GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)

Size: px
Start display at page:

Download "GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)"

Transcription

1 GRIGNARD REACTIN: PREPARATIN F TRIPHENYLMETHANL (12/22/2009) Grignard reagents are among the most versatile organometallic reagents, and they are the easiest organometallic reagent to prepare. Grignard reagents may be readily prepared from alkyl or aryl halides by their reaction with magnesium metal in an ether solvent. The structure of Grignard reagents varies with reaction conditions, but exist as RMgX or ArMgX in dilute (< 1M) solution. We will use these formulas to represent Grignard reagents from hereon. The formation of Grignard RX (or ArX) + Mg (CH 3 CH 2 ) 2 or THF RMgX (or ArMgX) reagents is a heterogeneous reaction and occurs on the magnesium metal's surface. Thus it is critical to use a solvent that will dissolve the Grignard reagent as it forms or the magnesium's surface will be coated with the reagent and stop any further reaction. Ethers are about the only solvents that will dissolve Grignard reagents, and the two most commonly used ethers are diethyl ether and tetrahydrofuran (THF). Diethyl ether is usually the preferred solvent because it may be readily obtained in anhydrous form, is less expensive, and is easy to remove after the reagent has been used owing to its low boiling point (36 o C). Grignard reagents are very basic and react readily with water or any compound containing a hydroxyl function. Thus the solvent must be anhydrous, the glassware must be scrupulously dry, and the reaction must be protected from moist air by use of a drying tube. RMgX (or ArMgX) + HR ' RH (or ArH) + XMgR ' Grignard reagents also react readily with oxygen and carbon dioxide as shown below. These reactions can be prevented by forming the Grignard reagent under an inert atmosphere such a nitrogen. RMgX RMgX + 2 RMgX 2 RMgX RMgX + C 2 RC 2 MgX A side reaction that occurs during the formation of Grignard reagents is the coupling reaction between two alkyl (or aryl) halides as shown below. This side reaction can be minimized if the

2 concentration of the halide is kept low by the slow addition of an ether solution of the halide to a mixture of magnesium and an ether. 2RX (or 2ArX) + Mg (CH 3 CH 2 ) 2 or THF RR (or ArAr) + MgX 2 Grignard reagents undergo addition to the carbonyl groups of aldehydes, ketones and esters to produce alcohols. By careful combination the appropriate alkyl and/or aryl groups in the Grignard reagent and the carbonyl compound a wide variety of primary, secondary, and tertiary alcohols may be synthesized. Aldehydes and ketones react with one molar equivalent of the Grignard reagent, whereas esters react with two molar equivalents of the reagent. Initially, esters undergo a nucleophilic substitution reaction with one equivalent of Grignard reagent to produce an intermediate ketone, which immediately undergoes an addition reaction with a second equivalent of Grignard reagent to produce a tertiary alcohol. In this experiment, phenylmagnesium bromide will be prepared by the reaction between bromobenzene and magnesium metal and immediately treated with methyl benzoate (prepared in the previous lab period) to produce triphenylmethanol. C CH 3 C + MgBr C6 H 5 + BrMgCH 3 C C6 H 5 + MgBr C MgBr H H 2 H C EXPERIMENTAL PRCEDURES 1 Phenylmagnesium Bromide: Before starting, make sure that all glassware to be used, including graduated cylinders, is completely dry, i.e., do not wash any glassware with water just before use in this experiment. Equip a Claisen adapter with a condenser and an addition funnel, attach a drying tube filled with Drierite (anhydrous calcium sulfate) to the top of the condenser, and apply joint lubricant to the bottom joint of the Claisen adapter. Secure a 100-mL round-bottomed flask with a clamp from which the vinyl pads have been removed. Be sure to leave enough room beneath the flask so that a cooling bath or thermowell may be easily placed under it. Place 1.1g of partially ground magnesium turnings (use a mortar and pestle) into the flask. After making sure that no one in the

