# On the minimization over SO(3) Manifolds

Save this PDF as:

Size: px
Start display at page:

Download "On the minimization over SO(3) Manifolds"

## Transcription

1 On the minimization over SO(3) Manifolds Frank O. Kuehnel RIACS NASA Ames Research Center, MS 69-, Moffett Field, CA 9435, USA Abstract. In almost all image-model and model-model registration problems the question arises as to what optimal rigid body transformation applies to bring a physical 3-dimensional model in alignment with the observed one. Data may also be corrupted by noise. Here I will present the exponential and quaternion representations for the SO(3) group. I will present the technique of compounding derivatives and demonstrate that it is most suited for dealing with numerical optimization problems that involve rotation groups. 1 Introduction A common task in computer vision is matching images or features and estimating essential transformation parameters [1]. In the weak perspective regime the -dimensional affine image transformation with 6 parameters is applicable; in general a perspective transformation applies. Amongst Fig. 1. Fly-by satellite view on a rendered region of duckwater. The main difference between both images is a rotation about the viewing axis. those parameters are 3 Euler-angles that describe the orientation of the

2 viewer with respect to a world-coordinate system, see Fig. 1 as an example. Then neglecting other free parameters, we could formulate the image matching problem as finding a minimum to the log- likelihood log P p (I p Îp(φ,θ,ψ)), (1) where we sum over all pixels in the observed image data I p and the expected image Îp. It is well known that numerical optimiztion algorithms with Euler-angle representation have numerical problems. Several alternatives to Euler-angle representations exist. However, a prior it is not clear how well various representations and minimization methods will perfom. The subject of my investigation is the types of suitable rotation group representations and their application in numerical minimization algorithms. I will compare the convergence rate of various methods in the special case of matching point-clouds. In the next section, I will present suitable rotation group representations, followed by their application within numerical optimization algorithms. SO(3) reprsentations I briefly introduce the euler, the exponential and the quaternion representation. An extensive introduction to rotation groups and parametrization can be found in []..1 Euler-angle representation The rotation matrix R represents an orthonormal transformation, RR T = I, det(r) = 1, as such it can be decomposed into simpler rotation matrices, R = R z (φ) R y (θ)r z (ψ), () with cos φ sinφ cos θ sin θ R z (φ) = sinφ cos φ, R y (θ) = 1. (3) 1 sinθ cos θ The decomposition () is not unique. We adhere to the NASA Standard Aerospace convention [3] with ψ the precession, θ the nutation and φ as the spin. The derivatives with respect to the Euler-angles are easily obtained and will not be given here.

3 . Exponential representation, (Axis-angle) The axis-angle representation is frequently used in kinematics [4] and commonly referred to as the exponential representation. The rotation matrix R is obtained by exponentiation of a matrix H. This generating matrix H must be antisymmetric. and in 3-dimensions constitutes the cross product operator, r z r y H = [r] = r z r x, r = ω/θ,θ = ω, (4) r y r x where ω is called the Rodrigues vector. We notice that in the limit θ the Rodrigues vector is ill-defined and we need proper limit considerations [5]. The rotation matrix R and its generating matrix H are related by, R = exp(θh) = I + sin θh + (1 cosθ)h. (5) In minimization problems that utilize gradients we require the knowledge of derivatives with respect to the components of the Rodrigues vector ω xyz. In the following I introduce the index notation: Greek indices run over {1,, 3} which is synonymous for {x, y, z}, repeated indices are implicitly summed over 1. Now the derivatives are easily obtained dr = sin θ dh dr β + (1 cos θ) dh dr β + cos θhr α + sin θh r α, (6) dω α dr β dω α dr β dω α where Hence, using and dr β dω α = (δ αβ r α r β )/θ, dθ dω α = r α. (7) dh dr x r x + dh dr y r y + dh dr z r z = H (8) dh dr x r x + dh dr y r y + dh dr z r z = H (9) we obtain the rotation matrix derivative with respect to the Rodrigues vector component dr = dh sin θ dω α dr α θ ( + dh (1 cos θ) + dr α θ H(cos θ sin θ/θ) + H (sin θ 1 cos θ θ 1 summation over recurrent indicies is call Einstein summation ) ) r α. (1)

