Remote Sensing Lab: The Products Point Of View

Size: px
Start display at page:

Download "Remote Sensing Lab: The Products Point Of View"

Transcription

1 Remote Sensing Lab: The Products Point Of View Remote Sensing Lab performs processing of the images acquired with its equipment Different products are available to the users: Standard products On-Request products L0 / L1b / L2 / L3 INTA PROCESSING RESOURCES: HW: SUN WS, PCs... SW: IDL+ENVI, ERDAS, GEOMATICA, MIRAMON, PARGE, 6S, PCMODWIN, MATLAB... OTHER EQUIPMENT: GER1500, GPS receivers...

2 HARD DRIVE *.bin files backup on tape AHS DATA FLOW Quality check: Ahs_process.m Ingestion: AHSImportUtility Instrument Proc: AHSImportUtility Raw ENVI files ( 753 x L x 80) PARGE MODTRAN ENVI... Mandatory: Optional L1a / L2 /L3 products Dissemination on CD/DVD

3 Example of AHS quick-looks

4 AHS STANDARD PRODUCTS identification radiometric correction geometric correction L0 / L1a raw data no process no process L1b at-sensor radiance L1c georeferenced at-sensor radiance L2a georeferenced reflectance apparent temper. & from ND to Ls using test bench + labsphere data for VIS-NIR-SWIR and sensor BlackBodies for TIR bands from ND to Ls using test bench + labsphere data for VIS-NIR-SWIR and sensor BlackBodies for TIR bands from Ls to ρ using MODTRAN no process direct georeferencing PARGE direct georeferencing PARGE using using

5 AHS PRODUCTS BACKUP PROCEDURES: Transformation from Ls to ρ using field spectroradiometry signatures and a suitable least squares fitting tool (as Empirical Line Method from ENVI) Transformation from Ls to ρ using 6S Use of GCPs and a suitable transformation (for example thin plate spline from Geomatica ) EXAMPLES OF AHS ON-REQUEST PRODUCTS S-Bend corrected images Surface brightness temperature via MODTRAN Level 3 data: thematic classifications, emissivity images... Formats: ERDAS-IMG, GEOMATICA-PCI...

6 AHS PRODUCTS METADATA All image products will be delivered with a metadata file - there will be a different file per flight line 90% of the metadata elements derived from ISO19115:2003 "Geographic information: metadata" A few extra elements documented following the draft standards ISO19130 and ISO19115-part 2 File format: excel and XML files

7

8 AHS image (RGB 15/8/2) September 2003

9 Remote Sensing Lab capabilities: hyperspectral sensors Cáceres RGB combination of thermal images. Channels 77, 73, 71.

10 Remote Sensing Lab capabilities: hyperspectral sensors Temperature plot at different wavelengths. Natural vs artificial material behaviour

11 Doñana marshlands (RGB 15/8/3) 27 April 2004

12 Doñana marshlands (RGB 15/8/3) 27 April 2004

13 Doñana marshlands (RGB 77/75/72) 27 April 2004

14 Doñana marshlands (RGB 77/75/72) 27 April 2004

15

How to calculate reflectance and temperature using ASTER data

How to calculate reflectance and temperature using ASTER data How to calculate reflectance and temperature using ASTER data Prepared by Abduwasit Ghulam Center for Environmental Sciences at Saint Louis University September, 2009 This instructions walk you through

More information

INTA AIRBORNE REMOTE SENSING FACILITY from the Hasselblad s cameras to the SensyTech-AHS sensor

INTA AIRBORNE REMOTE SENSING FACILITY from the Hasselblad s cameras to the SensyTech-AHS sensor INTA AIRBORNE REMOTE SENSING FACILITY from the Hasselblad s cameras to the SensyTech-AHS sensor José-Antonio Gómez-Sánchez gomezsj@inta.es Remote Sensing Laboratory INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL

More information

Preprocessing in Remote Sensing. Introduction Geo Information (GRS 10306)

Preprocessing in Remote Sensing. Introduction Geo Information (GRS 10306) Preprocessing in Remote Sensing Lammert Kooistra Contact: Lammert.Kooistra@wur.nl Introduction Geo Information (GRS 10306) The art of remote sensing source: ASTER satellite (earthobservatory.nasa.gov)