3 near vicinity is working with diethyl ether or other flammable materials, flame-dry 2 the flask containing the magnesium turnings, using a gas burner with a luminous flame 3. Immediately attach the Claisen adapter assembly to the flask and allow the flask to cool to room temperature. Extinguish all flames! Make an ice bath ready in case control of the reaction becomes necessary. 4 Remove the addition funnel and add 10mL of diethyl ether to the flask. Replace the addition funnel. Prepare a solution of 4.4mL (6.6g, 0.042mol) of bromobenzene in 10mL of diethyl ether and add it to the addition funnel. After making sure that water is flowing through the condenser, add ~2mL of the bromobenzene solution to the flask. To begin the reaction, remove the round bottom flask and hold on a flat surface. Next, crush the turnings with a dry stirring rod very carefully. The appearance of small bubbles at the surface of the magnesium turnings or a slight cloudiness indicates that the reaction has started. When you are certain the reaction is proceeding, return the rbf (flask containing reaction mixture) to the Claissen adapter. Start adding the rest of the bromobenzene solution dropwise at a rate to maintain a gentle reflux. If the reaction becomes too vigorous, briefly cool the flask with the ice bath. The addition should be complete in ~15 min. If the reflux rate slows significantly during addition, increase the rate of addition. If the reflux rate still remains low, heat the mixture with a thermowell to maintain a gentle reflux. The reaction mixture will usually have a brownish color and most of the magnesium will have disappeared. After completion, allow the reaction mixture to cool to room temperature. The next step should be started at once because the Grignard solution will deteriorate on standing. 1. Do not obtain liquid reagents or put on your paper lab coat until instructed to do so! 2. Keep long hair tied back. 3. N ETHER NEAR PEN FLAMES! 4. Prepare ice bath before starting to control reaction. Leave space below flask (keep thermowell out of the way). Triphenylmethanol: Prepare a solution of 2.5g (0.018 mol) of methyl benzoate in 10mL of diethyl ether and add it to the addition funnel. If necessary, briefly cool the reaction flask in an ice bath and start the dropwise addition of the methyl benzoate solution with occasional swirling. The reaction rate of the mildly exothermic reaction may be controlled by adjusting the rate of addition and occasional cooling with the ice bath. The addition should be complete in ~5 min. Note any changes in appearance during the addition. nce the addition of the ester is complete and there is at least 1.5 hours remaining in the lab period, heat the reaction mixture at reflux with a thermowell for ~30 min. Next, slowly pour the reaction mixture, with swirling, into a 250-mL Erlenmeyer flask containing 30 ml of 2 M sulfuric acid and ~30 g of ice. Rinse the reaction flask with a few ml of 2 M sulfuric acid and diethyl ether. Swirl the Erlenmeyer flask until no more solid material remains in the mixture. An additional amount of diethyl ether may be required to dissolve all of the organic material. Transfer the mixture to a separatory funnel, rinsing the flask with a few ml of diethyl ether. Carefully shake the funnel, venting to relieve pressure, and drain off the aqueous layer. Wash the organic layer with ~20 ml of 2 M sulfuric acid and then with ~10 ml

4 of saturated salt solution. Dry the organic layer with anhydrous sodium sulfate, and filter or decant the solution into a tared 250-mL round-bottomed flask. Remove the diethyl ether on a rotary evaporator. Add ~5 ml of petroleum ether (T BP o C) to the residue and mix well. All byproducts in the reaction mixture will dissolve, leaving most of the triphenylmethanol as an insoluble solid. Collect the triphenylmethanol by vacuum filtration, making sure to save the filtrate for column chromatography. Dissolve the product in ethyl acetate (until it just dissolves, with a small amount extra, 1 ml) on a steam plate. If necessary, filter the solution through a small plug of cotton. Dilute the hot solution with a volume of petroleum ether equal to twice that of the ethyl acetate used and allow to crystallize at room temperature and then in an ice bath. Collect the crystals by vacuum filtration. Determine the melting point and calculate the percent yield. This symbol indicates is a good stopping point for Part I of the experiment. The final isolation and recrystallization steps can easily be completed next week. Preparation of the Column (taken from CH2411 Experiment Manual): Vertically clamp a dry buret, making sure that the stopcock is closed. Push a small plug of polypropylene wool into the bottom of the buret with a wooden dowel rod. Add enough clean, dry sand to form about a 1-cm layer on top of the polypropylene wool, and then add enough petroleum ether (30-60 o C) to half-fill the buret. pen the stopcock and drain out a few milliliters of the solvent to remove air from the sand and the polypropylene wool. Place a funnel in the top of the buret and very slowly add approximately 15 g of dry alumina (no need to weigh - 3 rounded tsp = ~15 g). When all of the alumina has been added, rinse the inside of the buret with additional petroleum ether to flush down any alumina that may be adhering to the walls. Add more clean, dry sand to form about a 1-cm layer on top of the alumina. Carefully drain the solvent from the column until the solvent level just reaches the top of the sand. The column is now ready for the addition of the mixture to be separated. solvent sand alumina polypropylene wool sand

