A Novel Flex Circuit Area-Array Interconnect System for a Catheter-Based Ultrasound Transducer

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Novel Flex Circuit Area-Array Interconnect System for a Catheter-Based Ultrasound Transducer"

Transcription

1 Presented at IMAPS 2002 Denver, Colorado September 5, 2002 (Best of Session Award) A Novel Flex Circuit Area-Array Interconnect System for a Catheter-Based Ultrasound Transducer Jeff Strole*, Scott Corbett*, Warren Lee**, Edward Light**, Stephen Smith** *MicroConnex, Inc., SE Douglas Street, Snoqualmie, WA Phone: , Fax: , **Department of Biomedical Engineering, Duke University, Durham, NC Contact author: Abstract Flexible circuitry is uniquely suited as an interconnect media for medical sensor -array interconnection due to fine trace patterning capability, microvia technology and multilayer construction techniques. This paper describes a novel high density -array flex interconnect system for a catheter-based 3-D ultrasound imaging transducer. The catheter device consists of a two dimensional array of piezoelectric transducers operating at 5 MHz arrayed in a 12 x 16 matrix at 150 micron pitch. A six-layer flex substrate featuring 25 micron thick polyimide layers patterned with 25 micron wide trace features was fabricated as the first level interconnect connecting the sensor array to a cable system. The entire sensor/cable/flex system is placed within a seven French (2.33 mm o.d.) catheter. The array is used to image the internal surface of the heart from within the heart chamber itself. The flex interconnect features UV laser drilled via-in-pad technology with 50 micron vias and advanced registration technology. The top layer of the flex interconnect serves as a sacrificial layer which is post-patterned to provide acoustical and electrical isolation of the array elements after electrically interfacing the flex to the piezoelectric array. The flex circuit fabrication process and interconnect will be discussed. Keywords: Flex Circuit, Piezoelectric transducer, Array, MEMS, Ultrasound, Interconnection, BGA, PGA, Microvia, UV Laser Introduction The last twenty years have brought tremendous advances in medical imaging technologies. Ultrasound imaging in particular allows real-time images of the heart and other vital tissues to be generated, improving diagnostic outcomes and allowing therapeutic interventions to be monitored. Advanced electronic packaging technologies have played an unseen major role in this advancement, allowing solid-state phased-array technology to replace moving mechanical scanners, allowed miniaturization of scan heads for improved body access, and improved signal-to-noise ratios of transducer and electronic systems. A major recent innovation in ultrasound imaging technology is the advent of so-called 3D or volumetric imaging systems. Sensor devices for these systems contain a fully or partially populated 2D array sensor, allowing volumetric images to be captured by phased-array beam steering in the generalized space in front of the transducer. The packaging of the sensor portion of these devices is very similar to that required for semiconductor based systems and involve a hierarchy of interconnect levels including the Level 0 or 1 interconnect connecting the chip (or sensor) to the electronic imaging system. In this case the electronic interconnect must support a high-fidelity connection to each element within the arrayed sensor to allow all of the elements to operate simultaneously (in parallel) to properly beam form. The role of miniature electronic packaging is pushed to extreme limits with the advent of interventional imaging technologies. In these systems, the entire sensor device and interconnect must be packaged to fit within a small catheter which is inserted into the body to create images from within. These imaging catheters can also be combined with therapeutic functionality to allow diagnosis, treatment and monitoring in one package, ultimately reducing cost and improving health care.

2 Intracardiac imaging is among the newest of these modalities. These transducer/catheter systems are threaded through the venous system directly into the heart chambers, where they can create continuous images of the inner heart wall. These images allow real-time monitoring of interventional procedures, in particular catheter ablation, an increasingly common procedure to treat conduction related heart dysfunction. While existing catheter transducer systems capable of creating conventional 2D images of the heart wall are commercially available, this paper discusses recent advances allowing a 2D transducer to be packaged within the catheter footprint allowing true three-dimensional imaging of the interior heart wall. miniature coaxial cable is used to provide the highest fidelity signal transmission path to the sensor elements in ultrasound arrays, in this case the tight size constraint of the 7 French catheter (2.33 mm O.D.) required the use of a new non-coax ribbon cable technology (microflat ribbon cable, W.L. Gore). By using every other cable channel as a ground, sufficient isolation of individual signal channels was achieved. The micro cable is shown in Figure 3. Sensor Packaging System The generalized sensor probe is shown schematically in Figure 1. Each element within the 2D sensor system must be connected individually to a beam forming channel. In addition the entire sensor system must be packaged to fit within a flexible catheter. Figure 1 Schematic of 2D array sensor showing 3D volumetric scan planes. Figure 2 Sensor packaged withing catheter showing side scan (a) and angle scan (b) options. Figure 3 Top and end detail of ribbon cable. Flex Circuit Interconnect To facilitate interconnection of the cable system to the sensor device a specially designed flex circuit was developed. The flex performs several functions in the electronic packaging. Primarily it serves as the interconnection transition medium from the cable to the sensor itself. Rows of cable termination pads on the flex facilitate easy termination of multiple individual ribbon cables to the flex by mass termination means. The flex itself acts as a pitch converter to transition the signal to the tight array pitch of the sensor elements. The flex also transitions the geometry of the interconnect footprint to a 2D pad grid array matched to the exact sensor footprint allowing efficient interconnection to the piezoelectric sensor array. In addition to the traditional electronic packaging functions of the flexible circuit, the design of the circuit allows the top layer to serve as a sacrificial layer which is diced into after bonding of the piezoelectric sensor to increase acoustic isolation of the channels (See Figure 21). Finally the flex is designed to be acoustically transparent to allow sound to pass through the interconnect to an absorptive backing to reduce acoustic ringdown, which can adversely affect the image. The catheter itself is approximately 3 ft long requiring the use of a high performance flexible cable interconnect as the primary signal transmission medium to the sensor device. While traditionally,

