STCE. Fast Delta-Estimates for American Options by Adjoint Algorithmic Differentiation
|
|
|
- Rosa McDaniel
- 9 years ago
- Views:
Transcription
1 Fast Delta-Estimates for American Options by Adjoint Algorithmic Differentiation Jens Deussen Software and Tools for Computational Engineering RWTH Aachen University 18 th European Workshop on Automatic Differentiation, 2015
2 Outline Motivation Basics of Finance American Options Path Generation Longstaff-Schwartz Algorithm Non-differentiability of the Exercise Decision Pathwise Adjoint Longstaff-Schwartz Algorithm Sigmoidal Smoothing Simulation and Results, RWTH Aachen, American Option Pricing, EuroAD Workshop,
3 Motivation In addition to the option price, sensitivities are of particular interest Sensitivities play an important role in terms of hedging and risk management Numerical approximation is very expensive and inaccurate Improve the computation of sensitivities by adjoint algorithmic differentiation, RWTH Aachen, American Option Pricing, EuroAD Workshop,
4 Options and Greeks An American option gives the holder the right, but not the obligation, to trade an underlying financial asset S at a previously defined strike price K during a certain period of time until date T. [1] Payoff function with stock price S t and strike price K { max(k S t, 0) (put) v(s t, K) = max(s t K, 0) (call) Greeks of the option price V Measurement for risks and stability = V S 0 ν = V σ Γ = 2 V S 2 0 Vanna = 2 V S 0σ, RWTH Aachen, American Option Pricing, EuroAD Workshop,
5 Path Generation Path generation of stock prices S t at time t with Black-Scholes formula [2] for given risk-free interest rate r, volatility σ, time of maturity T, number of time steps N T and standard normal random numbers Z ( (r S t = S t 1 exp 0.5σ 2 ) ) T + σz t N T ( (r = S 0 exp 0.5σ 2 ) ) T t t + σ Z i N T i=1, RWTH Aachen, American Option Pricing, EuroAD Workshop,
6 Longstaff-Schwartz Algorithm Longstaff-Schwartz algorithm to estimate American option price V Monte-Carlo simulation with least-squares approach (LSA) [3] 1: for p = 1 to N P do 2: v p = max(k S T,p, 0) 3: end for 4: for t = N T 1 to 1 do 5: Identify set of in-the-money paths I 6: Least squares method for all p I to estimate the exercise boundary b 7: for all p I do 8: if K S t,p < b then 9: v p = v p exp( r T N T ) 10: else 11: v p = K S t,p 12: end if 13: end for 14: end for 15: V = exp( r T 1 N T ) N P NP p=1 v p, RWTH Aachen, American Option Pricing, EuroAD Workshop,
7 Code Analysis For given exercise times t p the LSA computes the option price as V = 1 N P = 1 N P N P )] [(K S tp,p ( r ) exp TNT t p p=1 N P ) K exp ( r TNT t p S 0 exp 0.5σ 2 T t p + σ N T p=1 Differentiating with respect to the initial stock price S 0 yields V = 1 N P t exp 0.5σ 2 t T p p + σ Z i S 0 N P N T p=1 i=1 t p Z i Exercise decision is not differentiable at K S t,p = b From the viewpoint of AD the option price V is independent of the boundary b and therefore the exercise times t p behave like constants AD will compute some second-order Greeks to be zero, e.g. Γ = 0 i=1, RWTH Aachen, American Option Pricing, EuroAD Workshop,
8 Pathwise Adjoint LSA Run the primal of the LSA and store exercise times t p for each path Compute the option price V with 1: for p = 1 to N P do ( (r 2: S t = S p,p 0 exp ) 0.5σ 2 T N T t p + σ ) t i=1 Z i 3: v p = (K S t ) exp( r T p,p N T t p ) 4: end for 5: V = 1 NP N P p=1 v p Adjoint computation and path loop can be interchanged due to Embarrassingly parallel 1 N vp P = 1 vp x N P x Pathwise approach yields the the same values for the Greeks as the other AD approaches, RWTH Aachen, American Option Pricing, EuroAD Workshop,