More information

INVESTIGA I+D+i 2013/2014

INVESTIGA I+D+i 2013/2014 INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better

More information

ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data using FLAASH 2

ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data using FLAASH 2 ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data Using FLAASH Atmospherically Correcting Hyperspectral Data using FLAASH 2 Files Used in This Tutorial 2 Opening the Uncorrected AVIRIS

More information

Remote Sensing Method in Implementing REDD+

Remote Sensing Method in Implementing REDD+ Remote Sensing Method in Implementing REDD+ FRIM-FFPRI Research on Development of Carbon Monitoring Methodology for REDD+ in Malaysia Remote Sensing Component Mohd Azahari Faidi, Hamdan Omar, Khali Aziz

More information

ATMOSPHERIC CORRECTION OF LANDSAT THERMAL INFRARED DATA: A CALCULATOR BASED ON NORTH AMERICAN REGIONAL REANALYSIS (NARR) DATA

ATMOSPHERIC CORRECTION OF LANDSAT THERMAL INFRARED DATA: A CALCULATOR BASED ON NORTH AMERICAN REGIONAL REANALYSIS (NARR) DATA ATMOSPHERIC CORRECTION OF LANDSAT THERMAL INFRARED DATA: A CALCULATOR BASED ON NORTH AMERICAN REGIONAL REANALYSIS (NARR) DATA Dennis McCarville Graduate Student Geography Department Michaela Buenemann

More information

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and

More information

Lectures Remote Sensing

Lectures Remote Sensing Lectures Remote Sensing ATMOSPHERIC CORRECTION dr.ir. Jan Clevers Centre of Geo-Information Environmental Sciences Wageningen UR Atmospheric Correction of Optical RS Data Background When needed? Model

More information

Hyperspectral Satellite Imaging Planning a Mission

Hyperspectral Satellite Imaging Planning a Mission Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective

More information

Resolutions of Remote Sensing

Resolutions of Remote Sensing Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how

More information

Advanced Image Management using the Mosaic Dataset

Advanced Image Management using the Mosaic Dataset Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Advanced Image Management using the Mosaic Dataset Vinay Viswambharan, Mike Muller Agenda ArcGIS Image Management

More information

Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 Mission

Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 Mission Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 Mission J. Pearlman, S. Carman, C. Segal, P. Jarecke, and P. Barry, TRW and W. Browne, NASA GSFC IGARSS 2001 JULY 9, 2001 Hyperion Imaging

More information

Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008

Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008 1 Preface Remote Sensing data is one of the primary data sources in GIS analysis. The objective of this material is to provide fundamentals of Remote Sensing technology and its applications in Geographical

More information

Myths and misconceptions about remote sensing

Myths and misconceptions about remote sensing Myths and misconceptions about remote sensing Ned Horning (graphics support - Nicholas DuBroff) Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under

More information

SLSTR Breakout Summary - Gary Corlett (22/03/2012)

SLSTR Breakout Summary - Gary Corlett (22/03/2012) SLSTR Breakout Summary - Gary Corlett (22/03/2012) [Updated 16/04/2012 with post meeting comments from Gorm Dybkjær, Simon hook and David Meldrum] The breakout session started with a clean slate and identified

More information

Chapter Contents Page No

Chapter Contents Page No Chapter Contents Page No Preface Acknowledgement 1 Basics of Remote Sensing 1 1.1. Introduction 1 1.2. Definition of Remote Sensing 1 1.3. Principles of Remote Sensing 1 1.4. Various Stages in Remote Sensing

More information

Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL

Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL Sky Monitoring Techniques using Thermal Infrared Sensors sabino piazzolla Optical Communications Group JPL Atmospheric Monitoring The atmospheric channel has a great impact on the channel capacity at optical

More information

High Resolution Information from Seven Years of ASTER Data

High Resolution Information from Seven Years of ASTER Data High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra

More information

Work Package Radiometry

Work Package Radiometry Work Package Radiometry EuroSDR project Radiometric aspects of digital photogrammetric imagery Eija Honkavaara Department of Remote Sensing and Photogrammetry Finnish Geodetic Institute EuroDAC Core Team

More information

Multiangle cloud remote sensing from

Multiangle cloud remote sensing from Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire

More information

SAMPLE MIDTERM QUESTIONS

SAMPLE MIDTERM QUESTIONS Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7

More information

Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture

Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Labs in Bologna & Potenza Menzel Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Figure 1: High resolution atmospheric absorption spectrum and comparative blackbody

More information

The premier software for extracting information from geospatial imagery.

