Commercial FEM Codes Customisations for Creep-Fatigue Damage Assessment. University of Naples Federico II Italy

Size: px
Start display at page:

Download "Commercial FEM Codes Customisations for Creep-Fatigue Damage Assessment. University of Naples Federico II Italy"

Transcription

1 Industry Sector Aerospace RTD Thematic Area Durability and Life Extension Date 3 th June 2002 Commercial FEM Codes Customisations for Creep-Fatigue Damage Assessment Summary Mauro Fontana, Leonardo Lecce, Antonio De Iorio *, Francesco Penta * ( ) Dipartimento di Progettazione Aeronautica Via Claudio, Napoli (*) Dipartimento di Progettazione e Gestione Industriale P.le Tecchio, Napoli University of Naples Federico II Italy mfontana@unina.it - leonardo@unina.it - antdeior@unina.it - penta@unina.it Introduction; Fatigue damage assessment for non-linear solids; Creep-Fatigue damage evaluation; FE creep-fatigue evaluation example; FE Kachanov-Rabotnov creep model; Conclusions; References.

2 Introduction Finite Element Analysis (FEA) gives the possibility of doing fatigue and creep calculations before making prototypes. Fatigue assessment strain-life approach let deal with local plasticity effects that are the primary cause of crack initiation. The local time history of stress and strain, where the crack is going to start, is the critical factor that is put in evidence using FEA. Most commercial codes have already tools for fatigue and creep life assessment, however they do not allow to evaluate automatically the effect of creep-fatigue interaction, nor to carry out coupled analysis when material degradation strongly affects stress and strain distributions Difficulties arise when interaction of the fatigue and creep damages has to be simulated and, moreover, when Damage Mechanics models are implemented. 2

3 Introduction Creep-Fatigue interaction, Crack Propagation, Damage Mechanics, Material degradation, are among the new requirements for mechanical CAE design phase in industry, and FE codes suitable to be user customised are well suited for this aim. Research activities in this field are carried out by the authors for jet-engine components damage assessment, in collaboration with Fiat Avio, plant of Naples, one of outstanding industry for aeronautic propulsion systems. FE software let user programmable features that are not always so user friendly, even if they are among the most attractive items in software purchasing. Very often, in code customisation, most of the work is done to manage the exchange of the standard and user-defined variables, between the main and the sub-routines. Another critical step is the identification of suitable benchmarks to validate user procedures, as in the case of user defined material behaviour. A method for customised fatigue analysis, a first attempt of introducing creep-fatigue damage interaction and creep damage mechanic, made among the current research activities using commercial FE, are reported in the following slides. 3

4 Fatigue damage assessment for non-linear solids At present, the most reliable methods are based on the results of an elastic stress analysis of the component: evaluation of the theoretical stress concentration factor K T from which the fatigue notch factor K f is deduced by the expression of the notch sensitivity factor q (if the stress life approach is adopted), otherwise the plastic strain amplitude at the notch root is evaluated by the Neuber rule and the tensile stress-strain curve (strain-life approach). Several post-processors have special routines by which it is possible to carry out automatically the following fundamental tasks: load or nominal stress-history analysis to the definition of the load spectrum by a cycle counting technique; specific damage evaluation by the ε - N or S - N experimental curves; cumulated damage evaluation for the whole load-history of the component. The previous methods can not be used to evaluate multi-axial fatigue damage. In this latter case, when ad hoc software are not available, a special tool has to be prepared to analyse the numerical data supplied by the solver of the commercial FE code by a multi-axial fatigue strength criterion. This problem can be solved if the post-processor can be programmed by means of an high level language able to operate directly on the data structures of the solver. 4

5 Fatigue damage assessment for non-linear solids In the problem that was solved by Iannuzzi [], multi-axial fatigue damage was calculated by the Dang Van Papadopoulos criterion [2,3]: failure takes place when the amplitude C a of the shear stress vector C (which describes a closed curve Ψ ) attains a critical value that is dependent on the material. In this procedure, the elastic stress distribution was calculated by the ANSYS code. Output data of the solver were analysed by the ANSYS post-processor using an APDL macro (Ansys Parametric Design Language). Indeed, the APDL has the control structures (repeating, branching, looping) for the implementation of any algorithm and the functions to fetch the output data of the solver that are stored in the Ansys database (*GET command). The closed curves described by the stress vectors 5