3 Flex Circuit Architecture A multilayer flex circuit architecture was required in order to meet the geometry requirements of the 2D sensor system and the requirement of the top sacrificial layer. The fabrication process of a typical multilayer flex circuit is outline below: 1. Inner Layer Circuit Fabrication Inner layer circuits are fabricated using subtractive photolithography on pre-sputtered and electroplated polyimide media. 2. Lamination Inner layer circuits and unpatterned outer layers are laminated together using an acrylic bondply. Registration of the inner layer circuits is a critical element of the design and is based on a proprietary alignment method [2]. 3. Via Drilling and Metalization Vias are drilled through the laminated multilayer flex circuit and metalized using an electroless copper process followed by electoplated copper. Via alignment to inner layer circuits is critical. 4. Outer Layer Circuit Fabrication Outer layer circuits are fabricated using subtractive photolithogaphy. Any required covercoats are applied over outer layers. Figure 4 shows the cross section of the flex circuit designed for the 7 French catheter array. complexity of trace routing in the lead escape region in the sensor array. The routing density in the array (0.15 mm fully populated 12 x 16 array) is significantly greater than current chip scale packaging densities (typically 0.4 mm or greater array pitch). The result was a unique, tightly registered 6 layer design utilizing microvia technology and fine-line traces which combined the density of a chip scale circuit with a conventional multilayer flex. Figure 5 shows the overall footprint and dimensions of the flex circuit. Traces are routed out both ends of the array of the flex which is then folded back on itself to fit into the 7 French catheter package. Array detailed below Figure 5 Dimensions of flex circuit Figure 4 Cross section of the six layer flex circuit Flex Circuit Design While multi-layer flex circuit fabrication is common thoughout industry today, specific design constraints of the 7 French catheter made this circuit unique. First, the tight cross sectional of the catheter restricted the width of the flex circuit, reducing the amount of space available to route traces. A controlled impedance parallel lead configuration (every other trace grounded) was adopted to minimize electical crosstalk which in effect doubled the number of conductors required in the circuit. Acoustic impedance constraints limited the number of layers in the circuit. In addition, the overall length of the flex circuit (76.6 mm) was relatively long compared to the density and Figure 6 shows the top sacrifical layer of the flex in the array. No signal traces can be routed on this layer because of subsequent dicing of the sensor and top interconnect layer in both the x and y dimensions (see Figure 21). Laser drilled via-in-pad microvias connect the top pads to buried trace layers within the circuit. Figure 6 Top layer in the array.

4 Figures 7 12 below show the signal routing on each of the five trace layers within the array footprint region (approximately 2.5 mm x 2.5 mm). Traces and spaces of 25 micron are typical in the array. The dots show where the laser drilled microvias are placed throughout the layers. Figure 10 Layer 5 signal traces in the array Figure 7 Layer 2 signal traces in the array Figure 11 Layer 6 signal traces in the array Figure 12 show the composite of all 6 layers in the array. Registration is clearly a critical factor in this design. Figure 8 Layer 3 signal traces in the array Figure 9 Layer 4 signal traces in the array Figure 12 Composite of layers 1 6 in the array

5 Figure 13 below shows a typical pad configuration used for terminating the microflat ribbon cable. Guard traces routed between the signal traces on each layer and a top ground plane in the termination help provide the required electrical isolation. Figure 16 Layer 5 in the array Figure 13 Signal traces in the ribbon cable termination Figure 17 shows the top view of the circuit after lamination and outer layer processing. Note traces on multiple layers are visible and the tight registration between all layers. Flex Circuit Fabrication Figures show the inner layer circuits after fabrication and before lamination. The circuit is fabricated by laminating a total of 3 layer pairs to yield six patterned layers. Trace layers 3 and 4 are patterned on opposite sides of the innermost layer while layers 2 and 5 are patterned on the inner side of the two outer layer pairs. Outer trace layers 1 and 6 are patterned after lamination, via drilling and plating. Figure 17 Top view of array termination region of flex circuit. Finally, Figure 18 shows the completed flex circuit in the region of the ribbon cable termination region. Figure 14 Layer 2 in the array Figure 18 Cable termination region of flex Figure 15 Layers 3 and 4 in the array Array Lamination and Post Processing After the flex circuit was fabricated, the microflat ribbon cable was terminated to the flex circuit by wire bonding or soldering (see Figure 19) and the piezoelectric sensor was laminated to the flex substrate and post prosessed. All manufacturing and

6 testing subsequent to the flex circuit fabrication was performed by the Duke University affiliated authors. Figure 19 Detail of cable-to-flex termination region. Figure 20 shows the array portion of the device after the piezoelectric sensor device has been terminated to the flex and diced into individual sensor elements. The sensor region contains a 10x14 array with 112 active elements operating at a frequency of 5 MHz. Figure 21 shows schematically the dicing process into the sacrificial top layer of the flex circuit. Figure 23 Final catheter assembly after potting into array Images were generated using a commercial ultrasound scanner (Volumetrics Medical Imaging, Durham, NC, USA). The scanner uses 16:1 parallel receive processing and generates 4100 B-mode lines at up to 30 volumes per second. Figure 24 below shows in vivo images in a sheep heart produced by the array. Figure 20 Piezoelectric sensor after termination to array region of flex and post dicing to separate elements. Figure 24 In vivo sheep heart images: 120 degree, 6 cm B-scans (A) and (B) and real-time 3D rendered view (C) of the left atrial chamber (LA) generated from the catheter array. Conclusions Figure 21 Schematic diagram showing trace breakout to upper array region and dicing saw cuts through top layer of flex interconnect creating acoustic and electric isolation of array elements. Figure 22 shows the entire cable/flex assembly during insertion into the 7 Fr catheter and Figure 23 shows the array assembly after potting of the sensor assembly into the catheter forming the final assembly. Figure 22 Cable/Flex/Sensor assembly before insertion into catheter In this paper we discuss a novel ultrasound catheter and interconnect system. The interconnect consists of a micro ribbon cable terminated to a custom designed multilayer flex circuit with high layer count and extremely tight registration accuracy. [1] Corbett, S., et al, Advanced Multilayer Polyimide Substrate Utilizing UV Laser Microvia Technology, Proceedings, IMAPS 2000 Symposium on Microelectronics, September 2000, pp [2] Strole, J. et al, Method of Creating an Electrical Interconnect Device Bearing an Array of Electrical Contact Pads, U.S. Patent 6,354,000, March 12, [3] Lee, W., et al, "Catheter 2D Arrays for Real- Time 3D Intracardiac Imaging: Increased Channel Count, Miniaturization and Tool Integration", 2002 US Navy Meeting on Acoustic Transduction Materials and Devices.

