FIELD THEORY OF ISING PERCOLATING CLUSTERS

Size: px
Start display at page:

Download "FIELD THEORY OF ISING PERCOLATING CLUSTERS"

Transcription

1 UK Meeting on Integrable Models and Conformal Field heory University of Kent, Canterbury April 21 FIELD HEORY OF ISING PERCOLAING CLUSERS Gesualdo Delfino SISSA-rieste Based on : GD, Nucl.Phys.B 818 (29) 196 (arxiv: [hep-th])

2 he Ising model is the basic example of magnetic phase transition: spontaneous magnetization below c Percolation is the basic example of geometric phase transition: infinite cluster above p c he Ising model, however, encodes itself a percolation problem for clusters of magnetically interacting spins here is no interaction other than the magnetic one Naive expectation: cluster criticality is associated to magnetic criticality. Not true Mean cluster size can diverge while magnetic correlation length is finite he issue can be resolved exactly in d = 2 (integrability, but not the Ising one...)

3 Ising percolation H Ising = 1 σ i σ j + H i ij σ i, σ i = ±1 ( ) No magnetic transition away from c, H = H =+1 c = 1 P probability that a site belongs to an infinite cluster of + spins (percolative order parameter) H c ( ) such that P > for H > H c ( ) H c () = e H c( ) 2 cosh H c ( ) = p c p c = critical point of random percolation (non-universal)

4 hree observations: i) H c ( ) monotonic ii) spontaneous magnetization = infinite cluster (Coniglio et al 77) iii) p c p c at H = (interaction makes percolation easier) Consequences: H a) p c > 1/2, i.e. H c( ) > P > H c () i), ii) = H c ( ) = for c c b) p c < 1/2, i.e. H c( ) < H p = 1/2 for c, H = iii) = p < c p c H c () Ordinary lattices in d = 2 have p c 1/2 a) d = 3 have p c < 1/2 b)

5 Kasteleyn-Fortuin representation H q = H Ising + J ij t i t j (δ si,s j 1), t i = 1 2 (σ i + 1) =, 1, s i = 1,..., q Z q = {t i } = {t i } e H q {s i } e H Ising qn v = (Murata 79) p b B (1 pb) b q N c G N v = # of empty sites G = graph made of bonds between occupied sites b = # of bonds in G; b = # of absent bonds N c = # of connected components in G (KF clusters) p B 1 e J prob that a bond is present (KF cl=ising cl for p B = 1) q continuous parameter X q 1 = Z 1 Ising {t i } e H Ising X p b B (1 p B) b G dilute percolation average pure percolation for H = +

6 X q 1 = X Ising for X Ising magnetic observable Example of percolative observable: Mean cluster number in pure percolation (N v = ) = d ln Z q dq H=+, q=1 f q ln Z q = f Ising + (q 1)F + O((q 1) 2 ) Dilute Potts model yields Ising magnetic properties at q = 1 KF cluster properties at q = 1 + ɛ Ising cluster properties at q = 1 + ɛ, J +

7 RG analysis in d = 2 (Coniglio-Klein 8 + CF) Look for fixed points of H q 1 (, H, J) = H Ising (, H) J ij t i t j (δ si,s j 1) Need a magnetic fixed point to start with = = c, H =. J? d=2 fixed points characterized by central charge c = 1 6/[m(m + 1)] primary fields ϕ r,s with scaling dimensions X r,s = [(m+1)r ms]2 1 2m(m+1) H Ising ( c, ): m = 3, c = 1/2, X σ = X 1,2 = 1/8, X ε = X 1,3 = 1 H q possesses two critical lines as functions of q: π(t 1) t, critical (H = + ) : X s = X m 1,, X m+1 t1 = X 2,1 q = 2 sin 2(t + 1), m = 2 2 t + 1, tricritical: X s = X m, m, X t = X 1,2, X t2 = X 1,3 2, pure perc: c =, X s = 5/48, X t1 = 5/4 q 1 : m = 3, dilute perc: c = 1/2, X s = 5/96, X t1 = 1/8, X t2 = 1