6 Creep-Fatigue damage evaluation A very effective and promising approach to evaluate the creep-fatigue life is that inspired to Continuum Damage Mechanics [see ref 4-6]: the effects of creep-fatigue interaction are quantified by a damage variable that is representative of the material weakening due to the interaction of the phenomena. The analysis by the finite element method of a component, when a significant stress or strain rate redistribution can take place due to damage accumulation, has to be carried out by specialized codes, since the constitutive models need of special routines both for the stresses updating at the integration points, the evaluation of internal nodal forces and the data storing. The problem has to be solved by the incremental technique: the load history is divided in steps small enough and, to solve the non linear equilibrium equation, the iterative Newton- Raphson solution method has to be adopted; each iteration produces a correction for the nodal displacements vector: [ ] T nr { u } = [ K ] ( { F } { F }) i i T being K i the structure tangent stiffness matrix, the actual load vector and the restoring force vector calculated from the element stresses. At the end of each iteration the updating of the stresses at the element integration point has to be executed in order to evaluate the new restoring force vector and to assembly the structure tangent matrix. a i 6

7 Creep-Fatigue damage evaluation Commercial codes having an open architecture allows the customisation by C or Fortran subroutines that have to be linked to the main code. When special constitutive models have to be implemented (such as Continuum Damage Mechanic models) the ANSYS code offers the possibility to carry out the link with the following user-written subroutines: userpl to calculate the plastic strain changes at the integration points and the corresponding tangent stiffness matrix; usercr, usercreep to calculate the creep strain changes; uservp to evaluate the changes of visco-plastic strain and update the stresses at the integration points of the VISCOXXX elements. When the constitutive model has internal variables, e.g. damage variable, their values at the end of each stress and/or strain updating have to be saved (to trace the state of the elements at the next stress and/or strain updating) and at the end of each load step for the data post-processing. A first step to creep-fatigue interaction analysis has been carried out by the linear damage summation, integrating FE results with experimental data. 7

8 Creep - Fatigue linear damage summation in a cylindrical combustor by FE software Research activities in collaboration with Fiat Avio, Naples ANSYS was used for stress-strain analyses, submodelling and post-processing [7]: Linear analysis for global coarse model Non-linear analysis for fine meshed sub-models of devices LCF analysis based on experimental ε -N curves Creep analysis based on Norton model φ holes = 0.4 mm Cooling Device 30 Thermal distribution on liner (Tmax) Tref = 20 C length = 56.5 mm radius = 47 mm thickness = 0.8 mm p = 5 bar p = 8 kpa Sub-models φ hole = 5 mm Dilution hole Fuel flow φ holes = 0.4 mm Cooling Device 90 8

9 Radial displacements (mm) for a thermal load Tmax-Tref cycle Non linear analysis let residual plastic deformation evaluation Device 30 Device 90 Temperature T max Tref Dilution hole Cooling air flow Unwrapped liner cylindrical surface t Tmax temperature distribution [ C] Liner at Tmax Device 30deg at Tref Device 90deg at Tref Dilution hole at Tref 9

10 LCF cycles to failure assessment for one Tmax -Tref cycle Total strain amplitude let N f assess in a cycle LCF experimental data R=- Von Mises equivalent strain at Tmax Von Mises equivalent strain at Tref Device 30 deg ε Total Strain % N f cycles 800 C 600 C 300 C Cycles to failure Fatigue D f = damage n N f 0

11 Creep Fatigue damage after one cycle FE creep after hour a Tmax and experimental creep data let damage evaluation Creep Damage Creep strain Part of Device 30 deg Total damage is given by linear sum of two damages Both them have been calculated by the integration of FE results with experimental data, by an external to FE software elaboration. D c c = ε ε ( σ ) Ductility exhaustion R D = D + D T f c Creep damage Total damage