FIGURE 1, CROSS SECTION OF A PLATED THROUGH HOLE OR VIA.

FIGURE 1, CROSS SECTION OF A PLATED THROUGH HOLE OR VIA. ANATOMY OF A PLATED THROUGH HOLE LEE RITCHEY AUGUST 30, 2001 INTRODUCTION This document examines the way a plated through hole is formed in a PCB. The discussion holds whether the hole is used by a signal

More information

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M Miniaturizing Flexible Circuits for use in Medical Electronics Nate Kreutter 3M Drivers for Medical Miniaturization Market Drivers for Increased use of Medical Electronics Aging Population Early Detection

More information

Development of Ultra-Multilayer. printed circuit board

Development of Ultra-Multilayer. printed circuit board Development of Ultra-Multilayer Printed Circuit Board Yasuyuki Shinbo Using the multilayer and characteristic impedance control technologies cultivated in the field of telecommunications, OKI Printed Circuits

More information

HOLE PLATING COPPER FOIL ANNULAR RING. Figure 1 A Section Through a Plated Through Hole in a PCB

HOLE PLATING COPPER FOIL ANNULAR RING. Figure 1 A Section Through a Plated Through Hole in a PCB FAQ #5 For Current Source Newsletter #7 Why Not Route Two Traces Between Pins on a 1 mm Pitch BGA? There are applications notes that describe how to save layers in a PCB by routing two traces between pins

More information

Advanced Market Series. Applying Moore s Law to Printed Circuit Boards Averatek s Additive Metallization Process

Advanced Market Series. Applying Moore s Law to Printed Circuit Boards Averatek s Additive Metallization Process Applying Moore s Law to Printed Circuit Boards Averatek s Additive Metallization Process 1 Table of Contents Advanced Market Series Introduction... 3 Needs Driven Applications... 3 Chip scale integration...

More information

Webinar: HDI 2 Perfection in HDI Optimal use of the HDI technology Würth Elektronik Circuit Board Technology

Webinar: HDI 2 Perfection in HDI Optimal use of the HDI technology Würth Elektronik Circuit Board Technology Webinar: HDI 2 Perfection in HDI Optimal use of the HDI technology Würth Elektronik Circuit Board Technology www.we-online.de Seite 1 04.09.2013 Agenda Overview Webinar HDI 1 Route out a BGA Costs Roadmap

More information

Designing with High-Density BGA Packages for Altera Devices

Designing with High-Density BGA Packages for Altera Devices 2014.12.15 Designing with High-Density BGA Packages for Altera Devices AN-114 Subscribe As programmable logic devices (PLDs) increase in density and I/O pins, the demand for small packages and diverse

More information

Flexible Printed Circuits Design Guide

Flexible Printed Circuits Design Guide www.tech-etch.com/flex Flexible Printed Circuits Design Guide Multilayer SMT Assembly Selective Plating of Gold & Tin-Lead Fine Line Microvias Cantilevered & Windowed Leads 1 MATERIALS CONDUCTOR Copper

More information

Multi-Depth Laser Drilled Blind Vias for Increased Circuit Density

Multi-Depth Laser Drilled Blind Vias for Increased Circuit Density Multi-Depth Laser Drilled Blind Vias for Increased Circuit Density Larry W. Burgess LaserVia Drilling Centers Wilsonville, Oregon, USA Fabrizio Pauri Pluritec Italia S.p.A. Burolo d'ivrea, Italy Abstract

More information

Webinar HDI Microvia Technology Cost Aspects

Webinar HDI Microvia Technology Cost Aspects Webinar HDI Microvia Technology Cost Aspects www.we-online.com HDI - Cost Aspects Seite 1 1 July, 2014 Agenda - Webinar HDI Microvia Technology Cost Aspects Reasons for the use of HDI technology Printed

More information

PCB Fabrication Enabling Solutions

PCB Fabrication Enabling Solutions PCB Fabrication Enabling Solutions June 3, 2015 Notice Notification of Proprietary Information: This document contains proprietary information of TTM and its receipt or possession does not convey any rights

More information

Electrical tests on PCB insulation materials and investigation of influence of solder fillets geometry on partial discharge

Electrical tests on PCB insulation materials and investigation of influence of solder fillets geometry on partial discharge , Firenze, Italy Electrical tests on PCB insulation materials and investigation of influence of solder fillets geometry on partial discharge A. Bulletti, L. Capineri B. Dunn ESTEC Material and Process

More information

COPPER FLEX PRODUCTS

COPPER FLEX PRODUCTS COPPER FLEX PRODUCTS WHY FLEX? Molex ible Printed Circuit Technology is the answer to your most challenging interconnect applications. We are your total solution for ible Printed Circuitry because we design

More information

Extending Rigid-Flex Printed Circuits to RF Frequencies

Extending Rigid-Flex Printed Circuits to RF Frequencies Extending -Flex Printed Circuits to RF Frequencies Robert Larmouth Teledyne Electronic Technologies 110 Lowell Rd., Hudson, NH 03051 (603) 889-6191 Gerald Schaffner Schaffner Consulting 10325 Caminito

More information

Chapter 14. Printed Circuit Board

Chapter 14. Printed Circuit Board Chapter 14 Printed Circuit Board A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, or traces, etched from copper

More information

High Density SMT Assemblies Based on Flex Substrates

High Density SMT Assemblies Based on Flex Substrates High Density SMT Assemblies Based on Flex Substrates Robert Larmouth, James Keating Teledyne Electronic Technologies 110 Lowell Rd., Hudson, NH 03051 (603) 889-6191 Abstract The industry trend to shrink

More information

Graser User Conference Only

Graser User Conference Only Miniaturization- Rigid-Flex Design with Allegro Jonathan Lee / Graser 31/Oct/2014 Rigid-Flex Design with Allegro Miniaturization Design Miniaturization through Rigid-Flex Rigid-Flex Design Flow Miniaturization

