Retrofitting By Means Of Post Tensioning. Khaled Nahlawi 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Retrofitting By Means Of Post Tensioning. Khaled Nahlawi 1"

Transcription

1 Retrofitting By Means Of Post Tensioning Khaled Nahlawi 1 Abstract An analytical program was prepared to retrofit the Holy Cross Church in Santa Cruz, California. An inelastic analysis was perfonned on the church buttresses and tower to obtain the overall behavior. Post tensioned tendons were placed in core drilled holes in the buttresses and in the comers of the end walls to improve the behavior of the structure; higher shear capacity and higher ductility leveis were achieved. A fusing element, which yields at a predetermined load was introduced to prevent the buttress from reaching its ultimate capacity and subsequently preventing it from failure. It is connected to a steel truss placed on top of the existing roof. The soil - buttress and buttress - roof interactions were considered in the inelastic analysis. Introduction The Holy Cross Church was built around the tum of the century (circa 1890). It is an unreinforced masonry (URM) structure consisting of three connected sections. There is a tall tower at the south end of the structure, an apse at the north end houses the altar and sacristy, and the middle section of the structure - the nave - connects the tower and the appendix. The 660 mm thick 5.5 x 5.5 m square URM tower rises 27 m above the ground levei. A 17.0 m high wood framed steeple rests on top ofthe URM tower (see Fig.l). The nave is Keywords: Post-tensioning; shear; ductility; buttress; bond length. IKhaled Nahlawi, Ph.D., PE., Senior Project Engineer with BFL, Redwood City, California, USA 479

2 16.7 x 31 m in plan dimensions. The two 530 mm thick east and west side walls are 12 m high (see Fig. 2). Eight tapered buttresses at approximately 4.4 m spacing rise on the outside face of the nave's side walls. Their thickness varies from 2.1 m at ground levei to 0.64 m at the rooflevel (see Fig. 3). The appendix is 5.1 x 16.7 m in plan. Its walls are 0.53 m thick and 9.2 m high. The URM structure was built on a continuous 1.70 m deep stone rubble foundation, which rests on hard soi!. Timber trusses with a top chord slope of 45 degrees span approximately 17 m between facing buttresses. Structural Deficiencies The church survived two major earthquakes: The 1906 San Francisco Earthquake and the 1989 Loma Prieta Earthquake. No information is available on the extent of damage that resulted from the San Francisco Earthquake. However, the 1989 Loma Prieta Earthquake revealed several deficiencies in the structure. The top portion of the tower above the roof levei ofthe nave, which extended an additional 5.50 m, was severely cracked and had to be removed along with the 17 m high steeple (see Fig. 4). Medium size cracks were observed around window openings in the weak east - west direction. The front south wall, where the tower and the south nave wall meet, was very weak in resisting the lateral force because ofthe openings. Wide cracks were observed in the 1.2 m deep spandrel beam between the window and door openings. The gable outward movement was not sufficiently restrained. Structural Intgrity was lost and numerous flexural cracks developed (see Fig. 4). However, in the strong direction (North - South direction) no cracks were visible in the nave or altar. Proposed Retrofit The maio purpose of the Holy Cross Church retrofit is: 1) to strengthen the structure, 2) to reduce any potential for loss of!ife in future earthquakes, and 3) to preserve its historical appearance. Post tensioning was proposed to retrofit the church as an alternate to conventional methods of retrofitting URM structures. A diamond steel truss was proposed to transfer lateral loading from buttresses to end walls. It was further proposed to rebuild the tower and steeple of steel frames covered with wood frarning. Post Tensioning Twelve-12.5 mm strands were placed in a 180 mm core drilled hole in each buttress. The two front buttresses at the south end required fourteen-12.5 mm strands. The holes were drilled with an incline to the vertical to follow the centerline of the buttress cross section to reduce eccentricity (see Fig. 3). The four corners of the tower, the two buttresses of the appendix, and the north walls ofthe nave and appendix each received seven-12.5 mm 480