9 Smoothing Discontinuous function f(x) = smooth transition between f 1 and f 2 : with sigmoid function and transition width α { f 1 (x) for x < x 0 f 2 (x) else f(x) = [1 σ s (x)] f 1 (x) + σ s (x)f 2 (x) σ s = exp( (x x 0 )/α), RWTH Aachen, American Option Pricing, EuroAD Workshop,
10 Smoothing of LSA Apply smoothing to exercise decision in LSA 1: if K S t,p < b then 2: v p = v p exp( r T N T ) 3: else 4: v p = K S t,p 5: end if Exercise decision is replaced by 1: σ = 1/(1 + exp( (K S t,p b)/α)) 2: v p = (1 σ) (v p exp( r T N T )) + σ (K S t,p ), RWTH Aachen, American Option Pricing, EuroAD Workshop,
11 Setup 5 active inputs: initial stock price S0 = 1.0 strike price K = 1.0 time of maturity T = 1.0 volatility σ = 0.2 risk-free interest rate r = active output: option price V smoothing parameter α = Computation of gradient and two columns of Hessian, RWTH Aachen, American Option Pricing, EuroAD Workshop,
12 Results: First-order Greeks Compare Greeks obtains with numerical (N) and algorithmic (A) differentiation with Greeks of the smoothed LSA (S) Analytical reference value = [4] N P N T N A S ν N ν A ν S , RWTH Aachen, American Option Pricing, EuroAD Workshop,
13 Results: Second-order Greeks N P N T Γ N Γ A Γ S / σ N / σ A / σ S , RWTH Aachen, American Option Pricing, EuroAD Workshop,
14 Results: Wall Time Wall time comparison of the numerical differentiation, an adjoint method and the pathwise adjoint method Adjoint method with an equidistant checkpointing on the time loop Wall time in seconds N P N T Pricer Numerical Differentiation Checkpoint Adjoint Pathwise Adjoint (39.0) 18 (18.0) 1 (1.0) (25.7) 35 (11.7) 3 (1.0) (24.5) 81 (10.1) 8 (1.0) (27.9) 172 (12.3) 15 (1.1) (26.6) 92 (11.5) 8 (1.0) (29.7) 189 (11.1) 18 (1.1) (29.1) 479 (12.6) 39 (1.0) (28.8) 1057 (13.7) 79 (1.0), RWTH Aachen, American Option Pricing, EuroAD Workshop,
15 Results: Memory Requirements Memory requirements in gigabyte N P N T Pricer Numerical Differentiation Checkpoint Adjoint Pathwise Adjoint , RWTH Aachen, American Option Pricing, EuroAD Workshop,
16 Conclusion Pathwise approach computes the first-order sensitivities at the computational cost of a single pricing calculation Local non-differentiability of the exercise decision yields e.g. Γ = 0 Approximation of second-order sensitivities by a sigmoidal smoothing of the exercise decision, RWTH Aachen, American Option Pricing, EuroAD Workshop,
17 Outlook Use another stochastic differential equation for the stock price evolution (e.g. local volatility) Check accuracy of the exercise boundary by using another set of random numbers Analysis of the smoothing with another function and of the smoothing parameters should be considered, RWTH Aachen, American Option Pricing, EuroAD Workshop,
18 For Further Reading I [1] Wilmott, P. (2007). Paul Wilmott introduces quantitative finance. John Wiley & Sons. [2] Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. The journal of political economy, [3] Longstaff, F. A., and Schwartz, E. S. (2001). Valuing American options by simulation: a simple least-squares approach. Review of Financial studies, 14(1), [4] Geske, R., and Johnson, H. E. (1984). The American put option valued analytically. Journal of Finance, , RWTH Aachen, American Option Pricing, EuroAD Workshop,
Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching
Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching Kees Oosterlee Numerical analysis group, Delft University of Technology Joint work with Coen Leentvaar, Ariel
Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation
Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation Yoon W. Kwon CIMS 1, Math. Finance Suzanne A. Lewis CIMS, Math. Finance May 9, 000 1 Courant Institue of Mathematical Science,
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.