More information

Rigid-Flex Technology: Mainstream Use but More Complex Designs by John Isaac October 1, 2007

Rigid-Flex Technology: Mainstream Use but More Complex Designs by John Isaac October 1, 2007 Rigid-Flex Technology: Mainstream Use but More Complex Designs by John Isaac October 1, 2007 In the past, flex and rigid-flex technology was typically used in applications that could tolerate long design

More information

Innovative PCB Solutions. Win time and flexibility benefit from Swiss quality. The PCB Challenge Doing it together

Innovative PCB Solutions. Win time and flexibility benefit from Swiss quality. The PCB Challenge Doing it together Innovative PCB Solutions Win time and flexibility benefit from Swiss quality The PCB Challenge Doing it together INDIVIDUAL CUSTOMER SOLUTIONS from a reliable partner 2 Optiprint offers consulting, development

More information

Flex Circuit Design and Manufacture.

Flex Circuit Design and Manufacture. Flex Circuit Design and Manufacture. Hawarden Industrial Park, Manor Lane, Deeside, Flintshire, CH5 3QZ Tel 01244 520510 Fax 01244 520721 Sales@merlincircuit.co.uk www.merlincircuit.co.uk Flex Circuit

More information

How is a PCB made? What determines impedance? John Steinar Johnsen ( Josse ) Sept 2009

How is a PCB made? What determines impedance? John Steinar Johnsen ( Josse ) Sept 2009 How is a PCB made? What determines impedance? John Steinar Johnsen ( Josse ) Sept 2009 Vi kan se hvor Bugatti har hentet inspirasjon fra Denne forsøkte å stikke av, men jeg hang meg på. JossePhoto Manufacturing

More information

Application Note: PCB Design By: Wei-Lung Ho

Application Note: PCB Design By: Wei-Lung Ho Application Note: PCB Design By: Wei-Lung Ho Introduction: A printed circuit board (PCB) electrically connects circuit components by routing conductive traces to conductive pads designed for specific components

More information

HDI. HDI = High Density Interconnect. Kenneth Jonsson Bo Andersson. NCAB Group

HDI. HDI = High Density Interconnect. Kenneth Jonsson Bo Andersson. NCAB Group HDI HDI = High Density Interconnect Kenneth Jonsson Bo Andersson NCAB Group Definitions / Standards (IPC) Pros & Cons Key equipment Build-ups Choice of material Design rules IPC HDI reliability (µvia stacked

More information

Preface xiii Introduction xv 1 Planning for surface mount design General electronic products 3 Dedicated service electronic products 3 High-reliability electronic products 4 Defining the environmental

More information

Flex-Rigid Design Guide Part 1

Flex-Rigid Design Guide Part 1 Flex-Rigid Design Guide Part 1 The trend to miniaturization in electronics continues. Integrated circuit board solutions are becoming more and more popular as a means of efficiently utilizing the even

More information

Table of Contents. Flex Single-Side Circuit Construction. Rigid Flex Examples. Flex Double-Side Circuit Construction.

Table of Contents. Flex Single-Side Circuit Construction. Rigid Flex Examples. Flex Double-Side Circuit Construction. Table of Contents Flex Single-Side Circuit Construction Flex Double-Side Circuit Construction Multilayer Flex Circuit Construction Rigid Flex Examples IPC Information Glossary Rigid-Flex Construction Base

More information

Historical production of rigid PCB s

Historical production of rigid PCB s Historical production of rigid PCB s The Printed Circuit Board (PCB) The PCB What is a Printed Circuit Board? Green plastic thing with holes!! (green plastic syndrome) Platform for components Image with

More information

Surface Finishes for High-Speed PCBs

Surface Finishes for High-Speed PCBs column BEYOND DESIGN Surface Finishes for High-Speed PCBs by Barry Olney The Nickel Doesn t Make Cents! PCB surface finishes vary in type, price, availability, shelf life, assembly process and reliability.

More information

Electrolytic Deposition of Fine Pitch Sn/Cu Solder Bumps for Flip Chip Packaging

Electrolytic Deposition of Fine Pitch Sn/Cu Solder Bumps for Flip Chip Packaging Electrolytic Deposition of Fine Pitch Sn/Cu Solder Bumps for Flip Chip Packaging Stephen Kenny, Kai Matejat, Sven Lamprecht and Olivier Mann Atotech Germany Erasmusstrasse 20, 10553 Berlin Germany +49

More information

AN PCB layout guidelines for NXP MCUs in BGA packages. Document information. Keywords

AN PCB layout guidelines for NXP MCUs in BGA packages. Document information. Keywords Rev. 2 15 April 2011 Application note Document information Info Keywords Abstract Content LPC175x, LPC176x, LPC177x, LPC178x, LPC181x, LPC182x, LPC183x, LPC185x, LPC431x, LPC432x, LPC433x, LPC435x, LPC2220,

More information

Analysis of Blind Microvias Forming Process in Multilayer Printed Circuit Boards

Analysis of Blind Microvias Forming Process in Multilayer Printed Circuit Boards POLAND XXXII International Conference of IMAPS - CPMT IEEE Poland Pułtusk - 4 September 008 Analysis of Blind Microvias Forming Process in Multilayer Printed Circuit Boards Janusz Borecki ), Jan Felba

More information

STABLCOR Frequently Asked Questions

STABLCOR Frequently Asked Questions Q.1 What is STABLCOR? STABLCOR is a laminate based thermal management technology for the Printed Circuit Board and Substrate markets. Q.2 What are the benefits of using STABLCOR Technology? There are FOUR

More information

Z-RAY INTERPOSER APPLICATION DESIGN GUIDE 2016

Z-RAY INTERPOSER APPLICATION DESIGN GUIDE 2016 Z-RAY INTERPOSER APPLICATION DESIGN GUIDE 2016 1 Z-RAY LOW PROFILE INTERPOSERS Z-Ray micro array interposers are ultra-low profile, high-density, highly customizable solutions for board-to-board, IC-to-board,

More information

Differential Signaling Doesn t Require Differential Impedance. Or, How to Design a Differential Signaling Circuit

Differential Signaling Doesn t Require Differential Impedance. Or, How to Design a Differential Signaling Circuit Article for Printed Circuit Design By Lee W. Ritchey, 3Com Corporation Differential Signaling Doesn t Require Differential Impedance Or, How to Design a Differential Signaling Circuit That title may seem

More information

High Density and Low Cost Approach for the PCB of semiconductor tester

High Density and Low Cost Approach for the PCB of semiconductor tester High Density and Low Cost Approach for the PCB of semiconductor tester Takehisa Sakurai Hitachi Chemical Co. America, Ltd. Masahiro Kato Hitachi Chemical Co. Ltd. Contents 1. Technical trend for PCB 2.