5 Column Chromatography Procedure Carefully transfer the petroleum ether filtrate that you saved above to the top of the column with a Pasteur pipet, then slowly drain the column until the liquid level is at the of the layer of sand. Remember that the liquid level must never be allowed to drop below the top layer of the sand from this point on. Begin eluting the column with petroleum ether (30-60 o C) and collect ml fractions in Erlenmeyer flasks. The first component, biphenyl, should be contained in the first two fractions and the second component, methyl benzoate, should be in the third fraction. Combine the first two fractions, evaporate the combined fractions and the third fraction on a rotary evaporator, and determine the weights of the residues. By switching to a 1:1 mixture of diethyl ether - petroleum ether as the eluting solvent, two more components (additional triphenylmethanol and phenol) could be eluted from the column. However, because of insufficient time remaining in the lab period, they will not be eluted.

6 Name: Section: Date: PSTLAB EXERCISE: GRIGNARD REACTIN (12/22/2009) >> Due the lab following the completion of the experimental portion of the notebook (30pts. TTAL). Please answer questions on this form. Attach sample calculations and copies of any TLC plates, GC traces, and/or spectra which you interpret (on the spectra, please!).<< 1. PRDUCT (TRIPHENYLMETHANL) INFRMATIN (15pts) %Yield (5pts): Melting Point (5pts): Appearance (describe) (5pts): 1. (5pts) Why was the tube containing Drierite placed on top of the condenser? 2. (5pts) Even if technical grade diethyl ether is anhydrous, it often contains ethanol. What effect would the use of technical diethyl ether as the solvent have on the preparation of a Grignard reagent? 3. (5pts) Why do Grignard solutions deteriorate when they are exposed to air even though they are protected by a drying tube?

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance 1 Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance Read pp 142-155, 161-162, Chapter 10 and pp 163-173, Chapter 11, in LTOC. View the videos: 4.2 Extraction (Macroscale);

More information

H 2 SO 4 heat + H 3 O +

H 2 SO 4 heat + H 3 O + Dehydration of Cyclohexanol DISCUSSION OF TE EXPERIMENT In this experiment, cyclohexanol is dehydrated by aqueous sulfuric acid to produce cyclohexene as the sole product, and carbocation rearrangement

More information

The Grignard Reaction. Preparation of Benzoic Acid

The Grignard Reaction. Preparation of Benzoic Acid The Grignard Reaction. Preparation of Benzoic Acid References: Bruice, Chapter 11, section 11.8 Background Grignard reagents are prepared (eq. 1) from alkyl halides by treatment with magnesium metal in

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Experiment 7 Preparation of 1-Bromobutane

Experiment 7 Preparation of 1-Bromobutane Experiment 7 Preparation of 1-Bromobutane In this experiment you will prepare 1-bromobutane (n-butyl bromide) from n-butanol (1-butanol) using a substitution reaction under acidic conditions. This is an

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION EXPERIMENT FIVE Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION A secondary alcohol, such as cyclohexanol, undergoes dehydration by an E1 mechanism. The key intermediate

More information

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence Page 1 of 5 Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence From your lectures sessions in CEM 2010 you have learned that elimination reactions may occur when alkyl halides

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

Experiment #7: Esterification

Experiment #7: Esterification Experiment #7: Esterification Pre-lab: 1. Choose an ester to synthesize. Determine which alcohol and which carboxylic acid you will need to synthesize your ester. Write out the reaction for your specific

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

Synthesis of Isopentyl Acetate

Synthesis of Isopentyl Acetate Experiment 8 Synthesis of Isopentyl Acetate Objectives To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction. Introduction Esters are derivatives of