3 strands in a straight core drilled 100 rnrn diameter hole, respectively. Figure 2 shows the location ot the post tensioning. The bottom portion of each tendon was bonded while the upper part was unbonded. Hence, the tendons could be re-jacked if stress was lost in a future earthquake. The bottom portion of each tendon was anchored using primary grout of 34.4 MPa compressive strength. Grout for the unbonded length was used for corrosion protection. At the top anchorage, a 2.1 m long and 0.6 m deep brick section was replaced with a reinforced concrete beam to distribute the stresses into the URM wall. The strands were jacked to 71 % of ultimate (Guts). Two seven-12.5 rnrn strand tendons were monitored with load cells over a six month period to measure the stress losses in the post tensioned strands. Tower and Steeple The existing roofwas not disturbed. An in-plane diamond shaped steel truss was built to increase the diaphragm's shear resistance and stifiness, and was placed on top of the existing roof. The truss members served to resist the shear forces and transfer them to the end wails. A single steel member connects the in-plane diamond shaped steel truss to the post tensioning anchorage system, which is designed to yield at a predetermined load. An eccentric steel frame was used to rebuild the damaged top portion of the tower. It is covered with wood frarning and brick embossed stucco to preserve the exterior appearance ofthe structure. A steel frame was a1so used to rebuild the dismantied steeple. It is covered with wood frarning and identical thin metal shingies, which were originally used, to preserve its historical appearance. The advantages of rebuilding the tower and steeple out of steel frame are the reduction in dead weight and better resistance to the tension forces created by the overturning moment. The steel tower was connected to the existing masonry tower by post tensioning anchor plates. The small cracks in the structure were repointed. The structural cracks in the front wall between the door and window openings were injected with low-modulus epoxy resin. Analysis URM is a brittie material by nature. Applying post tensioning to the URM will increase its ductility, provided the axial load does not exceed 25% of the bricks' compressive strength(l). To determine the bricks' compressive strength, f m, a total of four masonry panels were tested; three in-situ and one in a testing lab. The post tensioned buttresses were analyzed using a nonlinear computer program that takes the geometric and material non-iinearity into consideration. The buttress was 481

4 modeled using a column model with an applied. axial load representing post tensioning, which did not exceed 10% ofthe brick's compressive strength capacity. This results in an increase in ductility (1) The roof-buttress and buttress-soil interactions were considered in the computer model by introducing linear and rotational springs, respectively. The lateral load vs. deflection curve is plotted for an increment of 10% of the vertical dead weight applied laterally to the buttress (see Fig. 5). The lateral load deflection curve behavior starts linearly. The fust joint opens at the base to allow for rocking. As the lateralload increases, the secondjoint will open at 5.8 m high in the weak direction and at 9.75 m high in the strong direction, after which the lateral load vs. deflection curve continuous linea11y with a decrease in slope. In the weak direction, the buttress reaches its capacity at a lateral load of approximately 90% of weight. Beyond that, the buttress fails in a brittle manner. In the strong direction, the buttress undergoes large deformations at ultimate compressive strength without any increase in strength (increase in ductility). Due to the presence of post tensioning, ductility increased from approximately zero ductility to a ductility factor of 5. The analysis reveals that post tensioning improves the overall behavior of the buttresses. However, it is not desirable from a practical point of view or for safety reasons for the buttresses to reach their full capacity. A fusing element is introduced to the top connection between the steel box to which the post tensioning is anchored and the steel truss. The fusing element wilj yield at a predetermined load (55% - 75%g), thus preventing extensive damage to the buttresses and eventual collapse. The stressing losses ca1culated from the load cells' readings were 12.7% and 7%, respectively. This translates into an active force of66% and 61% Guts, respectively. The typical buttress was analyzed for an active force of 60.5% Guts or 111 kn. Conclusion The URM structure was checked at working load levei for loads according to UCBC(2), i.e.: 13%g for overall structural behavior. The post tensioned tower and buttresses were analysed using the capacity design method. The advantages of using post tensioning over conventional methods are numerous: 1 -Post tensioning does not alter the interior nor the exterior appearance ofthe structure. It preserves the historical value ofthe architecture. 2 -Forces from post tensioning are permanent and prevent masonry from opening up in future earthquakes. 3 -Post tensioning increases the shear capacity of masonry considerably and therefore earthquake forces are more efiectively resisted. 482

