butanone.40 utline a synthesis of each of the following compounds from a b-keto ester; then show how the b-keto ester itself can be prepared. (a) (b) PhCH CH L C L CH PhCH L C L CH Ph.41 Predict the outcome of the following reaction by identifying A, then B, then the final product. (Hint: How do nucleophiles react with epoxides under basic conditions?) H 3 C $ $ A + C L CH B (C 9 H 14 4 ) EtH H 3 C $ $ diethyl malonate NaEt EtH A

Chapter 22 Carbonyl Alpha-Substitution Reactions

Chapter 22 Carbonyl Alpha-Substitution Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic

More information

23.7 ALKYLATION AND ACYLATION REACTIONS OF AMINES

23.7 ALKYLATION AND ACYLATION REACTIONS OF AMINES 3.7 ALKYLATIN AND ACYLATIN REACTIN F AMINE 1131 organic phase organic phase organic phase CH 3 (CH ) 6 CH Br CH 3 (CH ) 6 CH Br CH 3 (CH ) 6 CH CN R 4 P Br R 4 P CN R 4 P Br Na CN Na Br Na Br aqueous phase

More information

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES 10 APTER 1 TE EMITRY F ARBXYLI AID DERIVATIVE TUDY GUIDE LIK 1.5 Esters and ucleophiles 1.17 Give the structure of the product in the reaction of each of the following esters with isotopically labeled

More information

Carboxylic Acid Derivatives and Nitriles

Carboxylic Acid Derivatives and Nitriles Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with

More information

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS 0. ULFNATE AND INRGANIC ETER DERIVATIVE F ALCL 44 R 2 C L CR 2 carbocation Lewis acid base association X (halide ion) 2 $ R 2 C L CR 2 R R X C A C $ alkyl halide R R alkene $ $ Brønsted acid base reaction

More information

2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2

2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2 1. To convert a nitrile to a primary amine you must: A) hydrolyze it with water. B) oxidize it with chromic acid. C) reduce it with hydrogen or lithium aluminum hydride. D) substitute it with an alkyl

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

UNIT (9) CARBOXYLIC ACIDS, ESTERS, AMINES, AND AMIDES

UNIT (9) CARBOXYLIC ACIDS, ESTERS, AMINES, AND AMIDES UNIT (9) CARBXYLIC ACIDS, ESTERS, AMINES, AND AMIDES 9.1 Carboxylic Acids The functional group in carboxylic acids is called the carboxyl group. A carboxyl group is a carbonyl group (C = ) with a hydroxyl

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Writing a Correct Mechanism

Writing a Correct Mechanism Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular

More information

Introduction to Biodiesel Chemistry Terms and Background Information

Introduction to Biodiesel Chemistry Terms and Background Information Introduction to Biodiesel Chemistry Terms and Background Information Basic rganic Chemistry rganic chemistry is the branch of chemistry that deals with organic compounds. rganic compounds are compounds

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

ALCOHOLS: Properties & Preparation

ALCOHOLS: Properties & Preparation ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.

More information

Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations SHORT ANSWER Exhibit 11-1 Circle your response in each set below. 1. Circle the least

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Ch17_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch17_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch17_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which molecule is a carboxylic acid? A) 1) B) C) D) E) CH3 CH2 CH2 NH2 2) Which molecule

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse

More information

Electrophilic Addition Reactions

Electrophilic Addition Reactions Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

CH 102 Practice Exam 2 PCC-Sylvania

CH 102 Practice Exam 2 PCC-Sylvania CH 102 Practice Exam 2 PCC-Sylvania True/False Indicate if the statement is true or false. 1.Tertiary alcohols are not easily oxidized. 2.Secondary alcohols can be oxidized to aldehydes. 3.Primary alcohols

More information

EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT

EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT Pre-Lab Questions: None. 64 I. Background Information DIPEPTIDE RESEARCH PROJECT Methods developed by organic chemists for the synthesis of biopolymers have had

More information

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen 340 14. Nucleophilic substitution at C= with loss of carbonyl oxygen Ph In Chapter 13 we saw this way of making a reaction go faster by raising the energy of the starting material. We also saw that the

More information

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS 17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic

More information

3.4 BRØNSTED LOWRY ACIDS AND BASES

3.4 BRØNSTED LOWRY ACIDS AND BASES 96 CAPTER 3 ACIDS AND BASES. TE CURVED-ARROW NOTATION and that the unshared electron pair (and negative charge) is shared equally by the two terminal carbons. C L C A C 1 allyl anion (c) Using the curved-arrow

