# A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model

Save this PDF as:

Size: px
Start display at page:

Download "A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model"

## Transcription

1 A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships between the Greeks of a barrier option under the Black-Scholes model. A European-style option can be considered as a limit case. Besides the classical Black and Scholes P.D.E., a barrier option price is shown to also satisfy: i) a time homogeneity; ii) a scale invariance of time; iii) an interest rates symmetry; iv) a Vega-Gamma relationship. Notation t: the running time. S t : the price at time t in domestic currency of one unit of foreign currency. r: the (constant) domestic instantaneous risk-free rate. q: the (constant) foreign instantaneous risk-free rate. σ: the exchange rate (constant) percentage volatility. T : the maturity of a given derivative. τ: the time-to-maturity of this given derivative, namely τ = T t. V T : the derivative s payoff at time T. V (t, S t, r, q, σ, τ): no-arbitrage price at time t of a given derivative security with time-to-maturity τ, when the underlying exchange rate is S, the domestic instantaneous risk-free rate is r, the foreign instantaneous risk-free rate is q and the exchange rate percentage volatility is σ. A shorthand notation for it is V t. Q d : the domestic risk-neutral measure. E d : expectation under Q d. F t : the σ-algebra generated by S up to time t.. Assumptions The exchange rate S is assumed to evolve under the domestic risk-neutral measure Q d according to: ds t = S t (r q) dt + σ dw t ] where W is a standard Brownian motion under Q d. We are given a derivative security with payoff V T at time T. This derivative is either a European-style option or a (single) barrier option. We actually restrict our analysis to

2 Greeks of FX options out barrier options, which become worthless if the barrier is hit prior to maturity. In fact, a European-style payoff can be obtained by letting the barrier level either go to zero or to infinity, whereas an in barrier option is simply the difference between the corresponding European-style and out barrier options.. The pricing of a Barrier Option Standard theory in derivatives pricing implies that the no-arbitrage price at time t of the payoff V T at time T is V t = e rτ E d V T F t ] () Set ν := r q σ and X t := νt + σw t M X t := max u 0,t] (ωx u) where ω = for maximum and ω = for minimum. Then, see for instance Musiela and Rutkowski (998), for ωy max(0, ωx), Q d{ X T dx, MT X ωy } ( ) ( ) ] = ω σ x νt πt e σ T e νy σ σ x y νt πt e σ T Assuming that the option payoff, if the barrier is not hit prior to maturity, is a function h(s T ) of the underlying at maturity, the barrier option price at time 0 can be written as V 0 = e rt h(e z )f(z; S 0, r, q, σ, T ) dz where neither h nor A IR depend on S 0, r, q, σ, T and ( ) f(z; S, r, q, σ, T ) = ω σ z ln S νt πt e σ T e ν ln(h/s) σ σ πt e ( z ln S ln(h/s) νt where H is the barrier level. By the time-homogeneity of the exchange rate dynamics, we have that } Q {X d T dx, max (ωx u) ωy F t = Q d{ X τ dx, Mτ X ωy } u t,t ] Therefore, the barrier option price at time t, given that the barrier has not been hit before, is V (t, S t, r, q, σ, τ) = e rτ h(e z )f(z; S t, r, q, σ, τ) dz (3) which depends on t only through τ. σ T ) ] ()

3 .3 The Black and Scholes P.D.E. Greeks of FX options The derivative s price is assumed to be a smooth function of time and exchange rate. From the standard Black and Scholes theory, the function V then follows t + (r q)s S + σ S V = rv (4) S with terminal condition V T = h(s T )..4 The Time Homogeneity From (3), we immediately see that the derivative s price depends on t only implicitly through the time-to-maturity τ = T t. This leads to t = τ (5).5 The Scale Invariance of Time From (3) we also see that replacing r, q, σ and τ as follows r rα q qα σ σ α (6) τ τ α where α is any (strictly) positive real number, the derivative price does not change, namely V (t, S t, rα, qα, σ α, τ/α) = V (t, S t, r, q, σ, τ) Since this relation holds for any α, we can differentiate both sides with respect to α and then set α =. We get σ σ + r r + q τ τ = 0 or equivalently, by (5), σ σ + r r + q + τ t = 0 (7) This relationship has been derived by Reiss and Wystup (00). Equivalently, by () and the Feynman-Kac formula. 3