More information

Digital Systems PCB Layer Stacking CMPE 650

Digital Systems PCB Layer Stacking CMPE 650 Layer Stack Guidelines Layer stack defines: The ordering of the signal, power and GND layers The dielectric constant of the substrate The spacing between layers Optionally, the trace dimensions and minimum

More information

Definition of OhmegaPly

Definition of OhmegaPly Definition of OhmegaPly OhmegaPly is a thin film Electrodeposited On Copper NiP metal alloy (RESISTOR CONDUCTOR MATERIAL) that is laminated to a dielectric material and subtractively processed to produce

More information

Design of an U-slot Folded Shorted Patch Antenna for RF Energy Harvesting

Design of an U-slot Folded Shorted Patch Antenna for RF Energy Harvesting Design of an U-slot Folded Shorted Patch Antenna for RF Energy Harvesting Diponkar Kundu, Ahmed Wasif Reza, and Harikrishnan Ramiah Abstract Novel optimized U-slot Folded Shorted Patch Antenna (FSPA) is

More information

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications Janet E. Semmens Sonoscan, Inc. 2149 E. Pratt Boulevard Elk Grove Village, IL 60007 USA Phone: (847)

More information

Printed Circuit Board Guidelines

Printed Circuit Board Guidelines Printed Circuit Board Guidelines Introduction : The Poly-Grames research center has the ability to manufacture printed circuits on all types of microwave substrates. Our present fabrication capabilities

More information

Printed Circuit Board Quick-turn Prototyping and Production

Printed Circuit Board Quick-turn Prototyping and Production Printed Circuit Board Quick-turn Prototyping and Production Who We Are Bay Area Circuits has been serving the Printed Circuit Board (PCB) manufacturing needs of high-tech electronics manufacturers, contract

More information

Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness

Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness Shielding Effectiveness Test Method Harbour s LL, SB, and SS Coaxial Cables Designs for Improved Shielding Effectiveness Harbour Industries 4744 Shelburne Road Shelburne Vermont 05482 USA 802-985-3311

More information

FABRICATION 2011 SERVICES TECHNOLOGIES CAPABILITIES INDUSTRY

FABRICATION 2011 SERVICES TECHNOLOGIES CAPABILITIES INDUSTRY FABRICATION 2011 SERVICES 24HRS - 5 DAYS ON QUICK TURN PROTOTYPE Dear Customer, We would like to take this opportunity to welcome you and thank you for looking to ASA PCB as your Printed Circuit Manufacturing

More information

ECP Embedded Component Packaging Technology

ECP Embedded Component Packaging Technology ECP Embedded Component Packaging Technology A.Kriechbaum, H.Stahr, M.Biribauer, N.Haslebner, M.Morianz AT&S Austria Technologie und Systemtechnik AG Abstract The packaging market has undergone tremendous

More information

PRACTICAL RF PRINTED CIRCUIT BOARD DESIGN

PRACTICAL RF PRINTED CIRCUIT BOARD DESIGN PRACTICAL RF PRINTED CIRCUIT BOARD DESIGN Geoff Smithson. Overview The electrical characteristics of the printed circuit board (PCB) used to physically mount and connect the circuit components in a high

More information

Five Year Projections of the Global Flexible Circuit Market

Five Year Projections of the Global Flexible Circuit Market Five Year Projections of the Global Flexible Circuit Market Robert Turunen and Dominique Numakura, DKN Research And James J. Hickman, PhD, Hickman Associates Inc Summary A new market research process has

More information

Design Considerations for Metal Core Printed Circuit Board

Design Considerations for Metal Core Printed Circuit Board The Way Too Cool Design Considerations for Metal Core Printed Circuit Board Designing an aluminium board is similar to a traditional FR-4 board in terms of imaging and wet processing operations. But you

More information

Ultra Reliable Embedded Computing

Ultra Reliable Embedded Computing A VersaLogic Focus on Reliability White Paper Ultra Reliable Embedded Computing The Clash between IPC Class 3 Requirements and Shrinking Geometries Contents Introduction...1 Case in Point: IPC Class 3

More information

Optimizing BGA to PCB Interconnections using Multi-depth Laser Drilled Blind Vias-in-Pad

Optimizing BGA to PCB Interconnections using Multi-depth Laser Drilled Blind Vias-in-Pad Optimizing BGA to PCB Interconnections using Multi-depth Laser Drilled Blind Vias-in-Pad Larry W. Burgess LaserVia Drilling Centers Wilsonville, Oregon, USA Fabrizio Pauri Pluritec Italia S.p.A. Burolo

More information

Count on Optima Technology Associates to meet your requirements

Count on Optima Technology Associates to meet your requirements Since 1995, Global Resources, Local Support When you need quality Printed Circuit Boards To Spec On Time On Budget Count on Optima Technology Associates to meet your requirements Optima Technology Associates,

More information

Balancing the Electrical and Mechanical Requirements of Flexible Circuits. Mark Finstad, Applications Engineering Manager, Minco

Balancing the Electrical and Mechanical Requirements of Flexible Circuits. Mark Finstad, Applications Engineering Manager, Minco Balancing the Electrical and Mechanical Requirements of Flexible Circuits Mark Finstad, Applications Engineering Manager, Minco Table of Contents Abstract...............................................................................................