5 4 -Applied axial force from post tensioning will increase the structural ductility. 5 -Post tensioning is an econornical retrofit / strengthening method. The structural retrofit on the Holy Cross Church started on April 1, It took seven months to accomplish the project. The project was c\imaxed by lifting the 17.0 m lúgh steeple on the tlúrd anniversary of the Loma Prieta Earthquake, October 17, and placing it on top of the tower. Acknowledgment The author would like to thank Hans Ganz and Franco Lurati with VSL Intemational for their support, William T. Holmes and Bret Lizundia from Rutherford & Chekene, who acted as plan checkers on behalf of the City of Santa Cruz, and Ronald Hamburger from EQE for lús input. REFERENCES 1. "Post - Tensioning Masonry Structures", VSL Report Series No. 2, VSL Intemational Ltd., Beme, 1990, 35 pp. 2. "Uniform Code for Building Conservation", Appendix Chapter I "earthquake Hazard Reduction in Existing Unreinforced Masonry Buildings", Intemational Conference of Building Officials, Whittler, caiifornia, 1987, pp. 2i

6 484

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By Project Structural Conditions Survey and Seismic Vulnerability Assessment For SFCC Civic Center Campus 750 Eddy Street San Francisco, California 94109 Prepared For San Francisco Community College District

More information

What is Seismic Retrofitting?

What is Seismic Retrofitting? What is Seismic Retrofitting? SEISMIC RETROFITTING A Seismic Retrofit provides existing structures with more resistance to seismic activity due to earthquakes. In buildings, this process typically includes

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

SEISMIC RETROFIT OF UNREINFORCED CLAY BRICK MASONRY WALL USING POLYMER-CEMENT MORTAR

SEISMIC RETROFIT OF UNREINFORCED CLAY BRICK MASONRY WALL USING POLYMER-CEMENT MORTAR SEISMIC RETROFIT OF UNREINFORCED CLAY BRICK MASONRY WALL USING POLYMER-CEMENT MORTAR K. Kikuchi 1, M. Kuroki 2, M. Toyodome 3, C. Escobar 4 and Y. Nakano 5 ABSTRACT : 1 Professor, Dept. of Architectural

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE To satisfy the performance goals of the NEHRP Recommended Seismic Provisions, a number of characteristics are important to the

More information

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System Dr.Binu Sukumar #1, A.Hemamathi *2, S.Kokila #3 C.Hanish #4 #1 Professor &Head, Department of Civil Engineering,

More information

Seismic retrofit of non-ductile concrete and masonry walls by steelstrips

Seismic retrofit of non-ductile concrete and masonry walls by steelstrips Seismic retrofit of non-ductile concrete and masonry walls by steelstrips bracing Mustafa Taghdi, Michel Bruneau, & Murat Saatcioglu Ottawa Carleton Earthquake Engineering Research Centre Department of

More information

Expected Performance Rating System

Expected Performance Rating System Expected Performance Rating System In researching seismic rating systems to determine how to best classify the facilities within the Portland Public School system, we searched out what was used by other

More information

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 25-35 Article ID: IJCIET_06_10_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

Evaluation of the Seismic Performance of Brick Walls Retrofitted and Repaired by Expansive Epoxy Injection

Evaluation of the Seismic Performance of Brick Walls Retrofitted and Repaired by Expansive Epoxy Injection Evaluation of the Seismic Performance of Brick Walls Retrofitted and Repaired by Expansive Epoxy Injection Al Zeiny, Ph.D, P.E. 1 Epoxy materials have been used in the past in the preservation of old masonry

More information

Seismic Retrofit for Existing Buildings

Seismic Retrofit for Existing Buildings Seismic Retrofit for Existing Buildings 4-1-16 2A 3 2B 1 1 Fasten building to foundation A) Epoxy USP offers CIA GEL7000-C epoxy that enables anchors for shear and tension loads to be installed at existing

More information

6 RETROFITTING POST & PIER HOUSES

6 RETROFITTING POST & PIER HOUSES Retrofitting Post & Pier Houses 71 6 RETROFITTING POST & PIER HOUSES by James E. Russell, P.E. 72 Retrofitting Post & Pier Houses Retrofitting Post & Pier Houses 73 RETROFITTING POST AND PIER HOUSES This

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

POST TENSIONING / PRE- TENSIONING LUMUCSO, JAY-AR T.