4 . It is emphasized that the natural endowed algebra sturcture of the vector space ω IR 3 is not isomorphic to the multiplication in the SO(3) group, R(ω 1 ) R(ω ) R(ω 1 + ω )! (11).3 Quaternion representation Quaternions can compactly represent rotation matrices. We will see that the compounding (non-commutative multiplication) operation is isomorphic to the matrix multiplication in SO(3). Let s introduce general quaternions by ˆQ = (q,q), q = q 1 e 1 + q e + q 3 e 3, (1) where q is a regular 3-dimensional vector with basis {e α } in IR 3. Addition of quaternions is component-wise, a product (compounding) of two quaternions as follows, ˆP ˆQ = (p q p T q,p q + q p + p q). (13) The notation in (13) utilizes the dot and cross product defined in IR 3. It is remarked that the product (13) is non-commutative but associative! In addition we have a conjugate operation, hence we can write the squared norm as, ˆQ = (q,q) ˆQ = (q, q), (14) ˆQ ˆQ = (q + q T q,) q + q T q. (15) We identify a scalar value c IR with a quaternion that has zero vector components, (c,) c and a vector q IR 3 with a quaternion that has zero scalar component (, q) q. Further, we will be sloppy with the quaternion product notation but implicitly assume that ˆQ ˆP means ˆQ ˆP. The claim is that a rotation can be represented by ˆR = (cos θ,sin θ r), ˆR ˆR 1 (16) with θ the magnitude and r the direction of the Rodirigues vector given in (4) and below, such that Rv = ˆRˆV ˆR, ˆV = (,v). (17)

5 Proof of (17) is easy and proceeds as follows: Writing equation (5) in the form with half-angles, Rv = cos θ Iv + cos θ sin θ r v + sin θ r (r v) + sin θ rrt v = (cos θ,sin θ r) (,v) (cos θ, sin θ r), (18) which completes the proof! Any quaternion ˆQ with ˆQ ˆQ = 1 constitutes a rotation in SO(3), the components of the rotation matrix R are easily obtained from (18), ˆQ = (q,q 1,q,q 3 ), q + q 1 + q + q 3 = 1 R( ˆQ) 1 q q 3 (q 1q q q 3 ) (q 1 q 3 + q q ) = (q q 1 + q q 3 ) 1 q1 q 3 (q q 3 q q 1 ) (19) (q 3 q 1 q q ) (q 3 q + q q 1 ) 1 q1 q Back to our initial statement, that we can easily idenitify an isomorphic structure between quaternions and rotation matrices, R( ˆQ 1 ) R( ˆQ ) = R( ˆQ 1 ˆQ ). ().4 Quaternion differential algebra As in the case for the Rodrigues vector, we are interested in the differential structure of the rotation matrix with respect to the quaternion components. Since we have 4 quaternion components and only 3 rodrigues vector ones, we also have to address the problem of overparametrization. The quaternion ring is endowed with a commutative operation (addition) and a non-commutative multiplicative operation (composition), it is natural to consider the two differential structures. Additive differential rotation We can cast the rotation matrix R in a particular well suited quaternion form, essentially it s restating (18) R = Iq + qqt + q [q] + [q] [q], (1) I is the unit matrix. Using tensor notation in (1), I µν = δ µν, ( qq T ) µν = q µq ν, ([q] ) µν = ε µρν q ρ, ()