More information

IIB. Complete PCB Design Using OrCAD Capture and PCB Editor. Kraig Mitzner. ~»* ' AMSTERDAM BOSTON HEIDELBERG LONDON ^ i H

IIB. Complete PCB Design Using OrCAD Capture and PCB Editor. Kraig Mitzner. ~»* ' AMSTERDAM BOSTON HEIDELBERG LONDON ^ i H Complete PCB Design Using OrCAD Capture and PCB Editor Kraig Mitzner IIB ~»* ' AMSTERDAM BOSTON HEIDELBERG LONDON ^ i H NEW YORK * OXFORD PARIS SAN DIEGO ШШЯтИ' ELSEVIER SAN FRANCISCO SINGAPORE SYDNEY

More information

INEMI 2007 Roadmap Organic Substrates. Jack Fisher, Interconnect Technology Analysis, Inc. Celestica-iNEMI Technology Forum May 15, 2007

INEMI 2007 Roadmap Organic Substrates. Jack Fisher, Interconnect Technology Analysis, Inc. Celestica-iNEMI Technology Forum May 15, 2007 INEMI 2007 Roadmap Organic Substrates Jack Fisher, Interconnect Technology Analysis, Inc. Celestica-iNEMI Technology Forum May 15, 2007 Introduction The interconnecting substrates functional role provides

More information

Wafer Level Testing Challenges for Flip Chip and Wafer Level Packages

Wafer Level Testing Challenges for Flip Chip and Wafer Level Packages Wafer Level Testing Challenges for Flip Chip and Wafer Level Packages by Lim Kok Hwa and Andy Chee STATS ChipPAC Ltd. 5 Yishun Street 23, Singapore 768442 kokhwa.lim@statschippac.com; kenghwee.chee@statschippac.com

More information

FLASHSOLDERING - A NEW PROCESS FOR REFLOW SOLDERING INSULATED MAGNET WIRE TO ELECTRONIC CONTACTS

FLASHSOLDERING - A NEW PROCESS FOR REFLOW SOLDERING INSULATED MAGNET WIRE TO ELECTRONIC CONTACTS FLASHSOLDERING - A NEW PROCESS FOR REFLOW SOLDERING INSULATED MAGNET WIRE TO ELECTRONIC CONTACTS David W. Steinmeier microjoining Solutions & Mike Becker Teka Interconnection Systems Abstract: Flashing

More information

Do's and Don'ts for PCB Layer Stack-up. By Pragnesh Patel & Ronak Shah

Do's and Don'ts for PCB Layer Stack-up. By Pragnesh Patel & Ronak Shah Do's and Don'ts for PCB Layer Stack-up By Pragnesh Patel & Ronak Shah 1. Introduction Each day the electronic gadgets complexity increases with the miniaturization requirements, boards are becoming much

More information

PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS

PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS OOOO1 PCB Design Conference - East Keynote Address September 12, 2000 EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com

More information

Flexible Circuit Design Guide

Flexible Circuit Design Guide Flexible Circuit Design Guide Benefits of Flexible Circuitry A solution to a packaging problem Placement around edges and folds Ability to be used in 3 axes connections Reduce assembly costs Very little

More information

FLEXIBLE CIRCUITS MANUFACTURING

FLEXIBLE CIRCUITS MANUFACTURING IPC-DVD-37 FLEXIBLE CIRCUITS MANUFACTURING Below is a copy of the narration for DVD-37. The contents of this script were developed by a review group of industry experts and were based on the best available

More information

Use of Carbon Nanoparticles for the Flexible Circuits Industry

Use of Carbon Nanoparticles for the Flexible Circuits Industry Use of Carbon Nanoparticles for the Flexible Circuits Industry Ying (Judy) Ding, Rich Retallick MacDermid, Inc. Waterbury, Connecticut Abstract FPC (Flexible Printed Circuit) has been growing tremendously

More information

HARDWARE DESIGN FUNDAMENTALS. George Hadley 2016, Images Property of their Respective Owners.

HARDWARE DESIGN FUNDAMENTALS. George Hadley 2016, Images Property of their Respective Owners. HARDWARE DESIGN FUNDAMENTALS George Hadley 2016, Images Property of their Respective Owners. OUTLINE PCB Design Objective PCB Manufacturing Process Design Automation Tools The Design Process Parts Schematics

More information

Electronic Circuit Construction:

Electronic Circuit Construction: Electronic Circuit Construction: Various methods are used for building electronic circuits. The method that you choose depends on a number of factors, including the resources available to you and whether

More information

Rogers 3003, 3006, 3010, 3035, 3203, 3206, 3210

Rogers 3003, 3006, 3010, 3035, 3203, 3206, 3210 Stocked Materials: RIGID STANDARD FR4 High Tg 170c Black FR4 Polyclad 370HR (Lead Free) HIGH RELIABILITY Polyimide (Arlon 85N, Isola P96) BT (G200) HIGH FREQUENCY: Park Nelco 4000-13, 4000-13si Getek Gore

More information

DESIGN GUIDE Version 1.4. Design Guide for High Current Solutions with WIRELAID

DESIGN GUIDE Version 1.4. Design Guide for High Current Solutions with WIRELAID DESIGN GUIDE Version 1.4 Design Guide for High Current Solutions with WIRELAID High Current Solutions with WIRELAID Technology Your benefit Caused by the increasing requirements of power and digital control

More information

Module No. # 06 Lecture No. # 31 Conventional Vs HDI Technologies Flexible Circuits Tutorial Session

Module No. # 06 Lecture No. # 31 Conventional Vs HDI Technologies Flexible Circuits Tutorial Session An Introduction to Electronics Systems Packaging Prof. G. V. Mahesh Department of Electronic Systems Engineering Indian Institute of Science, Bangalore Module No. # 06 Lecture No. # 31 Conventional Vs

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT MultiWave Hybrid Laser Processing of Micrometer Scale Features for Flexible Electronics Applications J. Hillman, Y. Sukhman, D. Miller, M. Oropeza and C. Risser Universal Laser Systems, 7845 E. Paradise

