ISOMORPHISM BETWEEN AHP AND DOUBLE ENTRY BOOK KEEPING SYSTEM

Save this PDF as:

Size: px
Start display at page:

Transcription

1 ISOMORPHISM BETWEEN AHP AND DOUBLE ENTRY BOOK KEEPING SYSTEM Masaaki Shinohara* Nihon University Izumi-chou, Narashino Chiba , Japan Keikichi Osawa Nihon University Izumi-chou, Narashino Chiba , Japan ABSTRACT An isomorphic mapping, or a one-to-one correspondence, between the Analytic Hierarchy Process and the Double Entry Book Keeping system is pointed out and the isomorphism in its detail is discussed. First, two former related studies on the suggested isomorphism, one by Professor Ludwig Mochty of Universitat Essen and the other by Professor Yuji Ijiri of Carnegie Mellon University are surveyed. The Logarithmic Analytic Hierarchy Process, which is the logarithmic least squares theory framework applied to estimating priority weights from pairwise comparison data of the Analytic Hierarchy Process, is chosen for our proposed isomorphism. The isomorphism between the AHP and the DEBK (Double Entry Book Keeping) system is summarized from four viewpoints: system topology (graph/network), what variable to choose as potential, what is skew symmetric, and the relationship between the potential and the skew symmetric matrix. It is shown that the reciprocity of pairwise comparison measurement directly contributes to the double-entry property of bookkeeping system. Through an example of the Double Entry Book Keeping system with a set of transactions during a period, the presented isomorphism is examined in detail. Keywords: isomorphism, double entry, book keeping, logarithmic least squares, skew symmetric 1. Introduction An English mathematician, Arthur Cayley, stated that the principle of double-entry book-keeping is absolutely perfect just like Euclid s theory of ratios. But Arthur Cayley didn t explain the reason for the absolute perfectness, said Yuji Ijiri in [1]. In this paper we try to explain the reason for the absolute perfectness in the principle of double-entry book-keeping by studying an isomorphism found between the Double Entry Book Keeping (DEBK) system and the Logarithmic Analytic Hierarchy Process (LAHP). The isomorphism between double-entry accounting system and AHP was first discussed in the 6th ISAHP 2001 symposium by Ludwig Mochty([2]), which will be briefly reviewed next. 2. Former related studies by Ludwig Mochty[2] and Yuji Ijiri[1] Two related studies are reviewed, one by Ludwig Mochty[2] and the other by Yuji Ijiri[1]. 2.1 Isomorphism proposed by Ludwig Mochty[2] According to the matrix theory of double-entry accounting system, following equations (1) and (2) hold. Here, v(t) : closing balance (column) vector for period t, or opening balance vector for period t+1, (1) (2)

2 S(t) : double-entry accounting matrix for period t, U(t) : transaction (general ledger) matrix for period t, and 1 : (column) vector with all the elements being 1. v and 1 are n 1 matrixes (or column vectors), and S and U are n n square matrixes, where n is the number of accounts. From the definition Eq.(2) of double-entry accounting matrix S = {s ij }, skew symmetric relation of Eq.(3) holds, or matrix S is skew symmetric. (3) For a complete-information pairwise comparison matrix A = {a ij } used in AHP, the reciprocal relation Eq.(4) is usually assumed. (4) Taking logarithm of both sides of Eq.(4), Eq.(5) or Eq.(6) is obtained, where α ij = log a ij. Logarithmic pairwise comparison matrix log A = {log a ij } is also skew symmetric. In this sense, there is an isomorphism between double-entry accounting system and AHP. 2.2 Isomorphism suggested by Yuji Ijiri[1] Ijiri insists that Cayley didn t say Double-entry book-keeping is absolutely perfect, but Cayley said Double-entry book-keeping is absolutely perfect just like the Euclid s theory of ratios, suggesting a formal isomorphism between a double-entry accounting matrix S and a reciprocal square matrix R of infinite size, called the infinite ratio matrix, given by Eq.(7). (5) (6) (7) Ijiri doesn t mention its relation with AHP, but under three conditions, any pairwise comparison matrix used in AHP can be interpreted as a square submatrix of the infinite ratio matrix R. The first condition is that the set of pairwise comparisons are perfectly consistent, the second condition is that priority weights are approximated to natural numbers (positive integers) and the third condition is that priority weights are all different or there exists no identical priority weight. 3. Detailed isomorphism between Double Entry Book Keeping (DEBK) system and Logarithmic Analytic Hierarchy Process (LAHP) An isomorphic correspondence found between the double-entry book-keeping system and the AHP is further studied and a more detailed isomorphism is established between the double-entry book-keeping system and the logarithmic AHP, which is the logarithmic least square theory applied to estimating priority weight in AHP. 3.1 Logarithmic AHP([3]) The logarithmic least square theory applied to estimating priority weight is briefly reviewed from the theory of flow and potential [3]. For any pairwise comparison design graph G(V,E), following generalized equation in an undirected manner holds from Eq.(13) of Ref.[3].