12 2 Kachanov-Rabotnov Creep model by user routine in ANSYS Research activities in collaboration with Fiat Avio, Naples The model describes creep brittle fracture, considering damage influence on creep rate [8]. Creep rate Damage rate t=0 ω = 0 & ε c = 0 t σ=cost Solution is: ; integer 0 < ω < damaged material Creep test are simulated by FE, based on experimental database to evaluate material parameters ν, φ, n, ε f, t f [9]. Plain specimen for lab creep test: 90 mm length; φ min = 8 mm Creep test at constant stress and temperature FEM model: 575 Axial symmetric PLANE42 elements, 696 nodes User customisation for Kachanov-Rabotnov model Element killing technique was applied to damaged elements n o o c = ) ( ω σ σ ε ε & & ϕ ν ω σ σ ω ω ) ( = o o & & ϕ ω + = f t t = + + ϕ ϕ ε ε n f f c t t

13 K-R Creep customisation routine Example test: Temp. = 600 C Constant Tensile = 400MPa Solution User routine 0 t t f automatic time step t usercr (elem, t, t,τ, σ, ε cr, ε cr ) yes Ansys-main Selection & Killing of elements in data tables with critical damage values ω c G.E t.0e-6 no stress and temperature dependent Kachanov-Rabtonov ν, φ, n, ε f, t f parameters evaluation ε cr, ε cr, ω end usercr Input files data tables in main Files Print (elem, ω) Data table 3

14 Kachanov-Rabotnov creep strain curves FE model creep strain curves at several stress and temperature value couples Secondary and tertiary creep is represented Small differences between experimental data and model 400MPa 450MPa 500MPa 550 MPa Experimental FE model T= 600 C epcr E+00.00E E E E E E E E E+02.00E+03 tim e (hour s) 600 C - 400MPa epcr time(hours) epcr epcr Experimental T=550 C T=600 C T=630 C FE model Stress=500MPa E+00.00E E E E E E E E E+02 time(hours) 950 C-35MPa time(hours) 4

15 Kachanov-Rabotnov specimen damage Damage starts near specimen axis at notch, where element killing starts FE damage ω evolution rupture at notch for 600 C and 400 MPa test, and stress distribution. killed elements (ω G.E. ω c ). Symmetry axis Symmetry axis middle gage length middle gage length Rupture 600 C 400MPa Time = 904hr t f = 925hr 600 C 400MPa Time = 924hr t f = 925hr Symmetry axis Symmetry axis middle gage length middle gage length 600 C 400MPa Time = 93hr t f = 925hr Stress at t = 924hr 5

16 Conclusions Software customisation let us: Fatigue damage assessment for non-linear solids; A first approach to creep-fatigue life assessment by summing of damage ; Tools for local analyses until rupture (tertiary creep) for mechanical components; The possibility to use a virtual laboratory for creep tests; Damage distribution post-processing; Work in progress is: Management of user defined variables for damage post-processing in main software; Combination of plastic and creep by user defined routines; Introduction of statistic and probabilistic aspects in damage prediction. 6

17 References [] R. Iannuzzi, Multi-axial H.C.F. Application, Seminar on Multiaxial Fatigue, (scientific coordinator: A. De Iorio), Capri, 20-2 July 2000, Naples, Italy. [2] K. Dang Van, A. Le Douron, H.P. Lieurade, Multiaxial fatigue limit: a new approach, Advance in Fracture Research, Proc. 6 th Int. Conf. Fract. (I.C.F. 6), pp , Pergamon Press, Oxford, 984. [3] I.V. Papadopoulos, Fatigue polycyclic des metaux : une nouvelle approche, These de Doctorate, Ecole Nationale des Ponts et Chaussées, Paris, 987. [4] F.P.E. Dunne, D.R. Hayrust, Efficient cycle jumping techniques for the modelling of materials and structures under cyclic mechanical and thermal loading, Eur. J. Mech., A/Solids, 3, 5, , 994. [5] J. Lemaitre, J.L. Chaboche, Machanique des Materiax Solides, Dunod Publ., Paris, 985. [6] A. Plumtree, J. Lemaitre, Application of Damage Concepts to predict creep-fatigue failures, ASME, Press. Vessels and Piping Conf., Montreal, 979. [7] M. Fontana, Metodologie per la Valutazione del Danno da Creep-Fatica, Tesi di Dottorato, CUEN s.r.l - Napoli, Febbraio 200. [8] L.M. Kachanov, On the Time to Failure under Creep Conditions, Izv. Akd. Nauk. SSR. Otd. Tekhen N.8 (958), 26 3 [9] A. Lagreca, Analisi numerica del danneggiamento da creep mediante il modello di Kachanov, Tesi di Laurea, D.P.A., Luglio