More information

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification H243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification PURPSE: To prepare esters by reaction of carboxylic acids and alcohols. To modify a known procedure to prepare an unknown. DISUSSIN:

More information

Recrystallization II 23

Recrystallization II 23 Recrystallization II 23 Chem 355 Jasperse RECRYSTALLIZATIN-Week 2 1. Mixed Recrystallization of Acetanilide 2. Mixed Recrystallization of Dibenzylacetone 3. Recrystallization of an Unknown Background Review:

More information

Experiment 5: Column Chromatography

Experiment 5: Column Chromatography Experiment 5: Column Chromatography Separation of Ferrocene & Acetylferrocene by Column Chromatography Reading: Mohrig, Hammond & Schatz Ch. 18 pgs 235-253 watch the technique video on the course website!

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

oxidize 4-Cholesten-3-one

oxidize 4-Cholesten-3-one Isolation of Cholesterol from Egg Yolk Preparation: Bring a hard-boiled egg yolk to lab! Cholesterol (1) is a major component of cell membranes. An egg yolk contains about 200 milligrams of cholesterol,

More information

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination

More information

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification EXPERIMENT 9 (rganic hemistry II) Pahlavan - herif Materials Hot plate 125-mL Erlenmeyer flask Melting point capillaries Melting point apparatus Büchner funnel 400-mL beaker Stirring rod hemicals Salicylic

More information

8.9 - Flash Column Chromatography Guide

8.9 - Flash Column Chromatography Guide 8.9 - Flash Column Chromatography Guide Overview: Flash column chromatography is a quick and (usually) easy way to separate complex mixtures of compounds. We will be performing relatively large scale separations

More information

CHEMISTRY 338 THE SYNTHESIS OF LIDOCAINE

CHEMISTRY 338 THE SYNTHESIS OF LIDOCAINE CHEMISTRY 338 THE SYTHESIS F LIDCAIE Lidocaine (1) is the common name of an important member of a category of drugs widely used as local anesthetics. Trade names for this substance include Xylocaine, Isocaine,

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Recrystallization. Good. Bad. solubility ---> Bad. temperature --->

Recrystallization. Good. Bad. solubility ---> Bad. temperature ---> Recrystallization. Recrystallization is the primary method for purifying solid organic compounds. Compounds obtained from natural sources or from reaction mixtures almost always contain impurities. The

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine

More information

For the highest level of protection, safety goggles that completely cover the. seal against the face are recommended.

For the highest level of protection, safety goggles that completely cover the. seal against the face are recommended. Lab Equipment Safety Goggles For the highest level of protection, safety goggles that completely cover the eye and eye socket and seal against the face are recommended. Lab Apron (folded) Beaker Beakers

More information

Suggested Solutions to student questions(soap) 1. How do you explain the cleansing action of soap?

Suggested Solutions to student questions(soap) 1. How do you explain the cleansing action of soap? Suggested Solutions to student questions(soap) 1. How do you explain the cleansing action of soap? The ionic part of the soap molecule is water-soluble while the non-polar hydrocarbon part is soluble in

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

PREPARATION AND PROPERTIES OF A SOAP

PREPARATION AND PROPERTIES OF A SOAP (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.

More information

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE EXPERIMENT 2 (rganic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of END-NRBRNENE-5, 6-CIS-CARBXYLIC ANYDRIDE Purpose a) Study conjugated dienes b) Study diene and dienophile c) Study

More information

14 Friedel-Crafts Alkylation

14 Friedel-Crafts Alkylation 14 Friedel-Crafts Alkylation 14.1 Introduction Friedel-Crafts alkylation and acylation reactions are a special class of electrophilic aromatic substitution (EAS) reactions in which the electrophile is

More information

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* CHM220 Nucleophilic Substitution Lab Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* Purpose: To convert a primary alcohol to an alkyl bromide using an S N 2 reaction

More information

Table 1. Common esters used for flavors and fragrances

Table 1. Common esters used for flavors and fragrances ESTERS An Introduction to rganic hemistry Reactions 2012, 2006, 1990, 1982 by David A. Katz. All rights reserved. Reproduction permitted for educationa use provided original copyright is included. In contrast

More information

Taking Apart the Pieces

Taking Apart the Pieces Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS

Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS Background Extraction is one of humankind s oldest chemical operations. The preparation of a cup

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem.