6 where δ µν is the Kronecker-delta and ε µνρ the total antisymmetric tensor. Now we consider a differential rotation R( ˆQ + dˆq) R( ˆQ) and obtain R µν q = q δ µν + ε µρν q ρ, We used the following tensor contraction in (3) R µν q η = (δ ηµ q ν + q µ δ ην + q ε µην δ µν q η ). (3) ε αβγ ε αµν = δ βµ δ γν δ βν δ γµ. (4) Compounded differential rotation Alternatively, we can compose the differential rotation as the compound of the deviation from the unitquaternion Î (this represents the identity operation, null-rotation), by δ ˆQ = (Î + δˆq) ˆQ ˆQ = δˆq ˆQ, (Î + δˆq)(î + δˆq) = 1. (5) Then, we can write a differential rotation R((Î + δˆq) ˆQ) R( ˆQ) with the change of δˆq (5), [R( ˆQ + δ ˆQ) R( ˆQ)]v = δ ˆQ (,v) ˆQ + ˆQ (,v) δ ˆQ = δˆq (,v ) + (,v ) δˆq = δq v + δq v = δq R( ˆQ)v + δq (R( ˆQ)v), (6) hence the derivatives have a particularly simple form compared to (3), R µν δq = R µν, R µν δq α = ε αρµ R ρν. (7) Overparametrization, connection with the Rodrigues vector The rotation group SO(3) is a 3-parameter group, that is reflected in the number of Euler-angles and the vector components of the Rodrigues vector. Quaternions have 4 real components, seemingly we have increased the number of parameters. However, for a quaternion ˆQ to represent a rotation it must lie on the normalized-sphere S 3, ˆQ ˆQ = 1. (8) This represents an additional constraint, that is not built into the quaternioncomponent derivatives (3,7).

7 We can choose to parameterize the quaternion with the Rodrigues vector (16), then the derivatives of a general rotation quaternion ˆq with respect to the independent rodrigues vector ω components are, ˆq ω α = ( r α sin θ, r α cos θ r + 1 θ sin θ (δ αβ r α r β )e β ). (9) Here we assume that < θ or equivalently < q. Equivalently we can express (9) in quaternion component form, q = 1 ω α q q η α, = 1 ω α (q sincx) q αq η q + sincx q δ αη, x = arctan q. (3) We notice, that (9,3) show that the quaternion-constraint manifests in non-linear functions. On the other hand, if we were to parametrize the infinitesimal deviation from a unit-quaternion, ˆq = Î + δˆq = (q,q) = (cos δθ,sin δθ r), r = δω/δθ, δθ = ω. (31) then the quaternion-constraint is reflected by a rather simple linear dependence, δq δq η δω =, α q= δω = 1 α q= δ αη. (3) Notice, that (3) is the limiting case of (3) for q. 3 Non-linear function minimization over S 3 Given a bounded scalar function with SO(3) group parameters as arguments M f( ˆQ) = f(r( ˆQ)), ˆQ S 3, M IR (33) we are to find the (not necessarily unique) optimal quaternion ˆQ (f) which minimizes the scalar function f( ˆQ) in (33). In most cases analytical closed form solutions to (33) are not available. Numerical minimization algorithms utilize gradient information and at most deal with quadratic expansions of (33). Therefore it is natural to lay focus on functions of the form f = a + b µν R µν + c ηρ µν R µνr ηρ. (34) The arguments of f are implicitly subsumed in the rotation matrix components R µν. Equation (34) is frequently the result of a quasi-newton approximation to (1). Despite of the seemingly simple structure of Eqn. (34)