The premier software for extracting information from geospatial imagery. Imagery Becomes Knowledge ENVI The premier software for extracting information from geospatial imagery. ENVI Imagery Becomes Knowledge Geospatial imagery is used more and more across industries because

More information

Remote Sensing for Geographical Analysis

Remote Sensing for Geographical Analysis Remote Sensing for Geographical Analysis Geography 651, Fall 2008 Department of Geography Texas A&M University (3 credit hours) Instructor: Dr. Hongxing Liu Office hours: Tue & Thur 10:00AM-12:00AM, O&M

More information

2.3 Spatial Resolution, Pixel Size, and Scale

2.3 Spatial Resolution, Pixel Size, and Scale Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,

More information

Towards agreed data quality layers for airborne hyperspectral imagery

Towards agreed data quality layers for airborne hyperspectral imagery Towards agreed data quality layers for airborne hyperspectral imagery M. Bachmann, DLR M. Bachmann, DLR, S. Adar, TAU; E. Ben-Dor, TAU; J. Biesemans, VITO; X. Briottet, ONERA; M. Grant, PML; J. Hanus,

More information

INTRODUCTION REMOTE SENSING

INTRODUCTION REMOTE SENSING INTRODUCTION REMOTE SENSING dr.ir. Jan Clevers Centre for Geo-Information Dept. Environmental Sciences Wageningen UR Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a

More information

Institute of Agro-Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; E-Mail: liwj@caas.net.

Institute of Agro-Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; E-Mail: liwj@caas.net. Sensors 2015, 15, 304-330; doi:10.3390/s150100304 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution

More information

Digital image processing

Digital image processing 746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA Abineh Tilahun Department of Geography and environmental studies, Adigrat University,

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

Lightbulbs. How does a lightbulb work? Lightbulbs. Electromagnetic radiation. End of semester grade policy. Electric Current

Lightbulbs. How does a lightbulb work? Lightbulbs. Electromagnetic radiation. End of semester grade policy. Electric Current Pressure Lecture 17 : Incandescent lightbulbs How they work Why they are inefficient Lightbulbs How many scientists does it take to change a lightbulb? Undergraduates: None Bright light - hurts... must

More information

Reducing. and CO 2 Emissions in Cities. June 2013. Final Publication www.energycity2013.eu

Reducing. and CO 2 Emissions in Cities. June 2013. Final Publication www.energycity2013.eu Reducing Energy Consumption and CO 2 Emissions in Cities Across Central Europe June 2013 Final Publication www.energycity2013.eu Table of Contents 1. The Central Europe Programme pag. 5 2. Scope and objectives

More information

Received in revised form 24 March 2004; accepted 30 March 2004

Received in revised form 24 March 2004; accepted 30 March 2004 Remote Sensing of Environment 91 (2004) 237 242 www.elsevier.com/locate/rse Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index

More information

Comparison of CEN, FGDC and ISO standards for metadata

Comparison of CEN, FGDC and ISO standards for metadata Comparison of CEN, FGDC and ISO standards for Ing. Jan Ruzicka Institute of Economics and Control Systems VŠB Technical university Ostrava 17. listopadu 15, 708 33 Ostrava Poruba E mail: jan.ruzicka@vsb.cz

More information

3D VISUALIZATION OF GEOTHERMAL WELLS DIRECTIONAL SURVEYS AND INTEGRATION WITH DIGITAL ELEVATION MODEL (DEM)

3D VISUALIZATION OF GEOTHERMAL WELLS DIRECTIONAL SURVEYS AND INTEGRATION WITH DIGITAL ELEVATION MODEL (DEM) Presented at Short Course VII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 27 Nov. 18, 2012. GEOTHERMAL TRAINING PROGRAMME

More information

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY.