8 We found a fixed point of dilute percolation for J = J A trivial (purely magnetic) fixed point is at J = J irrelevant at these two fixed points = a third one 2/ c J * J H q J=2/ = 2 (δ νi,ν j 1) + (ln q 2H) δ νi,, ν i =, 1,..., q ij i = fixed point at J = 2/ c as q 1, with X s = X σ = 1/8 (KF clusters with J = 2/ ) = Ising droplets RG flows among fixed points with c = 1/2 (c-theorem does not apply) Critical behavior of Ising clusters is ruled by J (agrees with numerics) cluster size (linear extension) D D = d X s fractal dimension 91/48 = pure percolation D = 187/96 = Ising clusters 15/8 = Ising droplets

9 Field theory of Ising clusters Ising field theory: A Ising = A Ising CF τ d 2 x ε(x) h d 2 x σ(x), τ c, h H Dilute Potts field theory: A q = A tricr CF g d 2 x ϕ 1,3 (x) λ d 2 x ϕ 1,2 (x) g A q=1 = A Ising (g = τ, λ = h) A q integrable for g and/or λ equal zero S q symmetry breaks spontaneously at λ = q degenerate vacua for λ < λ q he q 1 limit of the Potts critical surface is the Ising percolation transition: 1st order (massive) at < c, 2nd order (massless) at > c A q=1 = A Ising, however, is purely massive: no transition above c We can take the limit analytically

10 he massless surface of A q is an integrable field theory (Fendley, Saleur, Zamolodchikov 93, in RSOS basis) Fundamental particles: right/left movers A k, k = 1,..., q 1 with p 1 = ±p Poles of two-particle amplitudes contained in S 1/2 (θ)/(s 1/2 (θ) cosh ρ(iπ θ)) ( 1 Γ 2 + ( ) ( 2n γ) ρ ρθ 1 Γ iπ 2 + ( ) 2n γ) ρ + ρθ iπ S γ (θ) = ( 1 n= Γ 2 + ( ) ( 2n γ) ρ + ρθ 1 Γ iπ 2 + ( ), ρ = 1/(m 1) 2n γ) ρ ρθ iπ Im θ (, π) physical sheet s = µ 2 e θ : Im θ (, π) second sheet No poles on physical sheet 1 s/µ 2 Pole at θ = iπ(m 3)/2, on 2nd sheet for m (3, 5) q 1 + : resonance B with Im s (q 1)µ 2 m=3 (q=1) m=4 (q=2) q = 1 + ɛ : ɛ massless particles A k, one resonance B with lifetime 1/ɛ q = 1 : massless particles, one stable particle B with mass µ = percolative transition in absence of magnetic singularities above c

11 B S q -singlet (survives at q = 1) = only S q -invariant fields φ have non-zero correlations at q = 1: lim φ(r)φ() = lim dθ 1 dθ 2 φ() A k (θ 1 )A q k (θ 2 ) 2 e re 2,(θ 1,θ ) q 1 q 1 R φ 2 = lim (q 1) dβdθ q 1 (θ θ )(θ + θ ) e re 2,((β+θ)/2,(β θ)/2) +... dβ e re1,µ(β) +... E 2, (θ 1, θ 2 ) µ(e θ 1 + e θ 2 )/2, θ i(q 1), E 1,µ (β) µ cosh(β/2) q 1 Σ A k φ φ φ B φ A k=1 q 1 q k his is how the canonical space of fields [I] [σ] [ɛ] of Ising field theory is recovered at q = 1

12 Field theory of Ising droplets Droplets are KF clusters with J = 2/, i.e. p B = 1 e 2/ = : p B =, no percolation H = + : transition at = 2/ ln(1 p c ) H Kertesz line p c = threshold of pure bond percolation 1 1 c Scaling limit : Ã q = A (q+1) CF τ q d 2 x ϕ 2,1 (x)+2h q d 2 x δ ν(x),, ν(x) =, 1,..., q RG invariant : η q = τ q /h (2 X 2,1)/(2 X s ) q (Ã q=1 = A Ising, η 1 η = τ/h 8/15 ) h q breaks S q+1 into S q ; for q > 1 S q breaks spontaneously at η q = η c q he Kertész line is the limit q 1 of the flow from S q+1 fixed point at h q = to S q fixed point at h q = + Again, no transition at q = 1; resonance mechanism most likely, but no integrability in this case Universal limit of the Kertész line: lattice data (Fortunato, Satz 1) + lattice-continuum relations (Caselle, Grinza, Rago 4) give η K η c q 1.12