More information

17.5 ALLYLIC AND BENZYLIC OXIDATION

17.5 ALLYLIC AND BENZYLIC OXIDATION 17.5 ALLYLI AND BENZYLI XIDATIN 803 Nuc d d Nuc d 2 3 2 overlap of 2p orbitals X d no p-orbital overlap X d (a) (b) Figure 17.2 Transition states for N 2 reactions at (a) an allylic carbon and (b) a nonallylic

More information

Carboxylic Acid Structure and Chemistry: Part 2

Carboxylic Acid Structure and Chemistry: Part 2 Principles of Drug Action 1, pring 2005, Carboxylic Acids Part 2 Carboxylic Acid tructure and Chemistry: Part 2 Jack Deuiter IV. eactions of the Carboxylic Acid eactions Depending on their overall structure,

More information

Chemistry Notes for class 12 Chapter 13 Amines

Chemistry Notes for class 12 Chapter 13 Amines 1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,

More information

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

Avg. 16.4 / 25 Stnd. Dev. 8.2

Avg. 16.4 / 25 Stnd. Dev. 8.2 QUIZ TREE Avg. 16.4 / 25 Stnd. Dev. 8.2 xidation of Alcohols with Chromium (VI): Jones xidation 2 Alcohols are oxidized by a solution of chromium trioxide in aqueous acetone (2), in the presence of an

More information

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18)

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18) MULTIPLE CHICE QUESTINS Part 3: Syror och baser (Answers on page 18) Topic: Acid-Base Definitions 1. According to the Lewis definition, a base is a(n): A) Proton donor. B) Electron pair donor. C) Hydroxide

More information

Chapter 13 Carboxylic Acids, Esters, Amines, and Amides. Carboxylic Acids. Names and Sources of Some Carboxylic Acids. IUPAC Names

Chapter 13 Carboxylic Acids, Esters, Amines, and Amides. Carboxylic Acids. Names and Sources of Some Carboxylic Acids. IUPAC Names Chapter 13 Carboxylic Acids, Esters, Amines, and Amides 13.1 Carboxylic Acids Carboxylic Acids A carboxylic acid contains a carboxyl group, which is a carbonyl group (C=) attached to a hydroxyl group (

More information

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl

More information

20.2 Chemical Equations

20.2 Chemical Equations All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more

More information

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water. Acids and Bases Know the definition of Arrhenius, Bronsted-Lowry, and Lewis acid and base. Autoionization of Water Since we will be dealing with aqueous acid and base solution, first we must examine the

More information

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

IUPAC System of Nomenclature

IUPAC System of Nomenclature IUPAC System of Nomenclature The IUPAC (International Union of Pure and Applied Chemistry) is composed of chemists representing the national chemical societies of several countries. ne committee of the

More information

Carbonyl Chemistry (12 Lectures)

Carbonyl Chemistry (12 Lectures) arbonyl hemistry (12 Lectures) Aim of ourse Professor Donna G. Blackmond d.blackmond@imperial.ac.uk tel. 41193 oom 639 1 To build upon elements of Dr E.. Smith s and Dr. D.. Braddocks s course. To introduce

More information

ALKENES AND ALKYNES REACTIONS

ALKENES AND ALKYNES REACTIONS A STUDENT SHULD BE ABLE T: ALKENES AND ALKYNES REACTINS 1. Given the starting materials and reaction conditions, predict the products of the following reactions of alkenes and alkynes. Regioselective Markovnikov

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution

More information

1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group.

1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group. Name: Date: 1. The functional group present in carboxylic acids is called a A) carbonyl group. B) carboxyl group. C) carboxylate group. D) carbohydroxyl group. 2. Which of the following statements concerning

More information

Synthesis of Isopentyl Acetate

Synthesis of Isopentyl Acetate Experiment 8 Synthesis of Isopentyl Acetate Objectives To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction. Introduction Esters are derivatives of

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

Alcohols An alcohol contains a hydroxyl group ( OH) attached to a carbon chain. A phenol contains a hydroxyl group ( OH) attached to a benzene ring.

Alcohols An alcohol contains a hydroxyl group ( OH) attached to a carbon chain. A phenol contains a hydroxyl group ( OH) attached to a benzene ring. Chapter : rganic Compounds with xygen Alcohols, Ethers Alcohols An alcohol contains a hydroxyl group ( H) attached to a carbon chain. A phenol contains a hydroxyl group ( H) attached to a benzene ring.