POST TENSIONING / PRE- TENSIONING LUMUCSO, JAY-AR T. POST TENSIONING / PRE- TENSIONING LUMUCSO, JAY-AR T. History The first post-tensioning systems consisted of ¼-in.wires bundled in groups of 3 to 12. Eight wire bundles were the most common; the wires were

More information

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training Foundations 65 5 FOUNDATIONS by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. 66 Foundations Foundations 67 FOUNDATIONS Let's assume that the retrofit has been done correctly from the roofline

More information

twenty six concrete construction: foundation design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014

twenty six concrete construction: foundation design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture twenty six concrete construction: www.tamu.edu foundation design Foundations 1 Foundation the engineered

More information

Seismic Risk Prioritization of RC Public Buildings

Seismic Risk Prioritization of RC Public Buildings Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past

More information

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Yogesh Ghodke, G. R. Gandhe Department of Civil Engineering, Deogiri Institute of Engineering and Management

More information

Basis of Structural Design

Basis of Structural Design Basis of Structural Design Course 5 Structural action: - Cable structures - Multi-storey structures Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Cable structures

More information

twenty seven concrete construction: foundation design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN HÜDAVERDİ TOZAN SPRING 2013 lecture

twenty seven concrete construction: foundation design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN HÜDAVERDİ TOZAN SPRING 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN HÜDAVERDİ TOZAN SPRING 2013 lecture twenty seven concrete construction: Bright Football Complex www.tamu.edu foundation design Foundations 1 Foundation

More information

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

More information

Structural Inspection Foundations

Structural Inspection Foundations Structural Inspection Foundations 0211 Footings Concrete pad and continuous footings The concrete footings consist of continuous strip footings at the building perimeter of the following sizes: 16 wide

More information

Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS

Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS 9.1 GENERAL 9.1.1 Scope. The quality and testing of concrete and steel (reinforcing and anchoring) materials and the design and construction of concrete

More information

Methods for Seismic Retrofitting of Structures

Methods for Seismic Retrofitting of Structures Methods for Seismic Retrofitting of Structures Retrofitting of existing structures with insufficient seismic resistance accounts for a major portion of the total cost of hazard mitigation. Thus, it is

More information

Carruthers & Wallace Limited

Carruthers & Wallace Limited Anchoring or Fastening To, or Drilling Through, the Structure Lester B. Pearson International Airport Parking Structure 1. General The Parking Garage is a cast-in-place concrete structure prestressed (post-tensioned)

More information

Requirements for the Use of PRESSS Moment-Resisting Frame Systems

Requirements for the Use of PRESSS Moment-Resisting Frame Systems Requirements for the Use of PRESSS Moment-Resisting Frame Systems Neil M. Hawkins, Ph.D. Professor Emeritus Department of Civil Engineering University of Illinois at Urbana-Champaign Urbana, Illinois S.

More information

Designer s NOTEBOOK BLAST CONSIDERATIONS

Designer s NOTEBOOK BLAST CONSIDERATIONS Designer s NOTEBOOK BLAST CONSIDERATIONS For a surface blast, the most directly affected building elements are the façade and structural members on the lower four stories. Although the walls can be designed

More information

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

PROBATIONARY FIREFIGHTER TRAINING FIRE STATION 11-C Robbie Grego, Captain, Firehouse 11C Un-reinforced Masonry

PROBATIONARY FIREFIGHTER TRAINING FIRE STATION 11-C Robbie Grego, Captain, Firehouse 11C Un-reinforced Masonry PROBATIONARY FIREFIGHTER TRAINING FIRE STATION 11-C Robbie Grego, Captain, Firehouse 11C Un-reinforced Masonry INTRODUCTION In today s construction industry Masonry buildings are constructed under much

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

EAST LYME HIGH SCHOOL

EAST LYME HIGH SCHOOL Overview: 1971 N 1966 GYM 1966 CLASSROOM WING 1966 AUD. 1971 GYM 1998 1998 POOL EAST LYME HIGH SCHOOL Original 1966 Building: The original East Lyme High School was constructed in 1966 and was composed

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

Hardy Frame. at top plates. 1/4 x 3" screws. on nuts and washers (Requires 5,000 psi non-shrink grout) Brace Frame HARDY FRAME BRACE FRAME 4X FILLER

Hardy Frame. at top plates. 1/4 x 3 screws. on nuts and washers (Requires 5,000 psi non-shrink grout) Brace Frame HARDY FRAME BRACE FRAME 4X FILLER FRAME On Foundations Hardy Frame Panel Hardy Frame Panel Hardy Frame Panel Hardy Frame Panel with 2x filler at top plates with 4x filler at Portal FRAME 1/4 x 4 PANEL 1/2" screws WITH 2X FILLER FRAME 1/4