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION K.K. Choi, V. Ogarevic, J. Tang, and Y.H. Park Center for Computer-Aided Design College of Engineering The

More information

Technology of EHIS (stamping) applied to the automotive parts production

Technology of EHIS (stamping) applied to the automotive parts production Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

More information

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate

More information

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density Engineering Solid Mechanics 3 (2015) 35-42 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Tensile fracture analysis of blunt notched PMMA specimens

More information

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members

More information

Nonlinear Analysis Using Femap with NX Nastran

Nonlinear Analysis Using Femap with NX Nastran Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of

More information

Burst Pressure Prediction of Pressure Vessel using FEA

Burst Pressure Prediction of Pressure Vessel using FEA Burst Pressure Prediction of Pressure Vessel using FEA Nidhi Dwivedi, Research Scholar (G.E.C, Jabalpur, M.P), Veerendra Kumar Principal (G.E.C, Jabalpur, M.P) Abstract The main objective of this paper

More information

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux 3D plasticity 3D viscoplasticity 3D plasticity Perfectly plastic material Direction of plastic flow with various criteria Prandtl-Reuss, Hencky-Mises, Prager rules Write 3D equations for inelastic behavior

More information

ELASTO-PLASTIC ANALYSIS OF A HEAVY DUTY PRESS USING F.E.M AND NEUBER S APPROXIMATION METHODS

ELASTO-PLASTIC ANALYSIS OF A HEAVY DUTY PRESS USING F.E.M AND NEUBER S APPROXIMATION METHODS International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 50-56, Article ID: IJMET_06_11_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

FATIGUE FRACTURE IN CONCRETE STRUCTURES

FATIGUE FRACTURE IN CONCRETE STRUCTURES FATIGUE FRACTURE IN CONCRETE STRUCTURES Fabrizio Barpi and Silvio Valente Dipartimento di Ingegneria Strutturale e Geotecnica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino. E-mail:

More information

Authorized fe-safe Reseller. Durability Analysis Software for Finite Element Models

Authorized fe-safe Reseller. Durability Analysis Software for Finite Element Models Authorized Reseller Overview Introduction Safe Technology is the technical leader in the design and development of durability analysis software and is dedicated to meeting its customers' most demanding

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p.

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. Preface p. v List of Problems Solved p. xiii Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. 6 Assembly of the Global System of Equations p.

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

STRAIN-LIFE (e -N) APPROACH

STRAIN-LIFE (e -N) APPROACH CYCLIC DEFORMATION & STRAIN-LIFE (e -N) APPROACH MONOTONIC TENSION TEST AND STRESS-STRAIN BEHAVIOR STRAIN-CONTROLLED TEST METHODS CYCLIC DEFORMATION AND STRESS-STRAIN BEHAVIOR STRAIN-BASED APPROACH TO

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall. ME 477 Pressure Vessel Example 1 ANSYS Example: Axisymmetric Analysis of a Pressure Vessel The pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) and contains an internal pressure

More information

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING AP... Page 1 of 19 ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL Yasumasa Shoji, Satoshi Nagata, Toyo Engineering Corporation,

More information

fe-safe DURABILITY ANALYSIS SOFTWARE FOR FINITE ELEMENT MODELS

fe-safe DURABILITY ANALYSIS SOFTWARE FOR FINITE ELEMENT MODELS fe-safe DURABILITY ANALYSIS SOFTWARE FOR FINITE ELEMENT MODELS FE-SAFE OVERVIEW fe-safe is the technical leader in fatigue analysis software for Finite Element models. It offers its users the most accurate

