# Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Save this PDF as:

Size: px
Start display at page:

Download "Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D"

## Transcription

1 Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

2 **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS SEGMENT 1. On April 30, 2007, a common stock is priced at \$ You are given the following: (i) Dividends of equal amounts will be paid on June 30, 2007 and September 30, (ii) (iii) A European call option on the stock with strike price of \$50.00 expiring in six months sells for \$4.50. A European put option on the stock with strike price of \$50.00 expiring in six months sells for \$2.45. (iv) The continuously compounded risk-free interest rate is 6%. Calculate the amount of each dividend. (A) \$0.51 (B) \$0.73 (C) \$1.01 (D) \$1.23 (E) \$1.45 EXAM MFE: Spring GO TO NEXT PAGE

3 2. For a one-period binomial model for the price of a stock, you are given: (i) (ii) The period is one year. The stock pays no dividends. (iii) u = 1.433, where u is one plus the rate of capital gain on the stock if the price goes up. (iv) d = 0.756, where d is one plus the rate of capital loss on the stock if the price goes down. (v) The continuously compounded annual expected return on the stock is 10%. Calculate the true probability of the stock price going up. (A) 0.52 (B) 0.57 (C) 0.62 (D) 0.67 (E) 0.72 EXAM MFE: Spring GO TO NEXT PAGE

4 3. You are asked to determine the price of a European put option on a stock. Assuming the Black-Scholes framework holds, you are given: (i) The stock price is \$100. (ii) The put option will expire in 6 months. (iii) The strike price is \$98. (iv) The continuously compounded risk-free interest rate is r = (v) δ = 0.01 (vi) σ = 0.50 Calculate the price of this put option. (A) \$3.50 (B) \$8.60 (C) \$11.90 (D) \$16.00 (E) \$20.40 EXAM MFE: Spring GO TO NEXT PAGE

5 4. For a stock, you are given:. (i) The current stock price is \$ (ii) δ = 0.08 (iii) The continuously compounded risk-free interest rate is r = (iv) The prices for one-year European calls (C) under various strike prices (K) are shown below: K C \$40 \$ 9.12 \$50 \$ 4.91 \$60 \$ 0.71 \$70 \$ 0.00 You own four special put options each with one of the strike prices listed in (iv). Each of these put options can only be exercised immediately or one year from now. Determine the lowest strike price for which it is optimal to exercise these special put option(s) immediately. (A) \$40 (B) \$50 (C) \$60 (D) \$70 (E) It is not optimal to exercise any of these put options. EXAM MFE: Spring GO TO NEXT PAGE

6 5. For a European call option on a stock within the Black-Scholes framework, you are given: (i) The stock price is \$85. (ii) The strike price is \$80. (iii) The call option will expire in one year. (iv) The continuously compound risk-free interest rate is 5.5%. (v) σ = 0.50 (vi) The stock pays no dividends. Calculate the volatility of this call option. (A) 50% (B) 69% (C) 123% (D) 139% (E) 278% EXAM MFE: Spring GO TO NEXT PAGE

7 6. Consider a model with two stocks. Each stock pays dividends continuously at a rate proportional to its price. Sj () t denotes the price of one share of stock j at time t. Consider a claim maturing at time 3. The payoff of the claim is You are given: (i) S 1( 0 ) = \$100 (ii) S 2 ( 0 ) = \$200 Maximum ( (3), (3)) S S. 1 2 (iii) Stock 1 pays dividends of amount ( ) ( ) 1 (iv) Stock 2 pays dividends of amount ( ) ( ) S t dt between time t and time t+ dt. 0.1 S t dt between time t and time t+ dt. (v) The price of a European option to exchange Stock 2 for Stock 1 at time 3 is \$10. Calculate the price of the claim. (A) \$96 (B) \$145 (C) \$158 (D) \$200 (E) \$234 EXAM MFE: Spring GO TO NEXT PAGE

8 7. You are given the following information: Bond maturity (years) 1 2 Zero-coupon bond price A European call option, that expires in 1 year, gives you the right to purchase a 1-year bond for The bond forward price is lognormally distributed with volatility σ = Using the Black formula, calculate the price of the call option. (A) (B) (C) (D) (E) EXAM MFE: Spring GO TO NEXT PAGE