More information

Strengthening of Large Storage Tank Foundation Walls in an Aggressive Environment by External Post-tensioning. May 7th 2013: Dominique Deschamps

Strengthening of Large Storage Tank Foundation Walls in an Aggressive Environment by External Post-tensioning. May 7th 2013: Dominique Deschamps Strengthening of Large Storage Tank Foundation Walls in an Aggressive Environment by External Post-tensioning May 7th 2013: Dominique Deschamps Scope of the paper Presentation of the project Cause of cracks

More information

STRUCTURAL ASSESSMENT. Full Metal Jacket Building 0 Prince Street, Alexandria, VA

STRUCTURAL ASSESSMENT. Full Metal Jacket Building 0 Prince Street, Alexandria, VA STRUCTURAL ASSESSMENT FOR Full Metal Jacket Building 0 Prince Street, Prepared by: ALPHA CORPORATION (Alpha) 1850 S. Loudoun Street, Suite 200 Winchester, VA 22601 540-723-0704 September 22, 2010 J. Michael

More information

twenty six concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design

twenty six concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SRING 2014 lecture twenty six Foundation the engineered interface between the earth and the structure it supports that

More information

twenty six concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design

twenty six concrete construction: foundation design Foundation Structural vs. Foundation Design Structural vs. Foundation Design ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SRING 2013 lecture twenty six Foundation the engineered interface between the earth and the structure it supports that

More information

ASCE 41 Seismic Rehabilitation of Existing Buildings

ASCE 41 Seismic Rehabilitation of Existing Buildings ASCE 41 Seismic Rehabilitation of Existing Buildings Presentation Topics: 1. How to define a Rehabilitation Objective per ASCE 41. 2. Data Collection and Testing. 3. Analysis Requirements. 4. Modeling.

More information

EFFECTIVENESS OF INCLUSION OF STEEL BRACING IN EXISTING RC FRAMED STRUCTURE

EFFECTIVENESS OF INCLUSION OF STEEL BRACING IN EXISTING RC FRAMED STRUCTURE IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 9, Sep 2014, 81-88 Impact Journals EFFECTIVENESS OF INCLUSION

More information

SECTION 7 Engineered Buildings Field Investigation

SECTION 7 Engineered Buildings Field Investigation SECTION 7 Engineered Buildings Field Investigation Types of Data to Be Collected and Recorded A field investigator looking at engineered buildings is expected to assess the type of damage to buildings.

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Structural behavior

More information

АLGASLAB SOLUTIONS FOR POST-TENSIONED SLABS

АLGASLAB SOLUTIONS FOR POST-TENSIONED SLABS АLGASLAB SOLUTIONS FOR POST-TENSIONED SLABS ANTISEISMIC DEVICES BEARINGS EXPANSION JOINTS POST TENSIONING SYSTEMS STRUCTURAL REPAIR AND MAINTENANCE Re-development of Michelin complex ex-area, Trento -

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Guidelines for the Design of Post-Tensioned Floors

Guidelines for the Design of Post-Tensioned Floors Guidelines for the Design of Post-Tensioned Floors BY BIJAN O. AALAMI AND JENNIFER D. JURGENS his article presents a set of guidelines intended to T assist designers in routine post-tensioning design,

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE By H P Gupta & D K Gupta DIFFERENT TYPES OF DAMAGES 1.Minor cracks 0.5 to 5 mm wide in load or non-load bearing walls 2.Major

More information

Building Condition Assessment: 109-111 North Howard Street Baltimore, Maryland

Building Condition Assessment: 109-111 North Howard Street Baltimore, Maryland KPA The Joint Venture of EBA Engineering, Inc. and Kennedy Porter & Associates, Inc. 4813 Seton Drive, Baltimore, MD 21215 Phone: (410-358-7171) Fax: (410)358-7213 Building Condition Assessment: Baltimore,

More information

Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads

Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 3 Number 12 (2014) pp. 950-961 http://www.ijcmas.com Original Research Article Rehabilitation of Existing Foundation

More information

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile J. Sherstobitoff Ausenco Sandwell, Vancouver, Canada P. Cajiao AMEC, Vancouver, Canada P. Adebar University of British