More information

Damage due to fatigue occurs when loading is markedly varying in time. R decreases with time S T. MSÚ F max

Damage due to fatigue occurs when loading is markedly varying in time. R decreases with time S T. MSÚ F max 5. Fatigue of steel structures Fatigue loading, Wöhler s approach and fracture mechanics, fatigue strength, influence of notches, damage accumulation, Eurocode approach. Damage due to fatigue occurs when

More information

Benchmark Tests on ANSYS Parallel Processing Technology

Benchmark Tests on ANSYS Parallel Processing Technology Benchmark Tests on ANSYS Parallel Processing Technology Kentaro Suzuki ANSYS JAPAN LTD. Abstract It is extremely important for manufacturing industries to reduce their design process period in order to

More information

Lecture 14. Chapter 8-1

Lecture 14. Chapter 8-1 Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 8-1 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling

More information

3. Test Methods for Evaluation of ESCR of Plastics

3. Test Methods for Evaluation of ESCR of Plastics 3. Test Methods for Evaluation of ESCR of Plastics A common laboratory request for ESC-prone polymers is to check ESCR performance for quality control, competitive product evaluations, and research and

More information

How To Determine The Fatigue Life Of An A380 Aluminum Alloy Casting

How To Determine The Fatigue Life Of An A380 Aluminum Alloy Casting Failure Analysis of a Cast A380 Aluminum Alloy Casting Using a Microstructurally Based Fatigue Model C.L. Burton, M.K. Jones, D.L. Oglesby A.L. Oppedal, M.Q. Chandler, M.F. Horstemeyer Center for Advanced

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

Modeling of concrete for nonlinear analysis Using Finite Element Code ABAQUS

Modeling of concrete for nonlinear analysis Using Finite Element Code ABAQUS Moding of concrete for nonlinear analysis Using Finite Element Code ABAQUS S.V.Chaudhari Department of Applied Sciences & Humanities. Rajiv Gandhi institute of Technology, Andheri(W),Mumbai,India M.A.Chakrabarti

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Completely reversed, strain controlled fatigue tests of a steel alloy with E=210000 MPa resulted in the following data:

Completely reversed, strain controlled fatigue tests of a steel alloy with E=210000 MPa resulted in the following data: Kul-49.4350 Fatigue o Structure Example solutions 5 Problem 5-1. Completely reversed, strain controlled atigue tests o a steel alloy with E=10000 resulted in the ollowing data: a a, (o the stable curve)

More information

Technical Report Example (1) Chartered (CEng) Membership

Technical Report Example (1) Chartered (CEng) Membership Technical Report Example (1) Chartered (CEng) Membership A TECHNICAL REPORT IN SUPPORT OF APPLICATION FOR CHARTERED MEMBERSHIP OF IGEM DESIGN OF 600 (103 BAR) 820MM SELF SEALING REPAIR CLAMP AND VERIFICATION

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)

More information

Dynamic Load and Stress Analysis of a Crankshaft

Dynamic Load and Stress Analysis of a Crankshaft 27-1-28 Dynamic Load and Stress Analysis of a Crankshaft Farzin H. Montazersadgh and Ali Fatemi The University of Toledo Copyright 27 SAE International ABSTRACT In this study a dynamic simulation was conducted

More information

Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter

Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter Neelesh V K Mr. Manjunath M V Mr. Devaraj Dept. of Mechanical Engineering Asst prof, Dept. of Mechanical Engineering Asst

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783 Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial

More information

Calculating and Displaying Fatigue Results

Calculating and Displaying Fatigue Results Calculating and Displaying Fatigue Results The ANSYS Fatigue Module has a wide range of features for performing calculations and presenting analysis results. By Raymond Browell Product Manager New Technologies

More information

Finite Element Analysis of Sheet Metal Forming Process

Finite Element Analysis of Sheet Metal Forming Process European Journal of Scientific Research ISSN 1450-216X Vol.33 No.1 (2009), pp.57-69 EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ejsr.htm Finite Element Analysis of Sheet Metal Forming