Valuation of Razorback Executive Stock Options: A Simulation Approach
Valuation of Razorback Executive Stock Options: A Simulation Approach Joe Cheung Charles J. Corrado Department of Accounting & Finance The University of Auckland Private Bag 92019 Auckland, New Zealand.
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS
QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS. Julien Demouth, NVIDIA
MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS Julien Demouth, NVIDIA STAC-A2 BENCHMARK STAC-A2 Benchmark Developed by banks Macro and micro, performance and accuracy Pricing and Greeks for American
STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014
Industrial Applications of discrete adjoint OpenFOAM Arindam Sen Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2014, Nice, 16-17. June 2014 Outline Introduction
American and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
Call Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
Financial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial
A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model
Applied Mathematical Sciences, vol 8, 14, no 143, 715-7135 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/11988/ams144644 A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting
From CFD to computational finance (and back again?)
computational finance p. 1/17 From CFD to computational finance (and back again?) Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance
Finite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes
EXP 481 -- Capital Markets Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices 1) C > 0
EXP 481 -- Capital Markets Option Pricing imple arbitrage relations Payoffs to call options Black-choles model Put-Call Parity Implied Volatility Options: Definitions A call option gives the buyer the
Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models
Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced
Using the SABR Model
Definitions Ameriprise Workshop 2012 Overview Definitions The Black-76 model has been the standard model for European options on currency, interest rates, and stock indices with it s main drawback being
OPTIONS CALCULATOR QUICK GUIDE. Reshaping Canada s Equities Trading Landscape
OPTIONS CALCULATOR QUICK GUIDE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Table of Contents Introduction 3 Valuing options 4 Examples 6 Valuing an American style non-dividend paying stock
INTEREST RATES AND FX MODELS
INTEREST RATES AND FX MODELS 8. Portfolio greeks Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York March 27, 2013 2 Interest Rates & FX Models Contents 1 Introduction
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
Simulating Stochastic Differential Equations
Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular
Monte Carlo simulations and option pricing
Monte Carlo simulations and option pricing by Bingqian Lu Undergraduate Mathematics Department Pennsylvania State University University Park, PA 16802 Project Supervisor: Professor Anna Mazzucato July,
Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D
Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS
Two-State Option Pricing
Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation
Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation Ying Peng, Bin Gong, Hui Liu, and Yanxin Zhang School of Computer Science and Technology, Shandong University,
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging
Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in
Monte-Carlo Option Pricing. Victor Podlozhnyuk [email protected]
Monte-Carlo Option Pricing Victor Podlozhnyuk [email protected] Document Change History Version Date Responsible Reason for Change 1. 3//7 vpodlozhnyuk Initial release Abstract The pricing of options
1 The Black-Scholes model: extensions and hedging
1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
Mathematical Finance
Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
Properties of the SABR model
U.U.D.M. Project Report 2011:11 Properties of the SABR model Nan Zhang Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Juni 2011 Department of Mathematics Uppsala University ABSTRACT
From CFD to computational finance (and back again?)