More information

Page & Turnbull imagining change in historic environments through design, research, and technology

Page & Turnbull imagining change in historic environments through design, research, and technology DCI+SDE STRUCTURAL EVALUATIONS OFFICE BUILDING, TOOL SHED & WATER TANK, AND BLACKSMITH & MACHINE SHOP BUILDINGS SAN FRANCISCO, CALIFORNIA [14290] PRIMARY PROJECT CONTACT: H. Ruth Todd, FAIA, AICP, LEED

More information

Experimental evaluation of stone masonry walls with lime based mortar under vertical loads

Experimental evaluation of stone masonry walls with lime based mortar under vertical loads Structural Repairs and Maintenance of Heritage Architecture XII 401 Experimental evaluation of stone masonry walls with lime based mortar under vertical loads M. Abdel-Mooty 1, A. Al Attar 2 & M. El Tahawy

More information

Seismic Strengthening of RC Building Structures

Seismic Strengthening of RC Building Structures Seismic Strengthening of RC Building Structures Dr. Basem ABDULLAH History of Earthquake In Japan Tyfo FIBRWRAP Systems Seismic-resistant Building Design Standards in Hong Kong Buildings in Hong Kong are

More information

9.3 Two-way Slabs (Part I)

9.3 Two-way Slabs (Part I) 9.3 Two-way Slabs (Part I) This section covers the following topics. Introduction Analysis and Design Features in Modeling and Analysis Distribution of Moments to Strips 9.3.1 Introduction The slabs are

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

INTERNATIONAL BUILDING CODE STRUCTURAL

INTERNATIONAL BUILDING CODE STRUCTURAL INTERNATIONAL BUILDING CODE STRUCTURAL S5-06/07 1604.11 (New), 1605 (New) Proposed Change as Submitted: Proponent: William M. Connolly, State of New Jersey, Department of Community Affairs, Division of

More information

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim. CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

More information

STRUCTURAL ASSESSMENT REPORT BOLINAS MARINE STATION - BOLINAS, CALIFORNIA

STRUCTURAL ASSESSMENT REPORT BOLINAS MARINE STATION - BOLINAS, CALIFORNIA STRUCTURAL ASSESSMENT REPORT BOLINAS MARINE STATION - BOLINAS, CALIFORNIA College of Marin c/o Swinerton Management & Consulting P.O. Box 144003 835 College Avenue, Building MS-3 Kentfield, California

More information

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed

More information

Seismic Behavior and Capacity/Demand Analyses of a Simply-Supported Multi-Span Precast Bridge

Seismic Behavior and Capacity/Demand Analyses of a Simply-Supported Multi-Span Precast Bridge Seismic Behavior and Capacity/Demand Analyses of a Simply-Supported Multi-Span Precast Bridge Nasim Shatarat 1* and Adel Assaf 2 Abstract This paper presents the results of an analytical study on the seismic

More information

1. Debonding of concrete bridge deck overlay

1. Debonding of concrete bridge deck overlay 1. Debonding of concrete bridge deck overlay An existing reinforced concrete approach ramp to a freeway has been overlain with a 75-mm thick silica fume unreinforced concrete. Surface cracking appeared

More information

Personal Information. Professional Education

Personal Information. Professional Education Jose Antonio Flores Ruiz Structural Engineer Personal Information Telephone + (52) 1 322 108 41 12 e mail Place of birth Toluca, Mexico Date of birth October 6th 1978 Marital Status Married Nationality

More information

The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma

The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma Bart B. Barrett, B.S., P.E.1 Kerry S. Lee, M.B.A., P.E., M. ASCE2 Erik L. Nelson, Ph.D., P.E., M. ASCE3

More information

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK

ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK Luis A. Godoy and Sandra Lopez-Bobonis Department of Civil Engineering, University of Puerto Rico, Mayagüez, PR 00681-9041, Puerto Rico ABSTRACT The

More information

Perforated Shearwall Design Method 1

Perforated Shearwall Design Method 1 Perforated Shearwall Design Method 1 Philip Line, P.E., Bradford K. Douglas, P.E., American Forest & Paper Association, USA Abstract Wood frame shearwalls are traditionally designed using full-height shearwall

More information

Project Report. Structural Investigations Hotel del Sol Yuma, Arizona

Project Report. Structural Investigations Hotel del Sol Yuma, Arizona Project Report Structural Investigations Yuma, Arizona Prepared by: 2619 Spruce Street Boulder, CO 80302 303-444-3620 Prepared for: Principle Engineering Group, Inc. 833 East Plaza Circle, Suite 100 Yuma,

More information

Chapter. Earthquake Damage: Types, Process, Categories

Chapter. Earthquake Damage: Types, Process, Categories 3 Chapter Earthquake Damage: Types, Process, Categories Earthquakes leave behind a trail of damage and destruction. People s lives are affected by the loss of loved ones, destruction of property, economic

More information

STRENGTHENING OF REINFORCED CONCRETE SLABS USING POST-TENSIONING WITH ANCHORAGES BY BONDING

STRENGTHENING OF REINFORCED CONCRETE SLABS USING POST-TENSIONING WITH ANCHORAGES BY BONDING STRENGTHENING OF REINFORCED CONCRETE SLABS USING POST-TENSIONING WITH ANCHORAGES BY BONDING Duarte Faria *, Valter Lúcio**, António Ramos*** *PhD Student, Science and Technology Faculty, New University

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

EARTHQUAKE DESIGN OF BUILDINGS

EARTHQUAKE DESIGN OF BUILDINGS GAP.2.0.9 A Publication of Global Asset Protection Services LLC EARTHQUAKE DESIGN OF BUILDINGS INTRODUCTION Buildings in many areas of the world are susceptible to damage from moderate to severe earthquakes.

More information

Repair and Reinforcement of Glulam Beams for Tinora High School

Repair and Reinforcement of Glulam Beams for Tinora High School Repair and Reinforcement of Glulam Beams for Tinora High School 1. Introduction Gary W. Gray, PE Owner and Principal Gray Engineering and Design, LLC London, Kentucky USA Paul C. Gilham, PE Chief Engineer

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

NUMERICAL ANALYSIS OF AN EXISTING RC FRAME BY USING 3D ELEMENTS

NUMERICAL ANALYSIS OF AN EXISTING RC FRAME BY USING 3D ELEMENTS Journal of Earthquake and Tsunami, Vol. 5, No. 1 (2011) 47 55 c World Scientific Publishing Company DOI: 10.1142/S1793431111001066 NUMERICAL ANALYSIS OF AN EXISTING RC FRAME BY USING 3D ELEMENTS J.QIAN,G.ZHAO,T.LEIandX.LU

More information

Chapter 6 ROOF-CEILING SYSTEMS

Chapter 6 ROOF-CEILING SYSTEMS Chapter 6 ROOF-CEILING SYSTEMS Woodframe roof-ceiling systems are the focus of this chapter. Cold-formed steel framing for a roof-ceiling system also is permitted by the IRC but will not be discussed;

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Since the Steel Joist Institute

Since the Steel Joist Institute SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying K-series, LH, DLH-series joists and joist girders Since the Steel Joist Institute adopted the first standard

More information

FUTURE SLAB. PENETRATIONS and. DEMOLITION of POST-TENSIONED FLOORS

FUTURE SLAB. PENETRATIONS and. DEMOLITION of POST-TENSIONED FLOORS FUTURE SLAB PENETRATIONS and DEMOLITION of POST-TENSIONED FLOORS 1.0 INTRODUCTION Post-tensioned floor slabs in Australia and South East Asia are now universally regarded as the most cost effective form

More information

11 CHAPTER 11: FOOTINGS

11 CHAPTER 11: FOOTINGS CHAPTER ELEVEN FOOTINGS 1 11 CHAPTER 11: FOOTINGS 11.1 Footing Types Footings may be classified as deep or shallow. If depth of the footing is equal to or greater than its width, it is called deep footing,

More information

1.2 Advantages and Types of Prestressing

1.2 Advantages and Types of Prestressing 1.2 Advantages and Types of Prestressing This section covers the following topics. Definitions Advantages of Prestressing Limitations of Prestressing Types of Prestressing 1.2.1 Definitions The terms commonly

More information

Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah

Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

Improving Cyclone, Earthquake and Tsunami Resistance of Houses

Improving Cyclone, Earthquake and Tsunami Resistance of Houses Improving Cyclone, Earthquake and Tsunami Resistance of Houses Photo: Cyclone Damage on Aitutaki in the Cook Islands Courtesy of D Kaunitz (Emergency Architects Australia) Improving Cyclone, Earthquake

More information

CE591 Fall 2013 Lecture 26: Moment Connections

CE591 Fall 2013 Lecture 26: Moment Connections CE591 Fall 2013 Lecture 26: Moment Connections Explain basic design procedure for moment (FR) connections Explain considerations for connections in momentresisting frames for seismic demands Describe problems

More information

Seismic performance evaluation of an existing school building in Turkey

Seismic performance evaluation of an existing school building in Turkey CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 161 167 Seismic performance evaluation of an existing school building in Turkey Hüseyin Bilgin * Department of Civil Engineering, Epoka University,

More information

Chapter 4 FLOOR CONSTRUCTION

Chapter 4 FLOOR CONSTRUCTION Chapter 4 FLOOR CONSTRUCTION Woodframe floor systems and concrete slab-on-grade floors are discussed in this chapter. Although cold-formed steel framing for floor systems also is permitted by the IRC,

More information

International Journal of Advanced Engineering Research and Studies E-ISSN

International Journal of Advanced Engineering Research and Studies E-ISSN Research Article MATERIALS AND JACKETING TECHNIQUE FOR RETROFITTING OF STRUCTURES Shri. Pravin B. Waghmare Address for Correspondence Acharya Shrimannarayan Polytechnic,Pipri(M), Wardha Maharashtra ABSTRACT

More information

TIMBER CONSTRUCTION Chris Arnold, Building Systems Development, USA

TIMBER CONSTRUCTION Chris Arnold, Building Systems Development, USA TIMBER CONSTRUCTION Chris Arnold, Building Systems Development, USA BACKGROUND Wood construction is common for many single-family houses throughout the world. In areas where timber and wood materials are

More information

DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES

DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES EARTHQUAKES Origin of earthquakes The earth was a single land about two hundred million years ago. This land split progressively over a long period of time

More information

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA 1 REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA Verners Straupe, M.sc.eng., Rudolfs Gruberts, dipl. eng. JS Celuprojekts, Murjanu St. 7a, Riga, LV 1024, Latvia e-mail:

More information

STRENGTHENING OF JIAMUSI PRE-STRESSED CONCRETE HIGHWAY BRIDGE BY USING EXTERNAL POST-TENSIONING TECHNOLOGY IN CHINA

STRENGTHENING OF JIAMUSI PRE-STRESSED CONCRETE HIGHWAY BRIDGE BY USING EXTERNAL POST-TENSIONING TECHNOLOGY IN CHINA STRENGTHENING OF JIAMUSI PRE-STRESSED CONCRETE HIGHWAY BRIDGE BY USING EXTERNAL POST-TENSIONING TECHNOLOGY IN CHINA Ali Fadhil Naser and Wang Zonglin School of Transportation Science and Engineering, Bridge

More information

Agenda. Strengthening with External Post-tensioning. Structural Strengthening Existing Structures STRUCTURAL. Strengthening Solutions

Agenda. Strengthening with External Post-tensioning. Structural Strengthening Existing Structures STRUCTURAL. Strengthening Solutions Agenda Strengthening with External ost-tensioning Clyde Ellis Vice resident Strengthening Division Introduction rimary vs. Supplemental strengthening Basic Concept using Ext. T Advantages Systems/Components

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Building Construction. Lightweight construction. Conventional Construction

Building Construction. Lightweight construction. Conventional Construction Ventilation 53 Building Construction The firefighter s ability to safely and efficiently ventilate a building through its roof will depend to some degree on the firefighter s understanding of roof construction.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Background of the research Beam is a main element in structural system. It is horizontal member that carries load through bending (flexure) action. Therefore, beam will deflect

More information

Building Project using Post-Tensioning

Building Project using Post-Tensioning Building Project using Post-Tensioning Paulo Marques 1 Resume Nowadays building flexibility is an aspect to be taken into account at the idealization and project stages. The number of buildings that throughout

More information

POST AND FRAME STRUCTURES (Pole Barns)

POST AND FRAME STRUCTURES (Pole Barns) POST AND FRAME STRUCTURES (Pole Barns) Post and frame structures. The following requirements serve as minimum standards for post and frame structures within all of the following structural limitations:

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information