More information

Finite Elements for 2 D Problems

Finite Elements for 2 D Problems Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

More information

CAPABILITIES AND APPLICATIONS OF PROBABILISTIC METHODS IN FINITE ELEMENT ANALYSIS

CAPABILITIES AND APPLICATIONS OF PROBABILISTIC METHODS IN FINITE ELEMENT ANALYSIS Presented at the Fifth ISSAT International Conference on Reliability and Quality in Design, Las Vegas, Nevada, August 11-13, 1999. CAPABILITIES AND APPLICATIONS OF PROBABILISTIC METHODS IN FINITE ELEMENT

More information

Materials. Testing Software Data Infrastructure

Materials. Testing Software Data Infrastructure + technical center for materials a DatapointLabs affiliate materialsphere Materials Testing Software Data Infrastructure Providing an Experimental Basis in Support of FEA Hubert Lobo Heritage 1986 - Cornell

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved Multiaxial Fatigue Professor Darrell Socie 2008-2014 Darrell Socie, All Rights Reserved Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights

More information

Finite Element Analysis on Burst Pressure of Defective Steel Pipes

Finite Element Analysis on Burst Pressure of Defective Steel Pipes Finite Element Analysis on Burst Pressure of Defective Steel Pipes N. A. Alang 1, N. A. Razak 2, K.A.Safie 3, and A. Sulaiman 4 Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 266, Pekan,

More information

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Titulación: INGENIERO INDUSTRIAL Título del proyecto: MODELING CRACKS WITH ABAQUS Pablo Sanchis Gurpide Pamplona, 22 de Julio del

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

DAMAGE AND FATIGUE Continuum Damage Mechanics modeling for fatigue of materials and structures. Rodrigue Desmorat

DAMAGE AND FATIGUE Continuum Damage Mechanics modeling for fatigue of materials and structures. Rodrigue Desmorat DAMAGE AND FATIGUE Continuum Damage Mechanics modeling for fatigue of materials and structures Rodrigue Desmorat LMT Cachan ENS Cachan, 61 av. du Pt Wilson 94235 Cachan Cedex desmorat@lmt.ens-cachan.fr

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633 FINITE ELEMENT : MATRIX FORMULATION Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 76 FINITE ELEMENT : MATRIX FORMULATION Discrete vs continuous Element type Polynomial approximation

More information

ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION

ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION EPJ Web of Conferences 6, 6 38009 (00) DOI:0.05/epjconf/000638009 Owned by the authors, published by EDP Sciences, 00 ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON

More information

Lecture 12: Fundamental Concepts in Structural Plasticity

Lecture 12: Fundamental Concepts in Structural Plasticity Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled

More information

FATIGUE ANALYSES OF AERONAUTICAL STRUCTURAL DETAILS OF DIFFERENT COMPLEXITY

FATIGUE ANALYSES OF AERONAUTICAL STRUCTURAL DETAILS OF DIFFERENT COMPLEXITY FATIGUE ANALYSES OF AERONAUTICAL STRUCTURAL DETAILS OF DIFFERENT COMPLEXITY Paulo M S T de Castro, Paulo F P de Matos, Pedro M G P Moreira, Lucas F M da Silva IDMEC and Faculdade de Engenharia, Universidade

More information

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of

More information

Best practices for efficient HPC performance with large models

Best practices for efficient HPC performance with large models Best practices for efficient HPC performance with large models Dr. Hößl Bernhard, CADFEM (Austria) GmbH PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana,

More information

2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013

2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013 2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013 2. Pinned Joint problem Jacob Bayless a) Draw a free-body diagram for the pin. How is it loaded? Does the loading depend on whether the pin is

More information

EFFECTS OF SHOT-PEENING ON HIGH CYCLE FRETTING FATIGUE BEHAVIOR OF Ti-6Al-4V

EFFECTS OF SHOT-PEENING ON HIGH CYCLE FRETTING FATIGUE BEHAVIOR OF Ti-6Al-4V JOURNAL OF AERONAUTICS AND SPACE TECHNOLOGIES JANUARY 2003 VOLUME 1 NUMBER 1 (51-64) EFFECTS OF SHOT-PEENING ON HIGH CYCLE FRETTING FATIGUE BEHAVIOR OF Ti-6Al-4V Halil Ibrahim Air Services Schools and