9 8. Let S() t denote the price at time t of a stock that pays no dividends. The Black-Scholes framework holds. Consider a European call option with exercise date T, T > 0, and exercise price S( 0) e rt, where r is the continuously compounded risk-free interest rate. You are given: (i) S ( 0 ) = \$100 (ii) T = 10 (iii) Var ln S() t = 0.4t, t > 0. Determine the price of the call option. (A) \$7.96 (B) \$24.82 (C) \$68.26 (D) \$95.44 (E) There is not enough information to solve the problem. EXAM MFE: Spring GO TO NEXT PAGE

10 9. You use a binomial interest rate model to evaluate a 7.5% interest rate cap on a \$100 three-year loan. You are given: (i) The interest rates for the binomial tree are as follows: r 0 = 6.000% r u = 7.704% r d = 4.673% r uu = 9.892% rud = rdu = 6.000% r = 3.639% dd (ii) (iii) (iv) All interest rates are annual effective rates. The risk-neutral probability that the annual effective interest rate moves up or down is 1 2. The loan interest payments are made annually. Using the binomial interest rate model, calculate the value of this interest rate cap. (A) \$0.57 (B) \$0.96 (C) \$1.45 (D) \$1.98 (E) \$2.18 EXAM MFE: Spring GO TO NEXT PAGE

11 10. For two European call options, Call-I and Call-II, on a stock, you are given: Greek Call-I Call-II Delta Gamma Vega Suppose you just sold 1000 units of Call-I. Determine the numbers of units of Call-II and stock you should buy or sell in order to both delta-hedge and gamma-hedge your position in Call-I. (A) (B) (C) (D) (E) buy 95.8 units of stock and sell units of Call-II sell 95.8 units of stock and buy units of Call-II buy units of stock and sell units of Call-II sell units of stock and buy units of Call-II sell 11.2 units of stock and buy units of Call-II EXAM MFE: Spring GO TO NEXT PAGE

12 11. For a two-period binomial model for stock prices, you are given: (i) Each period is 6 months. (ii) The current price for a nondividend-paying stock is \$ (iii) u = 1.181, where u is one plus the rate of capital gain on the stock per period if the price goes up. (iv) d = 0.890, where d is one plus the rate of capital loss on the stock per period if the price goes down. (v) The continuously compounded risk-free interest rate is 5%. Calculate the current price of a one-year American put option on the stock with a strike price of \$ (A) \$9.75 (B) \$10.15 (C) \$10.35 (D) \$10.75 (E) \$11.05 EXAM MFE: Spring GO TO NEXT PAGE

13 12. You are given the following information: (i) S() t is the value of one British pound in U.S. dollars at time t. (ii) ds() t = 0.1dt d Z( t). St () (iii) The continuously compounded risk-free interest rate in the U.S. is r = (iv) The continuously compounded risk-free interest rate in Great Britain is r * = (v) () () ( r r* )( T t) Gt = Ste is the forward price in U.S. dollars per British pound, and T is the maturity time of the currency forward contract. Based on Itô s Lemma, which of the following stochastic differential equations is satisfied by G() t? (A) dg() t = G() t 0.12dt + 0.4dZ ( t) (B) dg() t = G() t 0.10dt + 0.4dZ ( t) (C) dg() t = G() t 0.08dt + 0.4dZ ( t) (D) dg() t = G() t 0.12dt dZ ( t) (E) dg() t = G() t 0.10dt dZ ( t) EXAM MFE: Spring GO TO NEXT PAGE

14 13. Let (,, ) P r t T denote the price at time t of \$1 to be paid with certainty at time T, t T, if the short rate at time t is equal to r. For a Vasicek model you are given: P ( 0.04, 0, 2) = P ( 0.05,1, 3) = P( r *, 2, 4) = Calculate r *. (A) 0.04 (B) 0.05 (C) 0.06 (D) 0.07 (E) 0.08 EXAM MFE: Spring GO TO NEXT PAGE

15 14. For a one-year straddle on a nondividend-paying stock, you are given: (i) (ii) The straddle can only be exercised at the end of one year. The payoff of the straddle is the absolute value of the difference between the strike price and the stock price at expiration date. (iii) The stock currently sells for \$ (iv) The continuously compounded risk-free interest rate is 8%. (v) In one year, the stock will either sell for \$70.00 or \$ (vi) The option has a strike price of \$ Calculate the current price of the straddle. (A) \$0.90 (B) \$4.80 (C) \$9.30 (D) \$14.80 (E) \$15.70 EXAM MFE: Spring GO TO NEXT PAGE

16 15. For a six-month European put option on a stock, you are given: (i) The strike price is \$ (ii) The current stock price is \$ (iii) The only dividend during this time period is \$1.50 to be paid in four months. (iv) σ = 0.30 (v) The continuously compounded risk-free interest rate is 5%. Under the Black-Scholes framework, calculate the price of the put option. (A) \$3.50 (B) \$3.95 (C) \$4.19 (D) \$4.73 (E) \$4.93 EXAM MFE: Spring GO TO NEXT PAGE

17 16. For an American perpetual option within the Black-Scholes framework, you are given: (i) h1+ h2 = 7/9 (ii) The continuously compounded risk-free interest rate is 5%. (iii) σ = 0.30 Calculate h 1. (A) 0.73 (B) 1.12 (C) 1.46 (D) 1.51 (E) 2.09 EXAM MFE: Spring GO TO NEXT PAGE

18 17. Let S() t denote the price at time t of a stock that pays dividends continuously at a rate proportional to its price. Consider a European gap option with expiration date T, T > 0. If the stock price at time T is greater than \$100, the payoff is ST ( ) 90; otherwise, the payoff is zero. You are given: (i) S ( 0 ) = \$80 (ii) The price of a European call option with expiration date T and strike price \$100 is \$4. (iii) The delta of the call option in (ii) is 0.2. Calculate the price of the gap option. (A) \$3.60 (B) \$5.20 (C) \$6.40 (D) \$10.80 (E) There is not enough information to solve the problem. EXAM MFE: Spring GO TO NEXT PAGE

19 18. Consider two nondividend-paying assets X and Y, whose prices are driven by the same Brownian motion Z. You are given that the assets X and Y satisfy the stochastic differential equations: () () dx t X t () () dy t Y t where G and H are constants. You are also given: () = 0.07 dt dz t = Gdt+ HdZ t (), ( ) () (i) d ln Y() t = 0.06 dt+σ dz t (ii) The continuously compounded risk-free interest rate is 4%. (iii) σ < 0.25 Determine G. (A) (B) (C) (D) (E) EXAM MFE: Spring GO TO NEXT PAGE

20 19. Assume that the Black-Scholes framework holds. The price of a nondividend-paying stock is \$ The price of a put option on this stock is \$4.00. You are given: (i) Δ= 0.28 (ii) Γ= 0.10 Using the delta-gamma approximation, determine the price of the put option if the stock price changes to \$ (A) \$3.40 (B) \$3.50 (C) \$3.60 (D) \$3.70 (E) \$3.80 **END OF EXAMINATION** EXAM MFE: Spring STOP

### Contents. iii. MFE/3F Study Manual 9th edition Copyright 2011 ASM

Contents 1 Put-Call Parity 1 1.1 Review of derivative instruments................................................ 1 1.1.1 Forwards............................................................ 1 1.1.2 Call

### Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

### TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:

### Contents. iii. MFE/3F Study Manual 9 th edition 10 th printing Copyright 2015 ASM

Contents 1 Put-Call Parity 1 1.1 Review of derivative instruments................................. 1 1.1.1 Forwards........................................... 1 1.1.2 Call and put options....................................

### ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)

Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0\$/. (ii) A four-year dollar-denominated European put option

### 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

### UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:

UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,

### For Use as a Study Aid for Math 476/567 Exam # 1, Fall 2015

For Use as a Study Aid for Math 476/567 Exam # 1, Fall 2015 UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Actuarial Science Program DEPARTMENT OF MATHEMATICS Math 476 / 567 Prof. Rick Gorvett Actuarial Risk

### P-1. Preface. Thank you for choosing ACTEX.

Preface P- Preface Thank you for choosing ACTEX. Since Exam MFE was introduced in May 007, there have been quite a few changes to its syllabus and its learning objectives. To cope with these changes, ACTEX

### Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

### 1 The Black-Scholes model: extensions and hedging

1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes

### Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared

### On Market-Making and Delta-Hedging

On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide

### Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9

Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying

### Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder

### Chapter 21 Valuing Options

Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher

### One Period Binomial Model

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

### On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

### S 1 S 2. Options and Other Derivatives

Options and Other Derivatives The One-Period Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating

### 1. Assume that a (European) call option exists on this stock having on exercise price of \$155.

MØA 155 PROBLEM SET: Binomial Option Pricing Exercise 1. Call option [4] A stock s current price is \$16, and there are two possible prices that may occur next period: \$15 or \$175. The interest rate on

### Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

### European Options Pricing Using Monte Carlo Simulation

European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical

### Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in

### Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

### Figure S9.1 Profit from long position in Problem 9.9

Problem 9.9 Suppose that a European call option to buy a share for \$100.00 costs \$5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances

### More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

### Option Valuation. Chapter 21

Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

### UCLA Anderson School of Management Daniel Andrei, Option Markets 232D, Fall MBA Final Exam. December Date:

UCLA Anderson School of Management Daniel Andrei, Option Markets 232D, Fall 2013 MBA Final Exam December 2013 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book, open

### INSTITUTE AND FACULTY OF ACTUARIES EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES EXAMINATION 14 April 2016 (pm) Subject ST6 Finance and Investment Specialist Technical B Time allowed: Three hours 1. Enter all the candidate and examination details

### Additional questions for chapter 4

Additional questions for chapter 4 1. A stock price is currently \$ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

### CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

### The Black-Scholes Model

The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

### Lecture 14 Option pricing in the one-period binomial model.

Lecture: 14 Course: M339D/M389D - Intro to Financial Math Page: 1 of 9 University of Texas at Austin Lecture 14 Option pricing in the one-period binomial model. 14.1. Introduction. Recall the one-period

### Martingale Pricing Applied to Options, Forwards and Futures

IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the

### The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

### Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

### Lecture 21 Options Pricing

Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call

### Properties of Stock Options. Chapter 10

Properties of Stock Options Chapter 10 1 Notation c : European call option price C : American Call option price p : European put option price P : American Put option price S 0 : Stock price today K : Strike

### The Black-Scholes Formula

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

### Financial Modeling. Class #06B. Financial Modeling MSS 2012 1

Financial Modeling Class #06B Financial Modeling MSS 2012 1 Class Overview Equity options We will cover three methods of determining an option s price 1. Black-Scholes-Merton formula 2. Binomial trees

### Lecture 17/18/19 Options II

1 Lecture 17/18/19 Options II Alexander K. Koch Department of Economics, Royal Holloway, University of London February 25, February 29, and March 10 2008 In addition to learning the material covered in

### Introduction to Binomial Trees

11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths

### Two-State Option Pricing

Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.

### Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies

Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton

### 14 Greeks Letters and Hedging

ECG590I Asset Pricing. Lecture 14: Greeks Letters and Hedging 1 14 Greeks Letters and Hedging 14.1 Illustration We consider the following example through out this section. A financial institution sold

### Options. + Concepts and Buzzwords. Readings. Put-Call Parity Volatility Effects

+ Options + Concepts and Buzzwords Put-Call Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options

### Lecture 11: The Greeks and Risk Management

Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.

### Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

### FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

### Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration

CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:

### Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall

### 2016 Exam MFE Study Guide

hmahler@mac.com, Exam MFE Study Guide 2016 Exam MFE Study Guide Howard C. Mahler, FCAS, MAAA In 2013 and prior years the SOA and CAS jointly administered Exam MFE/3F. Starting in 2014 the SOA administered

### Lecture 11. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7

Lecture 11 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating

### Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing

Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common

### (1) Consider a European call option and a European put option on a nondividend-paying stock. You are given:

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (i) The current price of the stock is \$60. (ii) The call option currently sells for \$0.15 more

### Option Premium = Intrinsic. Speculative Value. Value

Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An Option-Pricing Formula Investment in

### The Black-Scholes pricing formulas

The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

### 1 Introduction to Option Pricing

ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of

### Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12

Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

### Consider a European call option maturing at time T

Lecture 10: Multi-period Model Options Black-Scholes-Merton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T

### Exam MFE/3F Sample Questions and Solutions #1 to #76

Exam MFE/3F Sample Questions and Solutions #1 to #76 In this version, standard normal distribution values are obtained by using the Cumulative Normal Distribution Calculator and Inverse CDF Calculator

### Options: Valuation and (No) Arbitrage

Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial

### Understanding Options and Their Role in Hedging via the Greeks

Understanding Options and Their Role in Hedging via the Greeks Bradley J. Wogsland Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 Options are priced assuming that

### Numerical Methods for Option Pricing

Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

### GAMMA.0279 THETA 8.9173 VEGA 9.9144 RHO 3.5985

14 Option Sensitivities and Option Hedging Answers to Questions and Problems 1. Consider Call A, with: X \$70; r 0.06; T t 90 days; 0.4; and S \$60. Compute the price, DELTA, GAMMA, THETA, VEGA, and RHO

### Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption

### where N is the standard normal distribution function,

The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

### The Black-Scholes Formula

ECO-30004 OPTIONS AND FUTURES SPRING 2008 The Black-Scholes Formula The Black-Scholes Formula We next examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they

### Lecture 1 Caps. Binomial Interest Rate Trees.

Lecture: 1 Course: M339W/M389W - Fin Math for Actuaries Page: 1 of 8 University of Texas at Austin Lecture 1 Caps. Binomial Interest Rate Trees. 1.1. Caps. Building up on the reasoning for the introduction

### Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008

: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of

### Financial Options: Pricing and Hedging

Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial

### FUNDING INVESTMENTS FINANCE 238/738, Spring 2008, Prof. Musto Class 5 Review of Option Pricing

FUNDING INVESTMENTS FINANCE 238/738, Spring 2008, Prof. Musto Class 5 Review of Option Pricing I. Put-Call Parity II. One-Period Binomial Option Pricing III. Adding Periods to the Binomial Model IV. Black-Scholes

### The Binomial Option Pricing Model André Farber

1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small

### Mathematical Finance

Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

### American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options

American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus

### Options Pricing. This is sometimes referred to as the intrinsic value of the option.

Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff

### Section 4, Put-Call Parity

HCMSA-F10-3-3B, Financial Economics, 6/30/10, age 49 Section 4, ut-call arity The value of an otherwise similar call and put option on the same asset are related. Adam and Eve Example: XYZ stock pays no

### DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options

DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options

### Protective Put Strategy Profits

Chapter Part Options and Corporate Finance: Basic Concepts Combinations of Options Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options

### BINOMIAL OPTION PRICING

Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing

### Lecture 3: Put Options and Distribution-Free Results

OPTIONS and FUTURES Lecture 3: Put Options and Distribution-Free Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distribution-free results? option

### CHAPTER 21: OPTION VALUATION

CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given

### Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values

Option Values Option Valuation Intrinsic value profit that could be made if the option was immediately exercised Call: stock price exercise price : S T X i i k i X S Put: exercise price stock price : X

### 2. How is a fund manager motivated to behave with this type of renumeration package?

MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff

### The Black-Scholes-Merton Approach to Pricing Options

he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

### Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the

### Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8

Lecture 9 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 Risk-Neutral Valuation 2 Risk-Neutral World 3 Two-Steps Binomial

### LogNormal stock-price models in Exams MFE/3 and C/4

Making sense of... LogNormal stock-price models in Exams MFE/3 and C/4 James W. Daniel Austin Actuarial Seminars http://www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction

### Quantitative Strategies Research Notes

Quantitative Strategies Research Notes December 1992 Valuing Options On Periodically-Settled Stocks Emanuel Derman Iraj Kani Alex Bergier SUMMARY In some countries, for example France, stocks bought or

### Binomial lattice model for stock prices

Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

### Chapter 11 Properties of Stock Options. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull

Chapter 11 Properties of Stock Options 1 Notation c: European call option price p: European put option price S 0 : Stock price today K: Strike price T: Life of option σ: Volatility of stock price C: American

### Put-Call Parity. chris bemis

Put-Call Parity chris bemis May 22, 2006 Recall that a replicating portfolio of a contingent claim determines the claim s price. This was justified by the no arbitrage principle. Using this idea, we obtain

### Lecture 12. Options Strategies

Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same

### A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships

### 4. Options Markets. 4.6. Applications

4. Options Markets 4.6. Applications 4.6.1. Options on Stock Indices e.g.: Dow Jones Industrial (European) S&P 500 (European) S&P 100 (American) LEAPS S becomes to Se qt Basic Properties with Se qt c Se