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem. u Experiment 9 Aromatic Chemistry: Synthesis of o-nitroaniline and p-nitroaniline via a Multi-Step Sequence Reading: Introduction to rganic Chemistry by Streitwieser, Heathcock, and Kosower, pp. 695-696

More information

Non-polar hydrocarbon chain

Non-polar hydrocarbon chain THE SCIENCE OF SOAPS AND DETERGENTS 2000 by David A. Katz. All rights reserved Reproduction permitted for educational purposes as long as the original copyright is included. INTRODUCTION A soap is a salt

More information

AOAC Official Method 934.01. Moisture in Animal Feed

AOAC Official Method 934.01. Moisture in Animal Feed Loss on Drying at 95-100 C -Final Action AOAC Official Method 934.01 Moisture in Animal Feed Dry amount of sample containing 2 g dry material to constant weight at 95-100 C under pressure

More information

For Chromatography, you must remember Polar Dissolves More, not like dissolves like.

For Chromatography, you must remember Polar Dissolves More, not like dissolves like. Chromatography In General Separation of compounds based on the polarity of the compounds being separated Two potential phases for a compound to eist in: mobile (liquid or gas) and stationary Partitioning

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.

More information

Physical and Chemical Properties and Changes

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you

More information

Distillation Experiment

Distillation Experiment Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure

More information

PECTINS. SYNONYMS INS No. 440 DEFINITION DESCRIPTION. FUNCTIONAL USES Gelling agent, thickener, stabilizer, emulsifier CHARACTERISTICS

PECTINS. SYNONYMS INS No. 440 DEFINITION DESCRIPTION. FUNCTIONAL USES Gelling agent, thickener, stabilizer, emulsifier CHARACTERISTICS PECTINS SYNONYMS INS No. 440 Prepared at the 71 st JECFA (2009) and published in FAO JECFA Monographs 7 (2009), superseding specifications prepared at the 68 th JECFA (2007) and published in FAO JECFA

More information

AIRFREE TECHNIQUE AND SENSITIVE REAGENTS S ECTI O N 1: GLASS W ARE A ND E Q UIP M ENT. A. Using a manifold

AIRFREE TECHNIQUE AND SENSITIVE REAGENTS S ECTI O N 1: GLASS W ARE A ND E Q UIP M ENT. A. Using a manifold AIRFREE TECHNIQUE AND SENSITIVE REAGENTS S ECTI O N 1: GLASS W ARE A ND E Q UIP M ENT Some organic compounds are air sensitive. They can react with the water vapor or oxygen in the air. In order to perform

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Thin Layer Chromatography.

Thin Layer Chromatography. Thin Layer Chromatography. Thin layer chromatography, or TLC, is a method for analyzing mixtures by separating the compounds in the mixture. TLC can be used to help determine the number of components in

More information

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic

More information

Dehydrohalogenation of an Alkyl Halide

Dehydrohalogenation of an Alkyl Halide Dehydrohalogenation of an Alkyl alide Preparation and Characterization of an Alkene Mixture DID SOMEONE SAY VICTORY? OW ABOUT TAT GAME???? 1 Dehydrohalogenation Alkenes are most often prepared by dehydration

More information

Extraction: Separation of Acidic Substances

Extraction: Separation of Acidic Substances Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often

More information

METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION

METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION 1.0 SCOPE AND APPLICATION 1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration

More information

CHEM 2423 Extraction of Benzoic Acid EXPERIMENT 6 - Extraction Determination of Distribution Coefficient

CHEM 2423 Extraction of Benzoic Acid EXPERIMENT 6 - Extraction Determination of Distribution Coefficient EXPERIMENT 6 - Extraction Determination of Distribution Coefficient Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, I of Unknown In this experiment you are going to do a series of tests in order to determine whether or not an alcohol is a primary (1 ), secondary