4 .6 The Interest Rates Symmetry Differentiating (3) with respect to r and q, we get = τv + e rτ h(e z ) r r f(z; S t, r, q, σ, τ) dz = e rτ h(e z ) f(z; S t, r, q, σ, τ) dz Noting that f(z; S t, r, q, σ, τ) = r f(z; S t, r, q, σ, τ) Greeks of FX options the sensitivities of the derivative s price with respect to the two instantaneous rates then satisfy r + + τv = 0 (8).7 The Vega-Gamma Relationship From (4) we obtain = rv (r q)s t S σ S V S which substituted into (7) yields σ σ + r r + q + τ rv (r q)s S σ S V ] = 0 S Rearranging terms we get σ σ = τ σ S V ( ) + (r q)τs S S r r + τv Applying (8) and collecting terms, we finally obtain q σ σ = τ σ S V S + (r q) τs S + ] (9) Remark.. The Vega-Gamma relationship (9) can also be proved by noting that an analogous relationship also holds for the density f(z; S, r, q, σ, τ), i.e. σ f σ = τ σ S f S + (r q) τs f S + f ] This simply follows by the calculation of the related derivatives. 4

5 Greeks of FX options Remark.. In the case of a European-style payoff, using a property of the lognormal distribution, we can also prove that = τs S so that the Vega-Gamma relationship for European-style options reads as References σ σ = τ σ S V S ] Black, F. and Scholes, M. (973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy 8, ] Musiela, M. and Rutkowski, M. (998) Martingale Methods in Financial Modelling. Springer. Berlin. 3] Reiss, O. and Wystup, U. (00) Computing Option Price Sensitivities Using Homogeneity and Other Tricks, The Journal of Derivatives 9(),

### On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

### No-arbitrage conditions for cash-settled swaptions

No-arbitrage conditions for cash-settled swaptions Fabio Mercurio Financial Engineering Banca IMI, Milan Abstract In this note, we derive no-arbitrage conditions that must be satisfied by the pricing function

### 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

### Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013

Option Pricing Chapter 9 - Barrier Options - Stefan Ankirchner University of Bonn last update: 9th December 2013 Stefan Ankirchner Option Pricing 1 Standard barrier option Agenda What is a barrier option?

### Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

### Consistent Pricing of FX Options

Consistent Pricing of FX Options Antonio Castagna Fabio Mercurio Banca IMI, Milan In the current markets, options with different strikes or maturities are usually priced with different implied volatilities.

### THE BLACK-SCHOLES MODEL AND EXTENSIONS

THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that

### The Black-Scholes-Merton Approach to Pricing Options

he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

### Pricing Barrier Options under Local Volatility

Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

### Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption

### Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

### Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS

### Lecture 6 Black-Scholes PDE

Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent

### The Black-Scholes pricing formulas

The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

### The Black-Scholes Formula

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

### CAPM Option Pricing. Sven Husmann a, Neda Todorova b

CAPM Option Pricing Sven Husmann a, Neda Todorova b a Department of Business Administration, European University Viadrina, Große Scharrnstraße 59, D-15230 Frankfurt (Oder, Germany, Email: husmann@europa-uni.de,

### Lecture. S t = S t δ[s t ].

Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important

### Mathematical Finance

Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

### The Black-Scholes Model

The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

### TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:

### LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY. 1. Introduction

LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY M. S. JOSHI Abstract. It is shown that the properties of convexity of call prices with respect to spot price and homogeneity of call prices as

### Consistent pricing and hedging of an FX options book

Consistent pricing and hedging of an FX options book L. Bisesti, A. Castagna and F. Mercurio 1 Introduction In the foreign exchange (FX) options market away-from-the-money options are quite actively traded,

### Barrier Options. Peter Carr

Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?

### European Options Pricing Using Monte Carlo Simulation

European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical

### The Black-Scholes Model

Chapter 4 The Black-Scholes Model 4. Introduction Easily the best known model of option pricing, the Black-Scholes model is also one of the most widely used models in practice. It forms the benchmark model

### Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

### Monte Carlo Methods in Finance

Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

### Introduction to Arbitrage-Free Pricing: Fundamental Theorems

Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market

### LECTURE 10.1 Default risk in Merton s model

LECTURE 10.1 Default risk in Merton s model Adriana Breccia March 12, 2012 1 1 MERTON S MODEL 1.1 Introduction Credit risk is the risk of suffering a financial loss due to the decline in the creditworthiness

### Jung-Soon Hyun and Young-Hee Kim

J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest

### ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

### CDS Market Formulas and Models

CDS Market Formulas and Models Damiano Brigo Credit Models Banca IMI Corso Matteotti 6 20121 Milano, Italy damiano.brigo@bancaimi.it Massimo Morini Università di Milano Bicocca Piazza dell Ateneo Nuovo