8 with rotation matrix components occuring at most in order, hence we could call them R µν -harmonic functions, it generally doesn t possess a closed form solution. Only for the particular case presented below the solution is known. 3.1 Pseudo-quadratic functions The special case of finding a unit quaternion ˆQ min which minimizes f s (R( ˆQ)) N = a + Rc i d i (35) i=1 can be solved analytically [6, 7]. (35) represents the case where a cloud of N points c i in IR 3 are mapped by a rotation such that the result most closely resembles the cloud d i. We can write (35) in tensor notation, f s = a + d µ d µ d µ c ν R µν + c ν c ρ δ µη R µν R ηρ, (36) where we have omitted the sum over point index i, thus in terms of tensor coefficients (34) we have b µν = c µ d ν, Now, we use the orthogonality relation, c ηρ µν = c νc ρ δ µη. c ηρ µν R µνr ηρ = c ν c ρ δ νρ (37) and obtain an expression that is linear in the matrix elements R µν, hence (35) constitutes only a pseudo-quadratic function, n f s = a + b µν R µν, b µν = d i c T i, a = a + c T i c i + d T i d i. (38) i=1 According to [7] we can find a solution to the R µν linear problem (38) by simply decomposing the general rank- tensor b µν and restating the problem as in (35). Then we solve for ˆQ min by noticing that f s is quadratic in the quaternion components and therefore can be written as n f s = a + (q,q) Bi T B i(q,q) T, (39) i=1 with 4 4 matricies B i, [ ] (ci d B i = i ) T. d i c i [d i + c i ] A solution to (35) is given by the eigenvector ˆq of B T i B i with minimal eigenvalue.

9 4 Gradient search methods on the S 3 manifold In the absence of analytical solutions we resort to numerical minimization methods. To measure the minimization search performance of various methods we focus on the pseudo-quadratic function f s and argue that the results are representative even in the general scenario of (34). 4.1 Iterative quadratic expansion in the Rodrigues vector ω or Euler-angles We start with a Rodrigues vector ω and expand the function f s to quadratic order in ω about ω. We keep the rotation matrix entries R µν to second order, (this basically means that we don t use the orthogonality relationship), f s ( ω) ã + (b µν + R µρ c ρ c ν ) R µν ω α } {{ } b T R µν R µρ ω α + ω α c ν c ρ ω β, ω α ω β } {{ } C (4) where ω = ω ω. Omitted are all contributions from R µν / ω α ω β. We need to calculate the exponential derivatives R µν ω α = R µν q,η q,η ω α, (41) which is exactly expression (1). Having obtained the minimal ω we then update the rodrigues vector ω ω 1 = ω + ω, and iteratively proceed with a local expansion (4) until convergence is reached. expansion with Euler-angles The same outline as depicted above applies to a local quadratic expansion with Euler-angles. Instead of the Rodrigues vector derivatives (41) we need to calculate the Euler-angle derivatives, R µν φ, R µν θ Then the update procedure follows the rule, and R µν ψ. (4) {φ,θ,ψ } {φ 1,θ 1,ψ 1 } = {φ + φ,θ + θ,ψ + ψ}.

10 4. Quaternion-path gradient search We construct a product sequence (path) from a suitable starting point ˆQ (), ˆQ (k) = (Î + ˆq(k) ) (Î + ˆq(k 1) )... ˆQ (), (43) with the constraint ˆQ (k) S 3 k, (44) meaning that ˆQ (k) at any step represents a rotation. Newton-Raphson, Lagrange multiplier technique One way to constrain quaternions on a unit sphere is by a Lagrange multiplier technique. As a test example we aim to obtain a quaternion sequence to find the minimum of the pseudo-quadratic functional (35). As usual with the Lagrange multiplier technique, given f s and the normalization contraint for δˆq, we can deal with the function g g = f s + λ((1 + δq ) + δq 1). (45) Now, if we write derivatives of g with respect to the multiplicative differential quaternions, we obtain dg dδˆq = { bµν R µν + λ(1 + δq ) = ε αµρ b ρν R µν + λδq α =, α {1,,3} (46) Assuming R being constant for the gradient search, we find an easy solution to (46), i.e. starting with R( ˆQ () ), in the first step, then we can solve for the update ˆq, ˆq = Î + δˆq, λ = b µνr µν q, q α q = ε αµρ R µν b ρν R ηξ b ηξ. (47) Having found ˆq and properly normalized, we successively obtain a new starting point ˆQ (1) = ˆq ˆQ () with rotation matrix R( ˆQ (1) ) for the next search step and solve for another quaternion until convergence is reached. Experimental results follow. Quasi-Newton method through infinitesimal exponential parametrization Instead of imposing the quaternion constraint by a Lagrange multiplier technique we could parametrize the deviation quaternion (Î + ˆq) in