computational finance p. 1/21 From CFD to computational finance (and back again?) Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance
Pricing and hedging American-style options: a simple simulation-based approach
The Journal of Computational Finance (95 125) Volume 13/Number 4, Summer 2010 Pricing and hedging American-style options: a simple simulation-based approach Yang Wang UCLA Mathematics Department, Box 951555,
Introduction Pricing Effects Greeks Summary. Vol Target Options. Rob Coles. February 7, 2014
February 7, 2014 Outline 1 Introduction 2 3 Vega Theta Delta & Gamma Hedge P& L Jump sensitivity The Basic Idea Basket split between risky asset and cash Chose weight of risky asset w to keep volatility
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Discussions of Monte Carlo Simulation in Option Pricing TIANYI SHI, Y LAURENT LIU PROF. RENATO FERES MATH 350 RESEARCH PAPER
Discussions of Monte Carlo Simulation in Option Pricing TIANYI SHI, Y LAURENT LIU PROF. RENATO FERES MATH 350 RESEARCH PAPER INTRODUCTION Having been exposed to a variety of applications of Monte Carlo
Pricing Barrier Options under Local Volatility
Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: [email protected], Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
Option Premium = Intrinsic. Speculative Value. Value
Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An Option-Pricing Formula Investment in
Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart
Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart Overview Due Thursday, November 12th at 11:59pm Last updated
Black-Scholes Equation for Option Pricing
Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
Calculating VaR. Capital Market Risk Advisors CMRA
Calculating VaR Capital Market Risk Advisors How is VAR Calculated? Sensitivity Estimate Models - use sensitivity factors such as duration to estimate the change in value of the portfolio to changes in
Pricing Parisian Options
Pricing Parisian Options Richard J. Haber Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB Philipp J. Schönbucher University of Bonn, Statistical Department, Adenaueralle 24-42, 53113 Bonn, Germany
Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte
Black-Scholes Option Pricing Model
Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
European Call Option Pricing using the Adomian Decomposition Method
Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 9, Number 1, pp. 75 85 (2014) http://campus.mst.edu/adsa European Call Option Pricing using the Adomian Decomposition Method Martin
Chapter 21: Options and Corporate Finance
Chapter 21: Options and Corporate Finance 21.1 a. An option is a contract which gives its owner the right to buy or sell an underlying asset at a fixed price on or before a given date. b. Exercise is the
Lecture 17/18/19 Options II
1 Lecture 17/18/19 Options II Alexander K. Koch Department of Economics, Royal Holloway, University of London February 25, February 29, and March 10 2008 In addition to learning the material covered in
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
Options (1) Class 19 Financial Management, 15.414
Options (1) Class 19 Financial Management, 15.414 Today Options Risk management: Why, how, and what? Option payoffs Reading Brealey and Myers, Chapter 2, 21 Sally Jameson 2 Types of questions Your company,
Options: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
Option pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method
Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method C.F. Lo Abstract In this paper, based upon the Lie- Trotter operator splitting method proposed by Lo 04, we present a simple closed-form
Double Barrier Cash or Nothing Options: a short note
Double Barrier Cash or Nothing Options: a short note Antonie Kotzé and Angelo Joseph May 2009 Financial Chaos Theory, Johannesburg, South Africa Mail: [email protected] Abstract In this note
3. Monte Carlo Simulations. Math6911 S08, HM Zhu
3. Monte Carlo Simulations Math6911 S08, HM Zhu References 1. Chapters 4 and 8, Numerical Methods in Finance. Chapters 17.6-17.7, Options, Futures and Other Derivatives 3. George S. Fishman, Monte Carlo:
American Index Put Options Early Exercise Premium Estimation
American Index Put Options Early Exercise Premium Estimation Ako Doffou: Sacred Heart University, Fairfield, United States of America CONTACT: Ako Doffou, Sacred Heart University, John F Welch College
American Monte Carlo for Bermudan CVA. Roland Lichters
American Monte Carlo for Bermudan CVA Roland Lichters IKB QuantLib Workshop, 4 December 2014 Outline Background Problem Way Out Example and Results Appendix 2014 Quaternion Risk Management Ltd. 2 Outline
Hedging Variable Annuity Guarantees
p. 1/4 Hedging Variable Annuity Guarantees Actuarial Society of Hong Kong Hong Kong, July 30 Phelim P Boyle Wilfrid Laurier University Thanks to Yan Liu and Adam Kolkiewicz for useful discussions. p. 2/4
University of Piraeus. M.Sc. in Banking and Finance
University of Piraeus M.Sc. in Banking and Finance Financial Derivatives Course Outline (January 2009) George Skiadopoulos, Ph.D. University of Piraeus, Department of Banking and Financial Management Financial
New Pricing Formula for Arithmetic Asian Options. Using PDE Approach