### Black-Scholes model under Arithmetic Brownian Motion

Black-Scholes model under Arithmetic Brownian Motion Marek Kolman Uniersity of Economics Prague December 22 23 Abstract Usually in the Black-Scholes world it is assumed that a stock follows a Geometric

### Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008

: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of

### 1 The Black-Scholes model: extensions and hedging

1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes

### where N is the standard normal distribution function,

The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

### CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

### Black-Scholes Equation for Option Pricing

Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there

### CHAPTER 3 Pricing Models for One-Asset European Options

CHAPTER 3 Pricing Models for One-Asset European Options The revolution on trading and pricing derivative securities in financial markets and academic communities began in early 1970 s. In 1973, the Chicago

### Black-Scholes and the Volatility Surface

IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive

### Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se.

The Margrabe Formula Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se Abstract The Margrabe formula for valuation of

### Options: Valuation and (No) Arbitrage

Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial

### Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the

### Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25

Option Pricing Chapter 11 Options on Futures Stefan Ankirchner University of Bonn last update: 13/01/2014 at 14:25 Stefan Ankirchner Option Pricing 1 Agenda Forward contracts Definition Determining forward

### Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing

Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common

### More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

### Some Practical Issues in FX and Equity Derivatives

Some Practical Issues in FX and Equity Derivatives Phenomenology of the Volatility Surface The volatility matrix is the map of the implied volatilities quoted by the market for options of different strikes

### Foreign Exchange Symmetries

Foreign Exchange Symmetries Uwe Wystup MathFinance AG Waldems, Germany www.mathfinance.com 8 September 2008 Contents 1 Foreign Exchange Symmetries 2 1.1 Motivation.................................... 2

### PRICING and STATIC REPLICATION of FX QUANTO OPTIONS

PRICING and STATIC REPLICATION of F QUANTO OPTIONS Fabio Mercurio Financial Models, Banca IMI 1 Inroducion 1.1 Noaion : he evaluaion ime. τ: he running ime. S τ : he price a ime τ in domesic currency of

### Caps and Floors. John Crosby

Caps and Floors John Crosby Glasgow University My website is: http://www.john-crosby.co.uk If you spot any typos or errors, please email me. My email address is on my website Lecture given 19th February

### Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

### Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

### THE MAIN RISKS OF AN FX OPTIONS PORTFOLIO

THE MAIN RISKS OF AN FX OPTIONS PORTFOLIO Abstract. In this document we study the risks of an FX options portfolio; we will focus on which, we think, are the main sources of risk. Besides, we analyze also

### How the Greeks would have hedged correlation risk of foreign exchange options

How the Greeks would have hedged correlation risk of foreign exchange options Uwe Wystup Commerzbank Treasury and Financial Products Neue Mainzer Strasse 32 36 60261 Frankfurt am Main GERMANY wystup@mathfinance.de

### Lecture 11: The Greeks and Risk Management

Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.

### Option Valuation. Chapter 21

Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

### Option pricing. Vinod Kothari

Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate

### PRICING DIGITAL CALL OPTION IN THE HESTON STOCHASTIC VOLATILITY MODEL

STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume XLVIII, Number 3, September 003 PRICING DIGITAL CALL OPTION IN THE HESTON STOCHASTIC VOLATILITY MODEL VASILE L. LAZAR Dedicated to Professor Gheorghe Micula

### Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

### On Market-Making and Delta-Hedging

On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide

### Geometric Brownian motion makes sense for the call price because call prices cannot be negative. Now Using Ito's lemma we can nd an expression for dc,

12 Option Pricing We are now going to apply our continuous-time methods to the pricing of nonstandard securities. In particular, we will consider the class of derivative securities known as options in

### Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah www.frouah.com www.volota.com In this note we derive in four searate ways the well-known result of Black and Scholes that under certain

### The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

### The Constant Elasticity of Variance Option Pricing Model

The Constant Elasticity of Variance Option Pricing Model John Randal A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science

### The Valuation of Currency Options

The Valuation of Currency Options Nahum Biger and John Hull Both Nahum Biger and John Hull are Associate Professors of Finance in the Faculty of Administrative Studies, York University, Canada. Introduction

### Lecture 1: Stochastic Volatility and Local Volatility

Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2002 Abstract

### Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

### Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative

### Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas James R. Garven Latest Revision: 27 April, 2015 Abstract This paper provides an alternative derivation of the

### Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation

EPJ Web of Conferences 68, 0 00 06 (2014) DOI: 10.1051/ epjconf/ 20146800006 C Owned by the authors, published by EDP Sciences, 2014 Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson

### Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)

Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March

### Chapter 13 The Black-Scholes-Merton Model

Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)

### Black-Scholes Option Pricing Model

Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,

### Chapter 1: Financial Markets and Financial Derivatives

Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange

### ELECTRICITY REAL OPTIONS VALUATION

Vol. 37 (6) ACTA PHYSICA POLONICA B No 11 ELECTRICITY REAL OPTIONS VALUATION Ewa Broszkiewicz-Suwaj Hugo Steinhaus Center, Institute of Mathematics and Computer Science Wrocław University of Technology

### Introduction to Binomial Trees

11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths

### An Introduction to Exotic Options

An Introduction to Exotic Options Jeff Casey Jeff Casey is entering his final semester of undergraduate studies at Ball State University. He is majoring in Financial Mathematics and has been a math tutor

### Finite Differences Schemes for Pricing of European and American Options

Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes

### ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL

ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL A. B. M. Shahadat Hossain, Sharif Mozumder ABSTRACT This paper investigates determinant-wise effect of option prices when

### Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................

### The interest volatility surface

The interest volatility surface David Kohlberg Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:7 Matematisk statistik Juni 2011 www.math.su.se Matematisk

### The Black-Scholes Formula

ECO-30004 OPTIONS AND FUTURES SPRING 2008 The Black-Scholes Formula The Black-Scholes Formula We next examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they

### τ θ What is the proper price at time t =0of this option?

Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min

### Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

### Master s Thesis. Pricing Constant Maturity Swap Derivatives

Master s Thesis Pricing Constant Maturity Swap Derivatives Thesis submitted in partial fulfilment of the requirements for the Master of Science degree in Stochastics and Financial Mathematics by Noemi

### Path-dependent options

Chapter 5 Path-dependent options The contracts we have seen so far are the most basic and important derivative products. In this chapter, we shall discuss some complex contracts, including barrier options,

### Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6

Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static

### INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE

INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE J. DAVID CUMMINS, KRISTIAN R. MILTERSEN, AND SVEIN-ARNE PERSSON Abstract. Interest rate guarantees seem to be included in life insurance

### Calibration of Stock Betas from Skews of Implied Volatilities

Calibration of Stock Betas from Skews of Implied Volatilities Jean-Pierre Fouque University of California Santa Barbara Joint work with Eli Kollman (Ph.D. student at UCSB) Joint Seminar: Department of

### Black-Scholes-Merton approach merits and shortcomings

Black-Scholes-Merton approach merits and shortcomings Emilia Matei 1005056 EC372 Term Paper. Topic 3 1. Introduction The Black-Scholes and Merton method of modelling derivatives prices was first introduced

### Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009

Merton-Black-Scholes model for option pricing Instituut{Lorentz voor Theoretische Natuurkunde, LION, Universiteit Leiden 22 oktober 2009 With inspiration from: J. Tinbergen, T.C. Koopmans, E. Majorana,

### 4. Option pricing models under the Black- Scholes framework

4. Option pricing models under the Black- Scholes framework Riskless hedging principle Writer of a call option hedges his exposure by holding certain units of the underlying asset in order to create a

### New Pricing Formula for Arithmetic Asian Options. Using PDE Approach

Applied Mathematical Sciences, Vol. 5, 0, no. 77, 380-3809 New Pricing Formula for Arithmetic Asian Options Using PDE Approach Zieneb Ali Elshegmani, Rokiah Rozita Ahmad and 3 Roza Hazli Zakaria, School

### Risk-Neutral Valuation of Participating Life Insurance Contracts

Risk-Neutral Valuation of Participating Life Insurance Contracts DANIEL BAUER with R. Kiesel, A. Kling, J. Russ, and K. Zaglauer ULM UNIVERSITY RTG 1100 AND INSTITUT FÜR FINANZ- UND AKTUARWISSENSCHAFTEN

### 1.1 Some General Relations (for the no dividend case)

1 American Options Most traded stock options and futures options are of American-type while most index options are of European-type. The central issue is when to exercise? From the holder point of view,

### On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids

On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids Oliver Caps oliver.caps@dkib.com RMT Model Validation Rates Dresdner Bank Examples of Hybrid Products Pricing of Hybrid Products using a

### Contents. iii. MFE/3F Study Manual 9th edition Copyright 2011 ASM

Contents 1 Put-Call Parity 1 1.1 Review of derivative instruments................................................ 1 1.1.1 Forwards............................................................ 1 1.1.2 Call