More information

PROCEDURE FOR THE EXTRACTION AND PURIFICATION OF PCDD/PCDF AND DL-PCBs IN BREAST MILK SAMPLES

PROCEDURE FOR THE EXTRACTION AND PURIFICATION OF PCDD/PCDF AND DL-PCBs IN BREAST MILK SAMPLES Page 1 of 10 PROCEDURE FOR THE PURIFICATION OF POLYCHLORINATED DIBENZO-p-DIOXINS (PCDD), POLYCHLORINATED DIBENZOFURANS (PCDF) AND DIOXIN-LIKE POLYCHLORINATED BIPHENYLS (DL-PCBs) 1. Introduction 2. Objective

More information

Experiment 15 Vitamins

Experiment 15 Vitamins Experiment 15 Vitamins Part 1: Solubility of Vitamins Vitamins are organic compounds that are required as cofactors for specific enzymes. They are not synthesized in the body and therefore must be obtained

More information

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle Cautions Nitric acid and sulfuric acid are toxic and oxidizers and may burn your skin. Nitrogen dioxide gas produced is hazardous if inhaled. Sodium hydroxide is toxic and corrosive and will cause burns

More information

SODIUM CARBOXYMETHYL CELLULOSE

SODIUM CARBOXYMETHYL CELLULOSE SODIUM CARBOXYMETHYL CELLULOSE Prepared at the 28th JECFA (1984), published in FNP 31/2 (1984) and in FNP 52 (1992). Metals and arsenic specifications revised at the 55 th JECFA (2000). An ADI not specified

More information

Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds

Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds Introduction There are four types of hydrocarbons: alkanes, alkenes, alkynes, and aromatic compounds, each type with different chemical properties.

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Apparatus error for each piece of equipment = 100 x margin of error quantity measured 1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Calcium Carbonate Content of Limestone

Calcium Carbonate Content of Limestone EXPERIMENT Calcium Carbonate Content of Limestone 01 Prepared by Paul C. Smithson, Berea College OBJECTIVE Using chips of limestone rocks, students prepare a powdered sample of limestone, react it with

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Laboratory and Safety Equipment Complete the chart below. Equipment Name Function perform chemical tests and reactions beaker.

Laboratory and Safety Equipment Complete the chart below. Equipment Name Function perform chemical tests and reactions beaker. Laboratory and Safety Equipment Complete the chart below. perform chemical tests and reactions beaker heat liquids beaker tongs pick up and move hot beakers Erlenmeyer flask perform reactions filtering

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

NATIONAL STANDARD FOR FOOD SAFETY OF THE PEOPLE S REPUBLIC OF CHINA

NATIONAL STANDARD FOR FOOD SAFETY OF THE PEOPLE S REPUBLIC OF CHINA NATIONAL STANDARD FOR FOOD SAFETY OF THE PEOPLE S REPUBLIC OF CHINA GB 5413.9 2010 National food safety standard Determination of vitamin A, D, E in foods for infants and young children, milk and milk

More information

Acid-Base Extraction.

Acid-Base Extraction. Acid-Base Extraction. Extraction involves dissolving a compound or compounds either (1) from a solid into a solvent or (2) from a solution into another solvent. A familiar example of the first case is

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

EXPERIMENT Aspirin: Synthesis and NMR Analysis

EXPERIMENT Aspirin: Synthesis and NMR Analysis EXPERIMENT Aspirin: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with acetic anhydride in the presence of an acid catalyst, acetylsalicylic acid, or aspirin, is produced according

More information

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms

More information

PURIFICATION TECHNIQUES

PURIFICATION TECHNIQUES DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) PURIFICATION TECHNIQUES Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia

More information

Determination of Aspirin using Back Titration

Determination of Aspirin using Back Titration Determination of Aspirin using Back Titration This experiment is designed to illustrate techniques used in a typical indirect or back titration. You will use the NaH you standardized last week to back

More information

Syllabus CHM 2202 Organic Chemistry Laboratory II Spring 2011

Syllabus CHM 2202 Organic Chemistry Laboratory II Spring 2011 Villanova University Department of Chemistry Syllabus CHM 2202 Organic Chemistry Laboratory II Spring 2011 Text: C.E. Bell, D.F. Taber and A.K. Clark, Organic Chemistry Laboratory with Qualitative Analysis,

More information

PET Recycling. Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner

PET Recycling. Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner PET Recycling Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner OBJECTIVES Hydrolyze a sample of Polyethylene Terephthalate (PET) obtained from used soda bottles, and synthesize a dimer

More information

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE Chemistry 111 Lab: Percent Composition Page D-3 DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE In this experiment you are to determine the composition of a mixture containing unknown proportions

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol 4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol OH + HCl Cl + H 2 O C 4 H 10 O C 4 H 9 Cl (74.1) (36.5) (92.6) Classification Reaction types and substance classes nucleophilic

More information

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a.