More information

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700) 750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals

More information

Willem Elbers. October 9, 2015

Willem Elbers. October 9, 2015 S N 1 and S N 2 reactivity of 3 alkyl bromides Willem Elbers ctober 9, 2015 1 Abstract n this experiment, we investigate the relative reactivities of three alkyl bromides with increasing steric bulk. We

More information

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond Acids and Bases. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: HCl, HBr, H 2 SO 4, HOH, H 3 O +, + NH 4, NH 3, CH 3 CO 2 H, H CH 2 COCH 3, H C CH,

More information

Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics

SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics SUBSTITUTION EATION AATEISTIS Sn2: Substitution cleophilic, Bimolecular: haracteristics 1) The 2 means Bimolecular (or 2 nd order) in the rate-determining (slow) step: rate = k [: - ] [-X] or rate = k

More information

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, I of Unknown In this experiment you are going to do a series of tests in order to determine whether or not an alcohol is a primary (1 ), secondary

More information

IDENTIFICATION OF ALCOHOLS

IDENTIFICATION OF ALCOHOLS IDENTIFICATION OF ALCOHOLS Alcohols are organic compounds that which considered as derivatives of water. One of the hydrogen atoms of water molecule (H-O-H) has been replaced by an alkyl or substituted

More information

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS Name INSTRUTINS --- Department of hemistry and Biochemistry SUNY/neonta hem 322 - rganic hemistry II Examination #2 - March 14, 2005 ANSWERS This examination has two parts. Part I is in multiple choice

More information

Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

More information

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) NCEA Level 3 Chemistry (91391) 2013 page 1 of 8 Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) Evidence Statement Q Evidence Achievement Achievement

More information

Reactions of Aldehydes and Ketones

Reactions of Aldehydes and Ketones Reactions of Aldehydes and Ketones Structure Deduction using lassification Tests 1 Determination of Structure Determining the structure of an unknown organic compound is an exercise in deductive reasoning.

More information

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test Unit 2 Review: Answers: Review for Organic Chemistry Unit Test 2. Write the IUPAC names for the following organic molecules: a) acetone: propanone d) acetylene: ethyne b) acetic acid: ethanoic acid e)

More information

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009) GRIGNARD REACTIN: PREPARATIN F TRIPHENYLMETHANL (12/22/2009) Grignard reagents are among the most versatile organometallic reagents, and they are the easiest organometallic reagent to prepare. Grignard

More information

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19) Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H

More information

Chapter 12 Organic Compounds with Oxygen and Sulfur

Chapter 12 Organic Compounds with Oxygen and Sulfur Chapter 12 Organic Compounds with Oxygen and Sulfur 1 Alcohols An alcohol contains a hydroxyl group ( OH) that replaces a hydrogen atom in a hydrocarbon. A phenol contains a hydroxyl group ( OH) attached

More information

Summer Holidays Questions

Summer Holidays Questions Summer Holidays Questions Chapter 1 1) Barium hydroxide reacts with hydrochloric acid. The initial concentration of the 1 st solution its 0.1M and the volume is 100ml. The initial concentration of the

More information

Brønsted-Lowry Acids and Bases

Brønsted-Lowry Acids and Bases Brønsted-Lowry Acids and Bases 1 According to Brønsted and Lowry, an acid-base reaction is defined in terms of a proton transfer. By this definition, the reaction of Cl in water is: Cl(aq) + Cl (aq) +

More information

11.4 NUCLEOPHILIC SUBSTITUTION REACTIONS OF EPOXIDES

11.4 NUCLEOPHILIC SUBSTITUTION REACTIONS OF EPOXIDES .4 NUEPII SUBSTITUTIN REATINS F EPXIDES 495 (d When tert-butyl methyl ether is heated with sulfuric acid, methanol and -methylpropene distill from the solution. (e Tert-butyl methyl ether cleaves much

More information

Molecular Models Experiment #1

Molecular Models Experiment #1 Molecular Models Experiment #1 Objective: To become familiar with the 3-dimensional structure of organic molecules, especially the tetrahedral structure of alkyl carbon atoms and the planar structure of

More information

Chemistry Diagnostic Questions

Chemistry Diagnostic Questions Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to

More information

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:

More information

The Aldol Condensation

The Aldol Condensation The Aldol ondensation Synthesis and Analysis of 2,3,4,5-Tetraphenylcyclopentadienone Yakety Sax Bennie ill theme song TPP eactions of Aldehydes and Ketones ' 1. Nucleophilic Addition. 2. Substitution at

More information

Chapter 6 An Overview of Organic Reactions

Chapter 6 An Overview of Organic Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

More information

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there? 1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

More information

Mass Spec - Fragmentation

Mass Spec - Fragmentation Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral

More information

Prof. Dr. Burkhard König, Institut für Organische Chemie, Uni Regensburg 1. Enolate Chemistry

Prof. Dr. Burkhard König, Institut für Organische Chemie, Uni Regensburg 1. Enolate Chemistry Prof. Dr. Burkhard König, Institut für rganische Chemie, Uni Regensburg 1 1. Some Basics Enolate Chemistry In most cases the equilibrium lies almost completely on the side of the ketone. The ketone tautomer

More information

CH 3 CH 2 ONa + H 2 O. CH 3 CH 2 NH 2 + CH 3 OLi

CH 3 CH 2 ONa + H 2 O. CH 3 CH 2 NH 2 + CH 3 OLi rganic Chemistry Jasperse Acid- Practice Problems A. Identify each chemical as either an acid or a base in the following reactions, and identify conjugate relationships. -You should have one acid and one

More information

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved.

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. NMENCLATURE F RGANIC CMPUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. rganic chemistry is the chemistry of carbon compounds. Carbon has the ability to bond with itself to form long chains

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base 2816 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA LEWIS acid electron pair acceptor H +, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N + BF

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see

More information

Acids and Bases: A Brief Review

Acids and Bases: A Brief Review Acids and : A Brief Review Acids: taste sour and cause dyes to change color. : taste bitter and feel soapy. Arrhenius: acids increase [H ] bases increase [OH ] in solution. Arrhenius: acid base salt water.

More information

Organic Functional Groups Chapter 7. Alcohols, Ethers and More

Organic Functional Groups Chapter 7. Alcohols, Ethers and More Organic Functional Groups Chapter 7 Alcohols, Ethers and More 1 What do you do when you are in Pain? What do you do when you are in a lot of pain? 2 Functional Groups A functional group is an atom, groups

More information

Amides and Amines: Organic Nitrogen Compounds

Amides and Amines: Organic Nitrogen Compounds Chapter 25 Amides and Amines: Organic Nitrogen Compounds Nylon is one of the materials used to give these colorful sails their strength and durability. Introduction to General, Organic, and Biochemistry,

More information

3 The Preparation of Buffers at Desired ph

3 The Preparation of Buffers at Desired ph 3 The Preparation of Buffers at Desired ph Objectives: To become familiar with operating a ph meter, and to learn how to use the Henderson-Hasselbalch equation to make buffer solutions at a desired ph

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

The dipolar nature of acids

The dipolar nature of acids I. Introduction arboxylic Acid Structure and hemistry: Part 1 Jack Deuiter arboxylic acids are hydrocarbon derivatives containing a carboxyl () moiety. ecall that carbon has four valence electrons and

More information

2. Couple the two protected amino acids.

2. Couple the two protected amino acids. General Considerations The Strategy of Peptide Synthesis Making peptide bonds between amino acids is not difficult. The challenge is connecting amino acids in the correct sequence. andom peptide bond formation

More information

Chapter 4 Chemical Reactions

Chapter 4 Chemical Reactions Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser

More information

Chapter 16: Tests for ions and gases

Chapter 16: Tests for ions and gases The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the

More information

Austin Peay State University Department of Chemistry CHEM 1021 TESTING FOR ORGANIC FUNCTIONAL GROUPS

Austin Peay State University Department of Chemistry CHEM 1021 TESTING FOR ORGANIC FUNCTIONAL GROUPS TESTING FOR ORGANIC FUNCTIONAL GROUPS Caution: Chromic acid is hazardous as are many of the organic substances in today s experiment. Treat all unknowns with extreme care. Many organic substances are flammable.

More information

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A

More information

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial

More information

Name Key 215 F12-Exam No. 2 Page 2

Name Key 215 F12-Exam No. 2 Page 2 ame Key 15 F1-Exam o. Page. (9 points) For each of the following sets of molecules, rank the molecules in order of to least acidic. ompare the underlined s for each set. (a) (b) (c). (11 points) Draw in

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information