More information

EMBEDDED COMPONENTS ON THE WAY TO INDUSTRIALISATION

EMBEDDED COMPONENTS ON THE WAY TO INDUSTRIALISATION EMBEDDED COMPONENTS ON THE WAY TO INDUSTRIALISATION Hannes Stahr Mark Beesley AT&S Leoben, Austria h.stahr@ats.net m.beesley@ats.net ABSTRACT Embedded component technology has been under visible development

More information

2000 Mixed-Signal Products SLLA014A

2000 Mixed-Signal Products SLLA014A Design Notes 2000 Mixed-Signal Products SLLA014A IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

More information

MMIC packaging. 1. Introduction 2. Data interface. Data submittal methods. Data formats. Single chip & MCM solutions. Contents

MMIC packaging. 1. Introduction 2. Data interface. Data submittal methods. Data formats. Single chip & MCM solutions. Contents MMIC packaging MMIC packaging Contents 1. Introduction Page 2 2. Data Interface Page 2 3. Microwave package design requirement Page 3 4. Materials Page 3 5. Package layout design guidelines Page 4 6. Package

More information

Good Boards = Results

Good Boards = Results Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.

More information

Qualification and Performance Specification for Flexible Printed Boards

Qualification and Performance Specification for Flexible Printed Boards Qualification and Performance Specification for Flexible Printed Boards Developed by the Flexible Circuits Performance Specifications Subcommittee (D-12) of the Flexible Circuits Committee (D-10) of IPC

More information

Flex Design Basics. Application Types: to Flex to Install: Only meant to flex on limited basis. To install or replace and repair.

Flex Design Basics. Application Types: to Flex to Install: Only meant to flex on limited basis. To install or replace and repair. Flex Design Basics Application Types: Static: Notmeanttoflex to Flex to Install: Only meant to flex on limited basis. To install or replace and repair. Dynamic: Depending on flex construction and conditions

More information

Microwave Multi-layer Printed Circuit Boards

Microwave Multi-layer Printed Circuit Boards Microwave Multi-layer Printed Circuit Boards MicroAPS at IEEE MTT-S IMS in Fort Worth, TX Ed Sandor, Manager of Application Engineering, Taconic Advanced Dielectric Division June 9, 2004 Abstract Over

More information

PCB Layer Stack-up. Albert Schweitzer Fine Line Gesellschaft für Leiterplattentechnik mbh Itterpark 4, D Hilden Vers. 1.

PCB Layer Stack-up. Albert Schweitzer Fine Line Gesellschaft für Leiterplattentechnik mbh Itterpark 4, D Hilden Vers. 1. PCB Layer Stack-up Technical Workshop 16. / 17. September 2015 Hilden, Germany Albert Schweitzer Fine Line Gesellschaft für Leiterplattentechnik mbh Itterpark 4, D-40724 Hilden 15.09.2015 Vers. 1.2 Introduction

More information

White Paper. Recommendations for Installing Flash LEDs on Flex Circuits. By Shereen Lim. Abstract. What is a Flex Circuit?

White Paper. Recommendations for Installing Flash LEDs on Flex Circuits. By Shereen Lim. Abstract. What is a Flex Circuit? Recommendations for Installing Flash LEDs on Circuits By Shereen Lim White Paper Abstract For the mobile market some PCB assemblies have been converted to flex circuit assemblies, in part because flex

More information

Anti-Counterfeit, Miniaturized, and Advanced Electronic Substrates for Medical Device Applications

Anti-Counterfeit, Miniaturized, and Advanced Electronic Substrates for Medical Device Applications Anti-Counterfeit, Miniaturized, and Advanced Electronic Substrates for Medical Device Applications Rabindra N. Das, Frank D. Egitto, and How Lin Endicott Interconnect Technologies, Inc., 1093 Clark Street,

More information

Application Note. PCIEC-85 PCI Express Jumper. High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s

Application Note. PCIEC-85 PCI Express Jumper. High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s PCIEC-85 PCI Express Jumper High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s Copyrights and Trademarks Copyright 2015, Inc. COPYRIGHTS, TRADEMARKS, and PATENTS Final Inch is a trademark

More information

DRIVING COST OUT OF YOUR DESIGNS THROUGH YOUR PCB FABRICATOR S EYES!

DRIVING COST OUT OF YOUR DESIGNS THROUGH YOUR PCB FABRICATOR S EYES! 4/3/2013 S THROUGH YOUR PCB FABRICATOR S EYES! Brett McCoy Eagle Electronics Schaumburg IL. New England Design and Manufacturing Tech Conference Brett McCoy: Vice President / Director of Sales Circuit

More information

Tips for PCB Vias Design

Tips for PCB Vias Design Tips for PCB Vias Design Terms of using this article This article is primarily for internal use in Quick teck PCB design department. Now we decided to open it up publicly. We try to ensure the information

More information

RF/Microwave PCB manufacturing capability. Offering RF & Microwave Value-Added Services for Demanding Applications

RF/Microwave PCB manufacturing capability. Offering RF & Microwave Value-Added Services for Demanding Applications RF/Microwave PCB manufacturing capability Offering RF & Microwave Value-Added Services for Demanding Applications RF/Microwave PCB Manufacturing Capability Contents Introduction 2 Materials 3 Board Dimensions

More information

Ball Grid Array (BGA) Technology

Ball Grid Array (BGA) Technology Chapter E: BGA Ball Grid Array (BGA) Technology The information presented in this chapter has been collected from a number of sources describing BGA activities, both nationally at IVF and reported elsewhere

More information

PCi Valu Builds for Rigid Flex

PCi Valu Builds for Rigid Flex PCi Valu Builds for Rigid Flex Stable, robust builds for cost effective rigid flex. PCi Valu Builds Overview Valu Builds are a set of low cost materials, with yield friendly design guidelines, to produce

More information

Signal Integrity: Impedance matching in combination with BGA fan-out Seite 1

Signal Integrity: Impedance matching in combination with BGA fan-out Seite 1 Signal Integrity: Impedance matching in combination with BGA fan-out 02.09.2015 Seite 1 www.we-online.de Agenda Introduction fine pitch BGAs and impedance Examination of different BGAs according to their