11 (43) by its Rodrigues-vector and assume that we are in the linear regime (3), f s ã + (b µν + R µρ c ρ c ν ) R µν R µν R µρ ω α + ω α c ν c ρ ω β, (48) δω } {{ α δω } α δω β } {{ } b T C where ã = a c T i c i. Using (7) and (3), R µν δω α = R µν δq,η δq,η δω α = (R µν δq δω α ε ηµρ R ρν δq η δω α ) = ε αµρ R ρν, (49) and we obtain the expression for b b α = ε αµρ (R ρν b µν R µξ c ξ R ρν c ν ). (5) To emphasize the structure of the symmetric matrix C we write, D αµ = R µν δω α c ν = ε αµρ R ρν c ν, C αβ = D αµ D T µβ. (51) We find ω in equation (48) is quickly solved using SVD, f s ω =, ω = 1 C 1 b, (5) and calculate the finite step update quaternion (Î + ˆq(k) ) using (31). With a new quaternion ˆQ (k+1) as obtained in (43), we calculate rotation matrices and derivatives thereof. This process is repeated until suffient convergence is reached. 5 Experimental results Here I present numerical experiments on the convergence of the various gradient minimization methods. We compare the standard methods as described in section 4.1 with the ones utilizing the quaternion-path methods, see section 4.. The iterative Euler-angle expansion and the iterative Rodrigues vector expansion are referred to as Standard 1 and Standard. The two methods utilizing quaternion-path gradients are referred to as Lagrange and Compounding. We initialize all experiments by a random selection of N points {c i } and choosing a random transformation R( ˆQ f ) to obtain a point cloud {d i } according to (35). Then we randomly initialize our first guess R( ˆQ () )

12 and employ the minimization methods. The graphs show the minimization trajectory in the Rodrigues vector space. The green dota represents the initial guess, the end-points of the two red lines the two possible exact solutions. We track the convergence by counting the number of steps it takes to obtain the accuracy f s. This corresponds to the residual value of mismatching the euclidian distance (35). We clearly notice that in all scenarios the compounding quaternion derivative method is vastly superior and has super-linear convergence. Also it never failed in all tested cases. Most rarely does the Euler-angle method succeed. 6 Conclusions I have concisely introduced important rotation group SO(3) representations and presented their differential structure. I ve developed the new idea of a product (compounding) path-quaternions and demonstrated its advantages application towards numerical minimization methods. In the special point-matching case this method is vastly superior than all its alternatives. It is expected that the super-linear convergence of the compounding path-quaternion approach is retained even in the case of more general function types that depend on SO(3) parameters.

13 6.1 N = data points Newton-Raphson -4 Lagrange w x w y 4 - wx Compounding 4-3 derivatives wy w z wz - - wy -.5 Exponential 5 derivatives.5 - wy Euler derivatives -5 wz - -4 wz wx wx Accuracy Standard 1 Standard Lagrange Compounding

14 6. N = 5 data points Ω z Newton Raphson Lagrange Ω y 4 Ω z Ω x Compounding Ω 3derivatives y ΩxΩ Ω z Ω x Exponential Ω 3 derivatives y 4 Ω z Ω x Ω Euler derivatives y Accuracy Standard 1 Standard Lagrange Compounding

15 6.3 N = 1 data points w Newton-Raphson Lagrange x w y w Compounding derivatives x w y w z w z w Exponential derivatives x w y w y w Euler derivatives x w z w z - - Accuracy Standard Standard Lagrange Compounding References 1. K. Kanatani, Analysis of 3-D Rotation Fitting, Transactions of pattern analysis and machine intelligence, IEEE, Vol. 16, no. 5, S. L. Altman, Rotations, Quaternions and Double Groups. Clarendon Press, Oxford, 1986.