Applied Mathematical Sciences, Vol. 5, 0, no. 77, 380-3809 New Pricing Formula for Arithmetic Asian Options Using PDE Approach Zieneb Ali Elshegmani, Rokiah Rozita Ahmad and 3 Roza Hazli Zakaria, School
Likewise, the payoff of the better-of-two note may be decomposed as follows: Price of gold (US$/oz) 375 400 425 450 475 500 525 550 575 600 Oil price
Exchange Options Consider the Double Index Bull (DIB) note, which is suited to investors who believe that two indices will rally over a given term. The note typically pays no coupons and has a redemption
Lisa Borland. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing
Evnine-Vaughan Associates, Inc. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing Lisa Borland October, 2005 Acknowledgements: Jeremy Evnine
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
Return to Risk Limited website: www.risklimited.com. Overview of Options An Introduction
Return to Risk Limited website: www.risklimited.com Overview of Options An Introduction Options Definition The right, but not the obligation, to enter into a transaction [buy or sell] at a pre-agreed price,
Numerical PDE methods for exotic options
Lecture 8 Numerical PDE methods for exotic options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Barrier options For barrier option part of the option contract is triggered if the asset
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
BINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing
Chapter 1: Financial Markets and Financial Derivatives
Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange
More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options
More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path
Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
Numerical Methods for Option Pricing
Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly
A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model
A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management Vincenzo Bochicchio, Niklaus Bühlmann, Stephane Junod and Hans-Fredo List Swiss Reinsurance Company Mythenquai 50/60, CH-8022
2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold
Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes
Interest rate Derivatives
Interest rate Derivatives There is a wide variety of interest rate options available. The most widely offered are interest rate caps and floors. Increasingly we also see swaptions offered. This note will
Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model
Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model VK Dedu 1, FT Oduro 2 1,2 Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Abstract
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
Additional questions for chapter 4
Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with
Black-Scholes-Merton approach merits and shortcomings
Black-Scholes-Merton approach merits and shortcomings Emilia Matei 1005056 EC372 Term Paper. Topic 3 1. Introduction The Black-Scholes and Merton method of modelling derivatives prices was first introduced
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
LECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
Variable annuity economic capital: the least-squares Monte Carlo approach
Variable annuity economic capital: the least-squares Monte Carlo approach The complex nature of the guaranteed benefits included in variable annuity products means evaluation by Monte Carlo simulation
Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com The derivation of local volatility is outlined in many papers and textbooks (such as the one by Jim Gatheral []),
FIN 411 -- Investments Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices
FIN 411 -- Investments Option Pricing imple arbitrage relations s to call options Black-choles model Put-Call Parity Implied Volatility Options: Definitions A call option gives the buyer the right, but
Level Set Framework, Signed Distance Function, and Various Tools
Level Set Framework Geometry and Calculus Tools Level Set Framework,, and Various Tools Spencer Department of Mathematics Brigham Young University Image Processing Seminar (Week 3), 2010 Level Set Framework
Session X: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics. Department of Economics, City University, London
Session X: Options: Hedging, Insurance and Trading Strategies Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Option
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies
Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton
Chapter 13 The Black-Scholes-Merton Model
Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
Options 1 OPTIONS. Introduction
Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or
Option pricing in detail
Course #: Title Module 2 Option pricing in detail Topic 1: Influences on option prices - recap... 3 Which stock to buy?... 3 Intrinsic value and time value... 3 Influences on option premiums... 4 Option
SOLVING PARTIAL DIFFERENTIAL EQUATIONS RELATED TO OPTION PRICING WITH NUMERICAL METHOD. KENNEDY HAYFORD, (B.Sc. Mathematics)
SOLVING PARTIAL DIFFERENTIAL EQUATIONS RELATED TO OPTION PRICING WITH NUMERICAL METHOD BY KENNEDY HAYFORD, (B.Sc. Mathematics) A Thesis submitted to the Department of Mathematics, Kwame Nkrumah University
Lecture 6 Black-Scholes PDE
Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent