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI Imagery Becomes Knowledge ENVI software uses proven scientific methods and automated processes to help you turn geospatial

More information

Mineral Exploration Using GIS and Processed Aster Images

Mineral Exploration Using GIS and Processed Aster Images Mineral Exploration Using GIS and Processed Aster Images Carlos A. Torres Advance GIS EES 6513 (Spring 2007) University of Texas at San Antonio Abstract The risks of developing mineral resources need to

More information

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** *National Institute for Agro-Environmental Sciences 3-1-3 Kannondai Tsukuba

More information

Selecting the appropriate band combination for an RGB image using Landsat imagery

Selecting the appropriate band combination for an RGB image using Landsat imagery Selecting the appropriate band combination for an RGB image using Landsat imagery Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a

More information

Quality of Life in Metropolitan Athens Using Satellite and Census Data: Comparison Between 1991 and 2001

Quality of Life in Metropolitan Athens Using Satellite and Census Data: Comparison Between 1991 and 2001 Quality of Life in Metropolitan Athens Using Satellite and Census Data: Comparison Between 1991 and 2001 Marina Stathopoulou*, Stefanos Iacovides and Constantinos Cartalis Department of Environmental Physics

More information

Landsat 7 Automatic Cloud Cover Assessment

Landsat 7 Automatic Cloud Cover Assessment Landsat 7 Automatic Cloud Cover Assessment Richard R. Irish Science Systems and Applications, Inc. NASA s Goddard Space Flight Center, Greenbelt, Maryland ABSTRACT An automatic cloud cover assessment algorithm

More information

THE SPECTRAL DIMENSION IN URBAN LAND COVER MAPPING FROM HIGH - RESOLUTION OPTICAL REMOTE SENSING DATA *

THE SPECTRAL DIMENSION IN URBAN LAND COVER MAPPING FROM HIGH - RESOLUTION OPTICAL REMOTE SENSING DATA * THE SPECTRAL DIMENSION IN URBAN LAND COVER MAPPING FROM HIGH - RESOLUTION OPTICAL REMOTE SENSING DATA * Martin Herold 1, Meg Gardner 1, Brian Hadley 2 and Dar Roberts 1 1 Department of Geography, University

More information

From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division.

From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division. From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division What else can I do with my sensor/data? Earth to Image Image

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

27/01/2014. Workflows for Remote Sensing Data Processing: Software Development Strategy & Designing Operational Scenarios

27/01/2014. Workflows for Remote Sensing Data Processing: Software Development Strategy & Designing Operational Scenarios 27/01/2014 Workflows for Remote Sensing Data Processing: Software Development Strategy & Designing Operational Scenarios SW Development strategy Life cycle model Project-driven evolutionary life-cycle

More information

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014 Introduction to Spectral Reflectance (passive sensors) Kelly R. Thorp Research Agricultural Engineer USDA-ARS Arid-Land Agricultural Research Center Overview Electromagnetic Radiation (light) Solar Energy

More information

INSPIRE implementation pilot project

INSPIRE implementation pilot project INSPIRE implementation pilot project Implementation of INSPIRE directive in Hungarian e-environment sector KEOP-7.6.3.0-2008-0020 Tamás Tomor PhD, project manager Trans-Tisza Environmental Inspectorate

More information

The USGS Landsat Big Data Challenge

The USGS Landsat Big Data Challenge The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS bsauer@usgs.gov U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation

More information

Obtaining and Processing MODIS Data

Obtaining and Processing MODIS Data Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,

More information

Data Processing Developments at DFD/DLR. Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge

Data Processing Developments at DFD/DLR. Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge Data Processing Developments at DFD/DLR Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge EUFAR Joint Expert Working Group Meeting Edinburgh, April 14th 2011 Conclusions

More information

LANDSAT 8 Level 1 Product Performance

LANDSAT 8 Level 1 Product Performance Réf: IDEAS-TN-10-QualityReport LANDSAT 8 Level 1 Product Performance Quality Report Month/Year: January 2016 Date: 26/01/2016 Issue/Rev:1/9 1. Scope of this document On May 30, 2013, data from the Landsat

More information

South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected

South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected At 14:05 April 16, 2011 At 13:55 April 16, 2011 At 14:20 April 16, 2011 ND ND 3.6E-01 ND ND 3.6E-01 1.3E-01 9.1E-02 5.0E-01 ND 3.7E-02 4.5E-01 ND ND 2.2E-02 ND 3.3E-02 4.5E-01 At 11:37 April 17, 2011 At

More information

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities 1 VCS REDD Methodology Module Methods for monitoring forest cover changes in REDD project activities Version 1.0 May 2009 I. SCOPE, APPLICABILITY, DATA REQUIREMENT AND OUTPUT PARAMETERS Scope This module

More information

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Naftaly Goldshleger, *Eyal Ben-Dor,* *Ido Livne,* U. Basson***, and R.Ben-Binyamin*Vladimir

More information

The empirical line method for the atmospheric correction of IKONOS imagery

The empirical line method for the atmospheric correction of IKONOS imagery INT. J. REMOTE SENSING, 2003, VOL. 24, NO. 5, 1143 1150 The empirical line method for the atmospheric correction of IKONOS imagery E. KARPOUZLI* and T. MALTHUS Department of Geography, University of Edinburgh,

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

Overview of the IR channels and their applications

Overview of the IR channels and their applications Ján Kaňák Slovak Hydrometeorological Institute Jan.kanak@shmu.sk Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation

More information

Temperature. LumaSense Technologies, Inc. supplies a unique selection of very precise calibration

Temperature. LumaSense Technologies, Inc. supplies a unique selection of very precise calibration Temperature Calibration Sources Highly accurate calibration equipment for pyrometers, thermal imaging cameras, radiometers, heatflux and spectrographic measurement sytems. Calibration sources are infrared

More information

Remote Sensing in Natural Resources Mapping

Remote Sensing in Natural Resources Mapping Remote Sensing in Natural Resources Mapping NRS 516, Spring 2016 Overview of Remote Sensing in Natural Resources Mapping What is remote sensing? Why remote sensing? Examples of remote sensing in natural

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Characteristics and statistics of digital remote sensing imagery

Characteristics and statistics of digital remote sensing imagery Characteristics and statistics of digital remote sensing imagery There are two fundamental ways to obtain digital imagery: Acquire remotely sensed imagery in an analog format (often referred to as hard-copy)

More information

Big data and Earth observation New challenges in remote sensing images interpretation

Big data and Earth observation New challenges in remote sensing images interpretation Big data and Earth observation New challenges in remote sensing images interpretation Pierre Gançarski ICube CNRS - Université de Strasbourg 2014 Pierre Gançarski Big data and Earth observation 1/58 1

More information

Comparison of Thermal Imaging Systems Used in Thermography as a Non Destructive Testing Method for Composite Parts

Comparison of Thermal Imaging Systems Used in Thermography as a Non Destructive Testing Method for Composite Parts ECNDT 26 - Tu.4.6.4 Comparison of Thermal Imaging Systems Used in Thermography as a Non Destructive Testing Method for Composite Parts Nathalie GERLACH, Haute Ecole Rennequin Sualem, Liège, Belgium Abstract:

More information

GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog

GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog Corey Calvert, UW/CIMSS Mike Pavolonis, NOAA/NESDIS/STAR

More information

GEOGRAPHICAL INFORMATION SYSTEM (GIS) AS A TOOL FOR CERTIFICATION OF BIOFUELS IN ARGENTINA

GEOGRAPHICAL INFORMATION SYSTEM (GIS) AS A TOOL FOR CERTIFICATION OF BIOFUELS IN ARGENTINA GEOGRAPHICAL INFORMATION SYSTEM (GIS) AS A TOOL FOR CERTIFICATION OF BIOFUELS IN ARGENTINA International Workshop CHALLENGES AND SOCIAL AND ENVIRONMENTAL IMPACTS OF THE BIOFUEL PRODUCTION IN AMERICA. Buenos

More information

Monitoring System Performance

Monitoring System Performance Monitoring System Performance Venue: PV Module Reliability Workshop Presenter: Keith Emery and Ryan Smith Date: February 16, 2011 NREL/PR-5200-50643 NREL is a national laboratory of the U.S. Department

More information

CO2 Emissions. Indirect CO 2. Emissions Electricity and Heat Production 25 % Direct Emissions AFOLU 24 % Energy 1,4% Buildings 6,4 % Industry 11 %