16 3. G. J. Minkler, Aerospace Coordinate Systems and Transformations. Magellan Book Company, Balitmore, MD, L. D. Landau and E. M. Lifshitz, Course of Theoretical Physiscs, Mechanics, ed. L.D. Landau, Butterworth-Heinemann, 3rd edtion, X. Pennec and J. P. Thirion, A Framework for Uncertainty and Validation of 3-D Registration Methods based on Points and Frames, International Journal of Computer Vision, 5(3), pp 3-9, B. K. P. Horn, Closed Form Solutions of Absolute Orientations Using Unit Quaternions, Journal of Optical Society of America, A-4(4), pp 69-64, J. Weng, T. S. Huang and N. Ahuja, Motion and Structure from Two Perspective Views: Algorithms, Error Analysis, and Error Estimation IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. II, No 5, pp , 1989.

### Metrics on SO(3) and Inverse Kinematics

Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

### Nonlinear Iterative Partial Least Squares Method

Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

### We have just introduced a first kind of specifying change of orientation. Let s call it Axis-Angle.

2.1.5 Rotations in 3-D around the origin; Axis of rotation In three-dimensional space, it will not be sufficient just to indicate a center of rotation, as we did for plane kinematics. Any change of orientation

### 3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)

3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis

### Diploma Plus in Certificate in Advanced Engineering

Diploma Plus in Certificate in Advanced Engineering Mathematics New Syllabus from April 2011 Ngee Ann Polytechnic / School of Interdisciplinary Studies 1 I. SYNOPSIS APPENDIX A This course of advanced

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### Quick Reference Guide to Linear Algebra in Quantum Mechanics

Quick Reference Guide to Linear Algebra in Quantum Mechanics Scott N. Walck September 2, 2014 Contents 1 Complex Numbers 2 1.1 Introduction............................ 2 1.2 Real Numbers...........................

### SO(3) Camillo J. Taylor and David J. Kriegman. Yale University. Technical Report No. 9405

Minimization on the Lie Group SO(3) and Related Manifolds amillo J. Taylor and David J. Kriegman Yale University Technical Report No. 945 April, 994 Minimization on the Lie Group SO(3) and Related Manifolds

### 1 Scalars, Vectors and Tensors

DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH350 Classical Physics Handout 1 8.8.2009 1 Scalars, Vectors and Tensors In physics, we are interested in obtaining laws (in the form of mathematical

### Mean value theorem, Taylors Theorem, Maxima and Minima.

MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

### Continuous Groups, Lie Groups, and Lie Algebras

Chapter 7 Continuous Groups, Lie Groups, and Lie Algebras Zeno was concerned with three problems... These are the problem of the infinitesimal, the infinite, and continuity... Bertrand Russell The groups

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

### Regression Using Support Vector Machines: Basic Foundations

Regression Using Support Vector Machines: Basic Foundations Technical Report December 2004 Aly Farag and Refaat M Mohamed Computer Vision and Image Processing Laboratory Electrical and Computer Engineering

### Advanced Techniques for Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

### Mathematical Formulation of the Superposition Principle

Mathematical Formulation of the Superposition Principle Superposition add states together, get new states. Math quantity associated with states must also have this property. Vectors have this property.

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### 1 Spherical Kinematics

ME 115(a): Notes on Rotations 1 Spherical Kinematics Motions of a 3-dimensional rigid body where one point of the body remains fixed are termed spherical motions. A spherical displacement is a rigid body

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### (Quasi-)Newton methods

(Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

### PURE MATHEMATICS AM 27

AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and

### PURE MATHEMATICS AM 27

AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

### Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### Vector algebra Christian Miller CS Fall 2011

Vector algebra Christian Miller CS 354 - Fall 2011 Vector algebra A system commonly used to describe space Vectors, linear operators, tensors, etc. Used to build classical physics and the vast majority

### Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

### Linear Algebra Review. Vectors

Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### Subspace Analysis and Optimization for AAM Based Face Alignment

Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China zhaoming1999@zju.edu.cn Stan Z. Li Microsoft

### Orthogonal Projections and Orthonormal Bases

CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).