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a. Lab 6: Organic hemistry hemistry 100 1. Define the following: a. ydrocarbon Pre-Lab Exercises Lab 6: Organic hemistry Name Date Section b. Saturated hydrocarbon c. Unsaturated hydrocarbon 2. The formula

More information

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate: Engineeringfragrance make a deodorant practical activity 2 student instructions page 1 of 5 chemical compounds The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all

More information

Lab 7. Analysis of Hard Water

Lab 7. Analysis of Hard Water Lab 7. Analysis of Hard Water Prelab Assignment Before coming to lab: Use the handout "Lab Notebook Policy" as a guide to complete the following sections of your report for this lab exercise before attending

More information

To remove solvent: 1. You must have ebullation to concentrate at atmospheric pressure--use a boiling stone, a capillary tube, or agitation.

To remove solvent: 1. You must have ebullation to concentrate at atmospheric pressure--use a boiling stone, a capillary tube, or agitation. Crystallization is used to purify a solid. The process requires a suitable solvent. A suitable solvent is one which readily dissolves the solid (solute) when the solvent is hot but not when it is cold.

More information

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction:

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction: Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction: The development of coordination chemistry prior to 1950 involved the synthesis and characterization

More information

An Investigation into the Structure, Properties and Synthesis of 3-nitrobenzoic Acid. Jane Smith

An Investigation into the Structure, Properties and Synthesis of 3-nitrobenzoic Acid. Jane Smith An Investigation into the Structure, Properties and Synthesis of 3-nitrobenzoic Acid. Jane Smith Chemistry 101 Laboratory, Section 43 Instructor: Marie Curie January 2, 2003 Abstract This paper describes

More information

Working with Hazardous Chemicals

Working with Hazardous Chemicals A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training

More information

PROCEDURE FOR THE EXTRACTION AND PURIFICATION OF PCDD/PCDF AND DL-PCBs IN SEDIMENT AND SOIL SAMPLES

PROCEDURE FOR THE EXTRACTION AND PURIFICATION OF PCDD/PCDF AND DL-PCBs IN SEDIMENT AND SOIL SAMPLES Page 1 of 10 PROCEDURE FOR THE PURIFICATION OF POLYCHLORINATED DIBENZO-p-DIOXINS (PCDD), POLYCHLORINATED DIBENZOFURANS (PCDF) AND DIOXIN-LIKE POLYCHLORINATED BIPHENYLS (DL-PCBs) IN SEDIMENT 1. Introduction

More information

105 Adopted: 27.07.95

105 Adopted: 27.07.95 105 Adopted: 27.07.95 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Adopted by the Council on 27 th July 1995 Water Solubility INTRODUCTION 1. This guideline is a revised version of the original Guideline

More information

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008 CH204 Experiment 2 Dr. Brian Anderson Fall 2008 Experiment 1 Post-Game Show pipette and burette intensive and extensive properties interpolation determining random experimental error What about gross error

More information

POLYVINYL ALCOHOL. SYNONYMS Vinyl alcohol polymer, PVOH, INS No. 1203 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

POLYVINYL ALCOHOL. SYNONYMS Vinyl alcohol polymer, PVOH, INS No. 1203 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS POLYVINYL ALCOHOL Prepared at the 68 th JECFA (2007) and published in FAO JECFA Monographs 4 (2007), superseding specifications prepared at the 63 rd JECFA (2004) and published in the Combined Compendium

More information

Laboratory 22: Properties of Alcohols

Laboratory 22: Properties of Alcohols Introduction Alcohols represent and important class of organic molecules. In this experiment you will study the physical and chemical properties of alcohols. Solubility in water, and organic solvents,

More information