CO2 Emissions. Indirect CO 2. Emissions Electricity and Heat Production 25 % Direct Emissions AFOLU 24 % Energy 1,4% Buildings 6,4 % Industry 11 % CO2 Emissions Direct Emissions AFOLU 24 % Buildings 6,4 % Transport 14 % 49 Gt CO2 eq (2010) Indirect CO 2 Emissions Electricity and Heat Production 25 % Energy 1,4% Industry 11 % Transport 0,3 % Industry

More information

SELECTIVE GLAZING FOR SUN CONTROL

SELECTIVE GLAZING FOR SUN CONTROL SUN CONTROL GLAZING SELECTIVE GLAZING FOR SUN CONTROL Sun Factor 1st level performance for direct solar energy Solar energy control Solar control coating Only if the glass is exposed to sun rays! 2nd level

More information

VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping

VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement

More information

Cloud Classification in JPEG-compressed Remote Sensing Data (LANDSAT 7/ETM+)

Cloud Classification in JPEG-compressed Remote Sensing Data (LANDSAT 7/ETM+) Cloud Classification in JPEG-compressed Remote Sensing Data (LANDSAT 7/ETM+) Erik Borg 1, Bernd Fichtelmann 1 and Hartmut Asche 1 German Aerospace Center, German Remote Sensing Data Center, 1735 Neustrelitz

More information

Andrea Bondì, Irene D Urso, Matteo Ombrelli e Paolo Telaroli (Thetis S.p.A.) Luisa Sterponi e Cesar Urrutia (Spacedat S.r.l.) Water Calesso (Marco

Andrea Bondì, Irene D Urso, Matteo Ombrelli e Paolo Telaroli (Thetis S.p.A.) Luisa Sterponi e Cesar Urrutia (Spacedat S.r.l.) Water Calesso (Marco Generation of a digital elevation model of the Wadi Lebda basin, Leptis Magna - Lybia Andrea Bondì, Irene D Urso, Matteo Ombrelli e Paolo Telaroli (Thetis S.p.A.) Luisa Sterponi e Cesar Urrutia (Spacedat

More information

Landsat Monitoring our Earth s Condition for over 40 years

Landsat Monitoring our Earth s Condition for over 40 years Landsat Monitoring our Earth s Condition for over 40 years Thomas Cecere Land Remote Sensing Program USGS ISPRS:Earth Observing Data and Tools for Health Studies Arlington, VA August 28, 2013 U.S. Department

More information

CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406)

CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406) CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406) J. Skupin, S. Noël, M. W. Wuttke, H. Bovensmann and J. P. Burrows Institute

More information

Reprojecting MODIS Images

Reprojecting MODIS Images Reprojecting MODIS Images Why Reprojection? Reasons why reprojection is desirable: 1. Removes Bowtie Artifacts 2. Allows geographic overlays (e.g. coastline, city locations) 3. Makes pretty pictures for

More information

Heat Transfer. Energy from the Sun. Introduction

Heat Transfer. Energy from the Sun. Introduction Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to

More information

A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared.

A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared. A Geographic Information System (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. GIS allows us to view,

More information

Joint European Research Infrastructure network for Coastal Observatories

Joint European Research Infrastructure network for Coastal Observatories Joint European Research Infrastructure network for Coastal Observatories Delayed Mode Data Management Handbook V1 - D5.1 Grant Agreement n 262584 Project Acronym: JERICO Project Title: Towards a Joint

More information

Cafcam: Crisp And Fuzzy Classification Accuracy Measurement Software

Cafcam: Crisp And Fuzzy Classification Accuracy Measurement Software Cafcam: Crisp And Fuzzy Classification Accuracy Measurement Software Mohamed A. Shalan 1, Manoj K. Arora 2 and John Elgy 1 1 School of Engineering and Applied Sciences, Aston University, Birmingham, UK

More information

Geography 403 Lecture 7 Scanners, Thermal, and Microwave

Geography 403 Lecture 7 Scanners, Thermal, and Microwave Geography 403 Lecture 7 Scanners, Thermal, and Microwave Needs: Lect_403_7.ppt A. Basics of Passive Electric Sensors 1. Sensors absorb EMR and produce some sort of response, such as voltages differences

More information

Comparison of field and laboratory collected midwave and longwave infrared emissivity spectra / data reduction techniques

Comparison of field and laboratory collected midwave and longwave infrared emissivity spectra / data reduction techniques Comparison of field and laboratory collected midwave and longwave infrared emissivity spectra / data reduction techniques Carl Salvaggio*, Craig J. Miller** Spectral Information Technology Applications

More information

LiDAR for vegetation applications

LiDAR for vegetation applications LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis plewis@geog.ucl.ac.uk Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications

More information

Atmospheric / Topographic Correction for Satellite Imagery. (ATCOR-2/3 User Guide, Version 9.0.2, March 2016)

Atmospheric / Topographic Correction for Satellite Imagery. (ATCOR-2/3 User Guide, Version 9.0.2, March 2016) Atmospheric / Topographic Correction for Satellite Imagery (ATCOR-2/3 User Guide, Version 9.0.2, March 2016) R. Richter 1 and D. Schläpfer 2 1 DLR - German Aerospace Center, D - 82234 Wessling, Germany

More information

Phys 2310 Wed. Sept. 21, 2016 Today s Topics

Phys 2310 Wed. Sept. 21, 2016 Today s Topics Phys 2310 Wed. Sept. 21, 2016 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

More information

The ENVI Header Format

The ENVI Header Format Getting Started with ENVI: Working with Header Files The ENVI Header Format The ENVI header file contains information ENVI uses to read an image data file. ENVI typically creates a header file the first

More information

Perennisation et Valorisation Nov 7, 2002

Perennisation et Valorisation Nov 7, 2002 Elaine Dobinson PDS Project Manager Perennisation et Valorisation Nov 7, 2002 Topics Introduction and Background Challenges Solution Implementation Benefits Next Steps 2 PDS Overview The PDS acquires,

More information

An Introduction to the MTG-IRS Mission

An Introduction to the MTG-IRS Mission An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products

More information

Authors: Thierry Phulpin, CNES Lydie Lavanant, Meteo France Claude Camy-Peyret, LPMAA/CNRS. Date: 15 June 2005

Authors: Thierry Phulpin, CNES Lydie Lavanant, Meteo France Claude Camy-Peyret, LPMAA/CNRS. Date: 15 June 2005 Comments on the number of cloud free observations per day and location- LEO constellation vs. GEO - Annex in the final Technical Note on geostationary mission concepts Authors: Thierry Phulpin, CNES Lydie

More information

Solar Radiation Dynamics during the Total Solar Eclipse on 11 August 1999 in the Territory of Bulgaria

Solar Radiation Dynamics during the Total Solar Eclipse on 11 August 1999 in the Territory of Bulgaria Sun and Geosphere, 27; 2(1): 56-6 ISSN 1819-839 Solar Radiation Dynamics during the Total Solar Eclipse on 11 August 1999 in the Territory of Bulgaria D.D.Krezhova, T.K.Yanev, A.H.Krumov Solar-Terrestrial

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

Using Remotely Sensed Data From ASTER to Look Impact of Recent Earth Quakes in Gujarat, India.

Using Remotely Sensed Data From ASTER to Look Impact of Recent Earth Quakes in Gujarat, India. Using Remotely Sensed Data From ASTER to Look Impact of Recent Earth Quakes in Gujarat, India. A major earth quake occurred in Gujarat, India on January 26,2000. (Origin time 03:16 GMT, Location 23.399N

More information

MICROSCOPY DAY 2011: Understanding and handling image data Martin Spitaler

MICROSCOPY DAY 2011: Understanding and handling image data Martin Spitaler Imperial College London Understanding and handling image data Understanding Images () What s in an image file: Pixel data metadata Getting the data into the file: Image acquisition Image file formats Using

More information

Data Data Everywhere, We are now in the Big Data era

Data Data Everywhere, We are now in the Big Data era Data Data Everywhere, We are now in the Big Data era Mike Liddell 13 th March 2014 UUVs @ OI 2014 Contents Menu Background Big Data What is Generating our Big Data Physical Management of Big Data Optimisation

More information

CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES

CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES Proceedings of the 2 nd Workshop of the EARSeL SIG on Land Use and Land Cover CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES Sebastian Mader

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements

Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements Faculty of Physics and Earth Sciences Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements Tobias Zinner Evi Jäkel, Sandra Kanter, Florian Ewald, Tobias Kölling

More information