More information

Determination of Structural Capacity by Non-linear FE analysis Methods

Determination of Structural Capacity by Non-linear FE analysis Methods RECOMMENDED PRACTICE DNV-RP-C208 Determination of Structural Capacity by Non-linear FE analysis Methods JUNE 2013 The electronic pdf version of this document found through http://www.dnv.com is the officially

More information

Figure 1: Typical S-N Curves

Figure 1: Typical S-N Curves Stress-Life Diagram (S-N Diagram) The basis of the Stress-Life method is the Wohler S-N diagram, shown schematically for two materials in Figure 1. The S-N diagram plots nominal stress amplitude S versus

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

Measurement of Residual Stress in Plastics

Measurement of Residual Stress in Plastics Measurement of Residual Stress in Plastics An evaluation has been made of the effectiveness of the chemical probe and hole drilling techniques to measure the residual stresses present in thermoplastic

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

FATIGUE LIFE OF BOLT SUBJECTED TO FATIGUE LOADING CONDITIONS

FATIGUE LIFE OF BOLT SUBJECTED TO FATIGUE LOADING CONDITIONS 20 FATIGUE LIFE OF BOLT SUBJECTED TO FATIGUE LOADING CONDITIONS ABSTRACT K. Din and M. T. H. Ghazali Faculty of Civil Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia E-mail: kdfila@hotmail.com

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

Long term performance of polymers

Long term performance of polymers 1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form

More information

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information

Feature Commercial codes In-house codes

Feature Commercial codes In-house codes A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

different levels, also called repeated, alternating, or fluctuating stresses.

different levels, also called repeated, alternating, or fluctuating stresses. Fatigue and Dynamic Loading 1 Fti Fatigue fil failure: 2 Static ti conditions : loads are applied gradually, to give sufficient i time for the strain to fully develop. Variable conditions : stresses vary

More information

Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners

Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners A R Abelin Roy Deptt. of ME, Govt. Engineering College, Thrissur, India Christopher Solomon S MMD VSSC, ISRO Thiruvananthapuram, India

More information

CosmosWorks Centrifugal Loads

CosmosWorks Centrifugal Loads CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Frequency domain application of the Hot-Spot method for the fatigue assessment of the weld seams

Frequency domain application of the Hot-Spot method for the fatigue assessment of the weld seams Frequency domain application of the Hot-Spot method for the fatigue assessment of the weld seams Dr. Ing. Sauro Vannicola 1 sauro.vannicola@ch.abb.com Dr. Ing. Luigi De Mercato 2 luigi.de-mercato@ch.abb.com

More information

Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria Focussed on characterization of crack tip fields Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria L. Malíková, V. Veselý Brno University of Technology,

More information

σ y ( ε f, σ f ) ( ε f

σ y ( ε f, σ f ) ( ε f Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture

More information

FEM analysis of the forming process of automotive suspension springs

FEM analysis of the forming process of automotive suspension springs FEM analysis of the forming process of automotive suspension springs Berti G. and Monti M. University of Padua, DTG, Stradella San Nicola 3, I-36100 Vicenza (Italy) guido.berti@unipd.it, manuel.monti@unipd.it.

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

Optical modeling of finite element surface displacements using commercial software

Optical modeling of finite element surface displacements using commercial software Optical modeling of finite element surface displacements using commercial software Keith B. Doyle, Victor L. Genberg, Gregory J. Michels, Gary R. Bisson Sigmadyne, Inc. 803 West Avenue, Rochester, NY 14611

More information

Stress Relaxation Study of Paper and Plastic Film based Packaging Material

Stress Relaxation Study of Paper and Plastic Film based Packaging Material Master's Degree Thesis ISRN: BTH-AMT-EX--2009/D-02--SE Stress Relaxation Study of Paper and Plastic Film based Packaging Material Rajdip Roy Lu Qi Department of Mechanical Engineering Blekinge Institute