More information

Printed Dipole Antenna

Printed Dipole Antenna Printed Dipole Antenna Reto Zingg Abstract In this project a printed dipole antenna is being designed. Printed dipole antennas are of interest, when an electronic product, which is implemented on a printed

More information

Development of a Design & Manufacturing Environment for Reliable and Cost-Effective PCB Embedding Technology

Development of a Design & Manufacturing Environment for Reliable and Cost-Effective PCB Embedding Technology Development of a Design & Manufacturing Environment for Reliable and Cost-Effective PCB Embedding Technology Outline Introduction CAD design tools for embedded components Thermo mechanical design rules

More information

WELCOME TO VIASION. www.viasion.com

WELCOME TO VIASION. www.viasion.com WELCOME TO VIASION www.viasion.com BRIEF INTRODUCTION Viasion Technology Co., Ltd is a professional Printed Circuit Board (PCB) manufacturer in China. With around 1500 employees totally in 2 different

More information

Flexible Circuit Simple Design Guide

Flexible Circuit Simple Design Guide Flexible Circuit Simple Design Guide INDEX Flexible Circuit Board Types and Definitions Design Guides and Rules Process Flow Raw Material Single Side Flexible PCB Single Side Flexible PCB (Cover layer

More information

Core Power Delivery Network Analysis of Core and Coreless Substrates in a Multilayer Organic Buildup Package

Core Power Delivery Network Analysis of Core and Coreless Substrates in a Multilayer Organic Buildup Package Core Power Delivery Network Analysis of Core and Coreless Substrates in a Multilayer Organic Buildup Package Ozgur Misman, Mike DeVita, Nozad Karim, Amkor Technology, AZ, USA 1900 S. Price Rd, Chandler,

More information

High Current PCBs System Integration of Busbars and Electronics. High Current PCBs. System Integration of Busbars and Electronics

High Current PCBs System Integration of Busbars and Electronics. High Current PCBs. System Integration of Busbars and Electronics High Current PCBs Dr. Christoph Lehnberger ANDUS ELECTRONIC GmbH, Berlin 1st International Conference September 28th - 29th, 2011 Nuremberg, Germany Profile of : Our Motto Profile of : Our Capabilities

More information

Three Dimensional Ultrasound Imaging

Three Dimensional Ultrasound Imaging Three Dimensional Ultrasound Imaging Hans Torp/ Sevald Berg/Kjell Kristoffersen m/flere Department of circulation and medical imaging NTNU Hans Torp NTNU, Norway Acquisition Reconstruction Filtering Collecting

More information

Flexible Solutions. Hubert Haidinger Director PE/CAM BU Industrial & Automotive 5.June 2013. www.ats.net

Flexible Solutions. Hubert Haidinger Director PE/CAM BU Industrial & Automotive 5.June 2013. www.ats.net Flexible Solutions Hubert Haidinger Director PE/CAM BU Industrial & Automotive 5.June 2013 www.ats.net Austria Technologie & Systemtechnik Aktiengesellschaft Fabriksgasse13 A-8700 Leoben Tel +43 (0) 3842

More information

"3D Etching Process of the Hybrid Laminate of Metal Foils on Polyimide Film to Build Ultra Thin Connectors for High Density Flexible Circuits

3D Etching Process of the Hybrid Laminate of Metal Foils on Polyimide Film to Build Ultra Thin Connectors for High Density Flexible Circuits PCMI BOSTON. October 11, 2011 "3D Etching Process of the Hybrid Laminate of Metal Foils on Polyimide Film to Build Ultra Thin Connectors for High Density Flexible Circuits Yosuke Kobayashi Dominique Numakura

More information

DESIGN GUIDELINES FOR LTCC

DESIGN GUIDELINES FOR LTCC DESIGN GUIDELINES FOR LTCC HERALOCK HL2000 MATERIALS SYSTEM Preliminary Guideline Release 1.0 CONTENTS 1. INTRODUCTION 1.1. GLOSSARY OF TERMS 1.2. LTCC PROCESS FLOW DIAGRAM 1.3. UNITS OF MEASURE 2. PROCESSING

More information

San Francisco Circuits, Inc.

San Francisco Circuits, Inc. Your Doorway to Innovation San Francisco Circuits, Inc. Bridging Concepts with Reality Flex PCB Introduction to Flex Circuits What is Flex Circuits? From Wikipedia - a technology for assembling electronic

More information

Printed Circuit Boards

Printed Circuit Boards Printed Circuit Boards Luciano Ruggiero lruggiero@deis.unibo.it DEIS Università di Bologna Flusso di progetto di un circuito stampato 1 Specifications Before starting any design, you need to work out the

More information

Metallized Particle Interconnect A simple solution for high-speed, high-bandwidth applications

Metallized Particle Interconnect A simple solution for high-speed, high-bandwidth applications Metallized Particle Interconnect A simple solution for high-speed, high-bandwidth applications The MPI Material Advantage Advantages: High-Density - Scalable Pitches down to 0,8 mm pitch possible - Scalable

More information

Choosing the Dielectric Material for a V93000 DUT Loadboard

Choosing the Dielectric Material for a V93000 DUT Loadboard Jose Moreira and Heidi Barnes Verigy jose.moreira@verigy.com heidi.barnes@verigy.com Abstract This application note discusses the influence of the dielectric material choice on the performance of DUT loadboards

More information

How to Build a Printed Circuit Board. Advanced Circuits Inc 2004

How to Build a Printed Circuit Board. Advanced Circuits Inc 2004 How to Build a Printed Circuit Board 1 This presentation is a work in progress. As methods and processes change it will be updated accordingly. It is intended only as an introduction to the production

More information

PCB Design considerations

PCB Design considerations PCB Design considerations Better product Easier to produce Reducing cost Overall quality improvement 1 PCB design considerations 2 PCB Design to assure optimal assembly Place at least 3 fiducials (global

More information

Interconnecting the next generation of electronics

Interconnecting the next generation of electronics Ormet Circuits Inc. Interconnecting the next generation of electronics Overview Ormet Circuits provides conductive pastes that enable electrical interconnection and thermal management in electronic substrates,

More information