13 H Summary h η.12 K 1 1 c τ Ising universal percolative properties are not described by Ising field theory but by its embedding into a S q invariant theory, with q 1 Percolative transitions are mapped onto spontaneous breakdown of S q symmetry Magnetic and percolative 1st order transitions have the same location in d = 2 he mechanism allowing a 2nd order percolation line above c despite a finite magnetic correlation length has been identified and exhibited analytically he percolative critical lines above c are massless trajectories flowing from c = 1/2 (Ising percolation) to c = (pure percolation): η = + for clusters, η.12 for droplets

2. Illustration of the Nikkei 225 option data

2. Illustration of the Nikkei 225 option data 1. Introduction 2. Illustration of the Nikkei 225 option data 2.1 A brief outline of the Nikkei 225 options market τ 2.2 Estimation of the theoretical price τ = + ε ε = = + ε + = + + + = + ε + ε + ε =

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

Critical Phenomena and Percolation Theory: I

Critical Phenomena and Percolation Theory: I Critical Phenomena and Percolation Theory: I Kim Christensen Complexity & Networks Group Imperial College London Joint CRM-Imperial College School and Workshop Complex Systems Barcelona 8-13 April 2013

More information

Review of Statistical Mechanics

Review of Statistical Mechanics Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The

More information

x o R n a π(a, x o ) A R n π(a, x o ) π(a, x o ) A R n a a x o x o x n X R n δ(x n, x o ) d(a, x n ) d(, ) δ(, ) R n x n X d(a, x n ) δ(x n, x o ) a = a A π(a, xo ) a a A = X = R π(a, x o ) = (x o + ρ)

More information

Topologically Massive Gravity with a Cosmological Constant

Topologically Massive Gravity with a Cosmological Constant Topologically Massive Gravity with a Cosmological Constant Derek K. Wise Joint work with S. Carlip, S. Deser, A. Waldron Details and references at arxiv:0803.3998 [hep-th] (or for the short story, 0807.0486,

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013 A Note on the IR Finiteness of Fermion Loop Diagrams Ambresh Shivaji Harish-Chandra Research Initute, Chhatnag Road, Junsi, Allahabad-09, India arxiv:008.479v hep-ph] 0 Jun 03 Abract We show that the mo

More information

INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM

INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM D. PINHEIRO AND R. S. MACKAY Dedicated to the memory of John Greene. Abstract. The interaction of two charges moving in R 3 in

More information

An exact formula for default swaptions pricing in the SSRJD stochastic intensity model

An exact formula for default swaptions pricing in the SSRJD stochastic intensity model An exact formula for default swaptions pricing in the SSRJD stochastic intensity model Naoufel El-Bachir (joint work with D. Brigo, Banca IMI) Radon Institute, Linz May 31, 2007 ICMA Centre, University

More information

3. Regression & Exponential Smoothing

3. Regression & Exponential Smoothing 3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a

More information

Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1

Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1 Basic Geometry Review For Trigonometry Students 16 June 2010 Ventura College Mathematics Department 1 Undefined Geometric Terms Point A Line AB Plane ABC 16 June 2010 Ventura College Mathematics Department

More information

Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

Table of Contents Appendix 4-9

Table of Contents Appendix 4-9 Table of Contents Appendix 4-9 Appendix Multi-Input Thermometer & Datalogger Software Manual v1.0 4-8 Table of Contents 1. Introduction...1-1 1.1 Operation Environment...1-1 1.2 Hardware...1-1 1.3 Connecting

More information

1 Variational calculation of a 1D bound state

1 Variational calculation of a 1D bound state TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,

More information

Outline Lagrangian Constraints and Image Quality Models

Outline Lagrangian Constraints and Image Quality Models Remarks on Lagrangian singularities, caustics, minimum distance lines Department of Mathematics and Statistics Queen s University CRM, Barcelona, Spain June 2014 CRM CRM, Barcelona, SpainJune 2014 CRM

More information

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7 Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle

More information

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry

More information

ASCII CODES WITH GREEK CHARACTERS

ASCII CODES WITH GREEK CHARACTERS ASCII CODES WITH GREEK CHARACTERS Dec Hex Char Description 0 0 NUL (Null) 1 1 SOH (Start of Header) 2 2 STX (Start of Text) 3 3 ETX (End of Text) 4 4 EOT (End of Transmission) 5 5 ENQ (Enquiry) 6 6 ACK

More information

Additional questions for chapter 4

Additional questions for chapter 4 Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

BRANCHING RANDOM WALKS AND MULTI-TYPE CONTACT-PROCESSES ON THE PERCOLATION CLUSTER OF Z d

BRANCHING RANDOM WALKS AND MULTI-TYPE CONTACT-PROCESSES ON THE PERCOLATION CLUSTER OF Z d BRANCHING RANDOM WALKS AND MULTI-TYPE CONTACT-PROCESSES ON THE PERCOLATION CLUSTER OF Z d DANIELA BERTACCHI AND FABIO ZUCCA Abstract. In this paper we prove that under the assumption of quasi-transitivity,

More information

Sovereign Defaults. Iskander Karibzhanov. October 14, 2014

Sovereign Defaults. Iskander Karibzhanov. October 14, 2014 Sovereign Defaults Iskander Karibzhanov October 14, 214 1 Motivation Two recent papers advance frontiers of sovereign default modeling. First, Aguiar and Gopinath (26) highlight the importance of fluctuations

More information

Detectors in Nuclear and Particle Physics

Detectors in Nuclear and Particle Physics Detectors in Nuclear and Particle Physics Prof. Dr. Johanna Stachel Deartment of Physics und Astronomy University of Heidelberg June 17, 2015 J. Stachel (Physics University Heidelberg) Detectorhysics June

More information

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs arxiv:0906.4672 CALT-68-2733 Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs arxiv:0906.4672v2 [hep-th] 1 Jul 2009 Joseph Marsano, Natalia Saulina, and Sakura Schäfer-Nameki California

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Autoregressive, MA and ARMA processes Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 212 Alonso and García-Martos

More information

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

More information

Euclidean quantum gravity revisited

Euclidean quantum gravity revisited Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,

More information

Counting BPS states in E-string theory. Kazuhiro Sakai

Counting BPS states in E-string theory. Kazuhiro Sakai String Theory Group at Nagoya University December 4, 202 Counting BPS states in E-string theory Kazuhiro Sakai (YITP, Kyoto University) JHEP06(202)027 (arxiv:203.292) JHEP09(202)077 (arxiv:207.5739) Plan.

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model.

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model. Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model Carlos Alfonso Ballon Bayona, Durham University In collaboration with H. Boschi-Filho, N. R. F. Braga, M. Ihl and M. Torres. arxiv:0911.0023,

More information

Nonlinear evolution of unstable fluid interface

Nonlinear evolution of unstable fluid interface Nonlinear evolution of unstable fluid interface S.I. Abarzhi Department of Applied Mathematics and Statistics State University of New-York at Stony Brook LIGHT FLUID ACCELERATES HEAVY FLUID misalignment

More information

Fundamentals of Statistical Physics Leo P. Kadanoff University of Chicago, USA

Fundamentals of Statistical Physics Leo P. Kadanoff University of Chicago, USA Fundamentals of Statistical Physics Leo P. Kadanoff University of Chicago, USA text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

Perfect Fluids: From Nano to Tera

Perfect Fluids: From Nano to Tera Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux 3D plasticity 3D viscoplasticity 3D plasticity Perfectly plastic material Direction of plastic flow with various criteria Prandtl-Reuss, Hencky-Mises, Prager rules Write 3D equations for inelastic behavior

More information

Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings

Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction IR dynamics of

More information

TRANSPORT APERIODIC MEDIA COHERENT & DISSIPATIVE. Jean BELLISSARD 1 2. Collaborators:

TRANSPORT APERIODIC MEDIA COHERENT & DISSIPATIVE. Jean BELLISSARD 1 2. Collaborators: Transport Princeton Univ Dec. 12 2000 1 COHERENT & DISSIPATIVE TRANSPORT in APERIODIC MEDIA Collaborators: I. GUARNERI (Università di Como ) R. MOSSERI (CNRS, Univ. Paris VI-VII) R. REBOLLEDO (Pontificia