More information

Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures

Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures HPC-Cetraro 2012 1/29 Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures Carlos García Garino Cristian Mateos Elina Pacini HPC 2012 High Perfomance Computing,

More information

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

More information

Reliable FE-Modeling with ANSYS

Reliable FE-Modeling with ANSYS Reliable FE-Modeling with ANSYS Thomas Nelson, Erke Wang CADFEM GmbH, Munich, Germany Abstract ANSYS is one of the leading commercial finite element programs in the world and can be applied to a large

More information

Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone)

Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone) Fatigue Term fatigue introduced by Poncelet (France) 1839 progressive fracture is more descriptive 1. Minute crack at critical area of high local stress (geometric stress raiser, flaws, preexisting cracks)

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

CRITERIA FOR PRELOADED BOLTS

CRITERIA FOR PRELOADED BOLTS National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 REVISION A JULY 6, 1998 REPLACES BASELINE SPACE SHUTTLE CRITERIA FOR PRELOADED BOLTS CONTENTS 1.0 INTRODUCTION..............................................

More information

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

More information

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior Kum-Chul, Oh 1, Sang-Woo Cha 1 and Ji-Ho Kim 1 1 R&D Center, Hyundai Motor Company

More information

Fatigue Analysis and Optimization of Flexible Printed Circuits

Fatigue Analysis and Optimization of Flexible Printed Circuits Fatigue Analysis and Optimization of Flexible Printed Circuits Alexander Ptchelintsev Nokia Research Center P.O. Box 407, FI-00045 NOKIA GROUP, Finland Email: alexander.ptchelintsev@nokia.com Abstract:

More information

/ DSM / IRAMIS / LLB)

/ DSM / IRAMIS / LLB) RESIDUAL STRESSES ANF Métallurgie Fondamentale Vincent Klosek (CEA / DSM / IRAMIS / LLB) 23/10/2012 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 1 INTRODUCTION Residual Stresses? Static multiaxial stresses

More information

Nonlinear Analysis of Reinforced Concrete Structures in Design and Structural Assessment

Nonlinear Analysis of Reinforced Concrete Structures in Design and Structural Assessment 1 Nonlinear Analysis of Reinforced Concrete Structures in Design and Structural Assessment Jan Cervenka Červenka Consulting, Prague, Czech Republic Outline: Červenka Consulting - Computer simulation (virtual

More information

Finite Element Method

Finite Element Method 16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture

More information

Fatigue crack propagation

Fatigue crack propagation 1 (20) Repetition Ð Crack initiation and growth Small cracks Shear driven Interact with microstructure Mostly analyzed by continuum mechanics approaches Large cracks Tension driven Fairly insensitive to

More information

A COMPARATIVE STUDY OF TWO METHODOLOGIES FOR NON LINEAR FINITE ELEMENT ANALYSIS OF KNIFE EDGE GATE VALVE SLEEVE

A COMPARATIVE STUDY OF TWO METHODOLOGIES FOR NON LINEAR FINITE ELEMENT ANALYSIS OF KNIFE EDGE GATE VALVE SLEEVE International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 12, Dec 2015, pp. 81-90, Article ID: IJMET_06_12_009 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=12

More information

AC 2008-2887: MATERIAL SELECTION FOR A PRESSURE VESSEL

AC 2008-2887: MATERIAL SELECTION FOR A PRESSURE VESSEL AC 2008-2887: MATERIAL SELECTION FOR A PRESSURE VESSEL Somnath Chattopadhyay, Pennsylvania State University American Society for Engineering Education, 2008 Page 13.869.1 Material Selection for a Pressure

More information

TWO LAYER COMPOSITE SHELL FOR ANCHORED REFRACTORY LINING COMPUTING

TWO LAYER COMPOSITE SHELL FOR ANCHORED REFRACTORY LINING COMPUTING TWO LAYER COMPOSITE SHELL FOR ANCHORED REFRACTORY LINING COMPUTING C. Andrieux,, P. Boisse,, Y. Dutheillet, V. Gabis, A. Gasser,, J. Rousseau, Laboratoire de Modélisation et Mécanique des Structures, URA

More information