### Vector Representation of Rotations

Vector Representation of Rotations Carlo Tomasi The vector representation of rotation introduced below is based on Euler s theorem, and has three parameters. The conversion from a rotation vector to a

### 1 Introduction. 2 The G 4 Algebra. 2.1 Definition of G 4 Algebra

1 Introduction Traditionally translations and rotations have been analysed/computed with either matrices, quaternions, bi-quaternions, dual quaternions or double quaternions depending of ones preference

### Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions.

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Indrek Mandre http://www.mare.ee/indrek/ February 26, 2008 1 Motivation I became interested in the angular dynamics

### ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB. Sohail A. Dianat. Rochester Institute of Technology, New York, U.S.A. Eli S.

ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB Sohail A. Dianat Rochester Institute of Technology, New York, U.S.A. Eli S. Saber Rochester Institute of Technology, New York, U.S.A. (g) CRC Press Taylor

### Principal Rotation Representations of Proper NxN Orthogonal Matrices

Principal Rotation Representations of Proper NxN Orthogonal Matrices Hanspeter Schaub Panagiotis siotras John L. Junkins Abstract hree and four parameter representations of x orthogonal matrices are extended

### Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

### How is a vector rotated?

How is a vector rotated? V. Balakrishnan Department of Physics, Indian Institute of Technology, Madras 600 036 Appeared in Resonance, Vol. 4, No. 10, pp. 61-68 (1999) Introduction In an earlier series

### Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round \$200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

### G.A. Pavliotis. Department of Mathematics. Imperial College London

EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

### geometric transforms

geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition

### Mean-Shift Tracking with Random Sampling

1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of

### Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

### Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

### 2D Geometric Transformations. COMP 770 Fall 2011

2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector multiplication Matrix-matrix multiplication

### 3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

### Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

### Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks

Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

### Constrained Least Squares

Constrained Least Squares Authors: G.H. Golub and C.F. Van Loan Chapter 12 in Matrix Computations, 3rd Edition, 1996, pp.580-587 CICN may05/1 Background The least squares problem: min Ax b 2 x Sometimes,

### Depth from a single camera

Depth from a single camera Fundamental Matrix Essential Matrix Active Sensing Methods School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie 1 1 Geometry of two

### AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

### Bindel, Fall 2012 Matrix Computations (CS 6210) Week 8: Friday, Oct 12

Why eigenvalues? Week 8: Friday, Oct 12 I spend a lot of time thinking about eigenvalue problems. In part, this is because I look for problems that can be solved via eigenvalues. But I might have fewer

### C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications.

C4 Computer Vision 4 Lectures Michaelmas Term 2004 1 Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction

### Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

### Orthogonal Diagonalization of Symmetric Matrices

MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

### Math 5311 Gateaux differentials and Frechet derivatives

Math 5311 Gateaux differentials and Frechet derivatives Kevin Long January 26, 2009 1 Differentiation in vector spaces Thus far, we ve developed the theory of minimization without reference to derivatives.

### Matrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for

### Rotation in the Space

Rotation in the Space (Com S 477/577 Notes) Yan-Bin Jia Sep 6, 2016 The position of a point after some rotation about the origin can simply be obtained by multiplying its coordinates with a matrix One

### pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64

Semester 1 Text: Chapter 1: Tools of Algebra Lesson 1-1: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 1-2: Algebraic Expressions

### Linear Codes. Chapter 3. 3.1 Basics

Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

### Solving Polynomial Equations

Solving Polynomial Equations Xun Sam Zhou Department of Computer Science & Engineering University of Minnesota 12/16/2010 1 Motivation Polynomials widely appear in Robotics GPS Manipulators Computer Vision

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### Dynamic Analysis. Mass Matrices and External Forces

4 Dynamic Analysis. Mass Matrices and External Forces The formulation of the inertia and external forces appearing at any of the elements of a multibody system, in terms of the dependent coordinates that

### Math Department Student Learning Objectives Updated April, 2014

Math Department Student Learning Objectives Updated April, 2014 Institutional Level Outcomes: Victor Valley College has adopted the following institutional outcomes to define the learning that all students

### Chapter 7. Lyapunov Exponents. 7.1 Maps

Chapter 7 Lyapunov Exponents Lyapunov exponents tell us the rate of divergence of nearby trajectories a key component of chaotic dynamics. For one dimensional maps the exponent is simply the average

### MATH Mathematics-Nursing. MATH Remedial Mathematics I-Business & Economics. MATH Remedial Mathematics II-Business and Economics

MATH 090 - Mathematics-Nursing MATH 091 - Remedial Mathematics I-Business & Economics MATH 094 - Remedial Mathematics II-Business and Economics MATH 095 - Remedial Mathematics I-Science (3 CH) MATH 096

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on

CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #18: Dimensionality Reduc7on Dimensionality Reduc=on Assump=on: Data lies on or near a low d- dimensional subspace Axes of this subspace

### Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.

Epipolar Geometry We consider two perspective images of a scene as taken from a stereo pair of cameras (or equivalently, assume the scene is rigid and imaged with a single camera from two different locations).

### NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

### Factor analysis. Angela Montanari

Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

### 6. ISOMETRIES isometry central isometry translation Theorem 1: Proof:

6. ISOMETRIES 6.1. Isometries Fundamental to the theory of symmetry are the concepts of distance and angle. So we work within R n, considered as an inner-product space. This is the usual n- dimensional

### Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

### Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

### Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

### Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 19 Power Flow IV

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 19 Power Flow IV Welcome to lesson 19 on Power System Analysis. In this

### The cover SU(2) SO(3) and related topics

The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Understanding Quaternions. Jim Van Verth Software Engineer, Google G+: vintagejim Twitter: cthulhim

Understanding Quaternions Jim Van Verth Software Engineer, Google jim@essentialmath.com G+: vintagejim Twitter: cthulhim Goals Explain quaternions Not so much why they re useful But how they work Goals

### Summary of week 8 (Lectures 22, 23 and 24)

WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

### Numerical Analysis Introduction. Student Audience. Prerequisites. Technology.

Numerical Analysis Douglas Faires, Youngstown State University, (Chair, 2012-2013) Elizabeth Yanik, Emporia State University, (Chair, 2013-2015) Graeme Fairweather, Executive Editor, Mathematical Reviews,

### Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

### A Introduction to Matrix Algebra and Principal Components Analysis

A Introduction to Matrix Algebra and Principal Components Analysis Multivariate Methods in Education ERSH 8350 Lecture #2 August 24, 2011 ERSH 8350: Lecture 2 Today s Class An introduction to matrix algebra

### UNIVERSITY GRADUATE STUDIES PROGRAM SILLIMAN UNIVERSITY DUMAGUETE CITY. Master of Science in Mathematics

1 UNIVERSITY GRADUATE STUDIES PROGRAM SILLIMAN UNIVERSITY DUMAGUETE CITY Master of Science in Mathematics Introduction The Master of Science in Mathematics (MS Math) program is intended for students who

### arxiv: v2 [cs.cv] 8 Aug 2014

J Math Imaging Vis manuscript No. The final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0528-x A compact formula for the derivative of a 3-D rotation in exponential coordinates

### 2.2 Creaseness operator

2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

### We call this set an n-dimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.

Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to

### Lecture 11: Graphical Models for Inference

Lecture 11: Graphical Models for Inference So far we have seen two graphical models that are used for inference - the Bayesian network and the Join tree. These two both represent the same joint probability

### The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

### Optimal linear-quadratic control

Optimal linear-quadratic control Martin Ellison 1 Motivation The lectures so far have described a general method - value function iterations - for solving dynamic programming problems. However, one problem

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Quaternion Math. Application Note. Abstract

Quaternion Math Application Note Abstract This application note provides an overview of the quaternion attitude representation used by VectorNav products and how to convert it into other common attitude