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0 Chapter 1 Thomas-Fermi Theory The Thomas-Fermi theory provides a functional form for the kinetic energy of a non-interacting electron gas in some known external potential V (r) (usually due to impurities)

More information

Lecture 8. Generating a non-uniform probability distribution

Lecture 8. Generating a non-uniform probability distribution Discrete outcomes Lecture 8 Generating a non-uniform probability distribution Last week we discussed generating a non-uniform probability distribution for the case of finite discrete outcomes. An algorithm

More information

INSURANCE RISK THEORY (Problems)

INSURANCE RISK THEORY (Problems) INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,

More information

This is the second in a series of two papers investigating the solitary wave solutions of the integrable model wave equation

This is the second in a series of two papers investigating the solitary wave solutions of the integrable model wave equation CONVERGENCE OF SOLITARY-WAVE SOLUTIONS IN A PERTURBED BI-HAMILTONIAN DYNAMICAL SYSTEM. II. COMPLEX ANALYTIC BEHAVIOR AND CONVERGENCE TO NON-ANALYTIC SOLUTIONS. Y. A. Li 1 and P. J. Olver 1, Abstract. In

More information

Macroeconomic Effects of Financial Shocks Online Appendix

Macroeconomic Effects of Financial Shocks Online Appendix Macroeconomic Effects of Financial Shocks Online Appendix By Urban Jermann and Vincenzo Quadrini Data sources Financial data is from the Flow of Funds Accounts of the Federal Reserve Board. We report the

More information

arxiv:cond-mat/9809050v1 [cond-mat.stat-mech] 2 Sep 1998

arxiv:cond-mat/9809050v1 [cond-mat.stat-mech] 2 Sep 1998 arxiv:cond-mat/9809050v1 [cond-mat.stat-mech] 2 Sep 1998 One-dimensional Ising model with long-range and random short-range interactions A. P. Vieira and L. L. Gonçalves Departamento de Física da UFC,

More information

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off?

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off? Chapter 7 General Equilibrium Exercise 7. Suppose there are 00 traders in a market all of whom behave as price takers. Suppose there are three goods and the traders own initially the following quantities:

More information

Dynamical order in chaotic Hamiltonian system with many degrees of freedom

Dynamical order in chaotic Hamiltonian system with many degrees of freedom 1 Dynamical order in chaotic Hamiltonian system with many degrees of freedom Tetsuro KONISHI Dept. of Phys., Nagoya University, Japan tkonishi@r.phys.nagoya-u.ac.jp Sep. 22, 2006 at SM& FT 2006, Bari (Italy),

More information

Tools for the analysis and design of communication networks with Markovian dynamics

Tools for the analysis and design of communication networks with Markovian dynamics 1 Tools for the analysis and design of communication networks with Markovian dynamics Arie Leizarowitz, Robert Shorten, Rade Stanoević Abstract In this paper we analyze the stochastic properties of a class

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

Lecture 4 Cohomological operations on theories of rational type.

Lecture 4 Cohomological operations on theories of rational type. Lecture 4 Cohomological operations on theories of rational type. 4.1 Main Theorem The Main Result which permits to describe operations from a theory of rational type elsewhere is the following: Theorem

More information

I = 0 1. 1 ad bc. be the set of A in GL(2, C) with real entries and with determinant equal to 1, 1, respectively. Note that A = T A : S S

I = 0 1. 1 ad bc. be the set of A in GL(2, C) with real entries and with determinant equal to 1, 1, respectively. Note that A = T A : S S Fractional linear transformations. Definition. GL(, C) be the set of invertible matrices [ ] a b c d with complex entries. Note that (i) The identity matrix is in GL(, C). [ ] 1 0 I 0 1 (ii) If A and B

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES

A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES THEODORE A. SLAMAN AND ANDREA SORBI Abstract. We show that no nontrivial principal ideal of the enumeration degrees is linearly ordered: In fact, below

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

s-convexity, model sets and their relation

s-convexity, model sets and their relation s-convexity, model sets and their relation Zuzana Masáková Jiří Patera Edita Pelantová CRM-2639 November 1999 Department of Mathematics, Faculty of Nuclear Science and Physical Engineering, Czech Technical

More information

The Schwinger Mechanism and Graphene. D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads

The Schwinger Mechanism and Graphene. D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads The Schwinger Mechanism and Graphene & D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads Outline What is the Schwinger Mechanism? Why is it worth worrying about? How

More information

Invariant random subgroups and applications

Invariant random subgroups and applications Department of Mathematics Ben-Gurion university of the Negev. Spa, April 2013. Plan 1 Plan 2 IRS Definitions, Examples, Theorems 3 Essential subgroups 4 Proof of the main theorem IRS Definition Γ a l.c

More information

Curves and Surfaces. Lecture Notes for Geometry 1. Henrik Schlichtkrull. Department of Mathematics University of Copenhagen

Curves and Surfaces. Lecture Notes for Geometry 1. Henrik Schlichtkrull. Department of Mathematics University of Copenhagen Curves and Surfaces Lecture Notes for Geometry 1 Henrik Schlichtkrull Department of Mathematics University of Copenhagen i ii Preface The topic of these notes is differential geometry. Differential geometry

More information

Recent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago

Recent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago Recent Developments of Statistical Application in Finance Ruey S. Tsay Graduate School of Business The University of Chicago Guanghua Conference, June 2004 Summary Focus on two parts: Applications in Finance:

More information

Consensus and Polarization in a Three-State Constrained Voter Model

Consensus and Polarization in a Three-State Constrained Voter Model Consensus and Polarization in a Three-State Constrained Voter Model Department of Applied Mathematics University of Leeds The Unexpected Conference, Paris 14-16/11/2011 Big questions Outline Talk based

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Method of Green s Functions

Method of Green s Functions Method of Green s Functions 8.303 Linear Partial ifferential Equations Matthew J. Hancock Fall 006 We introduce another powerful method of solving PEs. First, we need to consider some preliminary definitions

More information

Credit Risk Models: An Overview

Credit Risk Models: An Overview Credit Risk Models: An Overview Paul Embrechts, Rüdiger Frey, Alexander McNeil ETH Zürich c 2003 (Embrechts, Frey, McNeil) A. Multivariate Models for Portfolio Credit Risk 1. Modelling Dependent Defaults:

More information

Fitting Subject-specific Curves to Grouped Longitudinal Data

Fitting Subject-specific Curves to Grouped Longitudinal Data Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: vad5@hw.ac.uk Currie,

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

Disorder-induced rounding of the phase transition. in the large-q-state Potts model. F. Iglói SZFKI - Budapest

Disorder-induced rounding of the phase transition. in the large-q-state Potts model. F. Iglói SZFKI - Budapest Disorder-induced rounding of the phase transition in the large-q-state Potts model M.T. Mercaldo J-C. Anglès d Auriac Università di Salerno CNRS - Grenoble F. Iglói SZFKI - Budapest Motivations 2. CRITICAL

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Gravitational radiation and the Bondi mass

Gravitational radiation and the Bondi mass Gravitational radiation and the Bondi mass National Center for Theoretical Sciences, Mathematics Division March 16 th, 2007 Wen-ling Huang Department of Mathematics University of Hamburg, Germany Structuring

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

/SOLUTIONS/ where a, b, c and d are positive constants. Study the stability of the equilibria of this system based on linearization.

/SOLUTIONS/ where a, b, c and d are positive constants. Study the stability of the equilibria of this system based on linearization. echnische Universiteit Eindhoven Faculteit Elektrotechniek NIE-LINEAIRE SYSEMEN / NEURALE NEWERKEN (P6) gehouden op donderdag maart 7, van 9: tot : uur. Dit examenonderdeel bestaat uit 8 opgaven. /SOLUIONS/

More information

Lecture 4: BK inequality 27th August and 6th September, 2007

Lecture 4: BK inequality 27th August and 6th September, 2007 CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound

More information

CHAPTER 24 GAUSS S LAW

CHAPTER 24 GAUSS S LAW CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

More information

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M)

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Stability of Evaporating Polymer Films For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Submitted by: Ted Moore 4 May 2000 Motivation This problem was selected because the writer observed a dependence

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

More information

VI. Real Business Cycles Models

VI. Real Business Cycles Models VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized

More information

The Math Circle, Spring 2004

The Math Circle, Spring 2004 The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

More information