3 (8) Here, is the tendency of overestimation or underestimation accompanied with measurement ( ), α ik = log a ik, u i = log x i (x i : priority weight of item i), and A(i) = {k (i,k) E or (k,i) E}. Considering the case of complete information of pairwise comparison measurement, letting R ik = 1, and assuming normalization condition Σu k = 0, Eq.(8) is reduced to Eq.(9). (9) Let U i = nu i, then we get Eq.(10), or Eq.(11) in matrix form. Here, B = {α ik }, U = {U i }, and 1 = {1}. Note that if A = {a ik } is reciprocal, then B = {α ik } is skew symmetric as pointed out in Ref.[2]. Moreover, B can be decomposed in such a way as B = C C T, C 0. Here, a nonzero element of C (say, c ik ) corresponds to an active pairwise comparison value a ik (>1). 3.2 Matrix theory of double-entry book-keeping system([4]) Let S be a cutset-arc incidence matrix, T = {t ij } be a transaction matrix and t = {t k } be a transaction vector for a transaction flow network N(V, E). Let n be the number of nodes in V, or the number of accounts, and e be the number of arcs in E, or the number of positive transactions. According to the theory of cutset analysis for the double-entry book-keeping system, proposed in Ref. [4], following equation (12) holds. Here, f c is the transaction flow difference at cutsets. Considering a simple case, let S be the node-arc incidence matrix, then Eq.(12) is reduced to Eq.(13) or Eq.(14). Here, f is the transaction flow difference at nodes, T is of n n, 1 is of n 1, S is of n e, and t is of e 1. Any transaction matrix T and transaction vector t can be made nonnegative, or T 0 and t 0, by redefining transaction orientation, and then the spreadsheet matrix K is defined by Eq.(15). 3.3 Isomorphism between LAHP and DEBK Theories in preceding sections 3.1 and 3.2 are compared and are summarized as in Table 1 from four viewpoints. They are system topology (graph/network), what variable to choose as potential, what is skew symmetric, and the relationship between the potential and the skew symmetric matrix. (10) (11) (12) (13) (14) (15) Table 1 Isomorphism between LAHP and DEBK Abstract Theory LAHP DEBK

4 System(graph/network) Pairwise comparison design graph G(V, E) with node set V and arc set E. An item to be compared corresponds to a node and a pair of compared items corresponds to an arc. Potential Logarithmic priority weight U = {U i}, where U i = nu i, u i = log x i, n = number of items, and x i = priority weight of item i. Skew-symmetricity Logarithmic pairwise comparison matrix B = log A = C C T, where C 0, A = {a ij}, and a ij = importance ratio of item i to item j. Relation between potential and Relation between U and B skew-symmetric matrix Transaction flow network N(V, E) with node set V and arc set E. An account corresponds to a node and a transaction which takes place between a pair of accounts corresponds to an arc. Transaction flow balance f = {f i}, where f i = balance at account i. Spreadsheet matrix K = T T T, where T 0, T = {t ij}, and t ij = transaction flow from account i to account j. Relation between f and K 4. Isomorphism example Taking a transaction flow network shown in Fig.1 as an example, the isomorphic relation between LAHP and DEBK is explained. Fig.1 Transaction flow network Transaction matrix T and spreadsheet matrix K are given by Eq.(16) and Eq.(17). (16) (17) Therefore, the transaction flow balance f is calculated by Eq.(18). (18) Next, a pairwise comparison design graph of AHP, G(V,E), corresponding to the transaction flow network of Fig.1, N(V,E), will be studied. Since a complete set of comparison pairs are assumed, a pair of pairwise comparisons a ij = 1 and a ji = 1 (i j) are assumed in the pairwise comparison matrix A, corresponding to a pair of non-diagonal zero elements k ij = 0 and k ji = 0 (i j) in the spreadsheet matrix K. Then, the pairwise comparison matrix A associated to the spreadsheet matrix K of Eq.(17) is given by Eq.(19), where a ij = 10 kij or K = log A = {log 10 a ij }.

5 (19) Since the spreadsheet matrix K can be decomposed such that K = T T T and T 0, log A = {log a ij } can be also decomposed such that log A = C C T and C 0. Let C = log 10 D, then the pairwise comparison matrix D corresponds to the set of pairwise comparisons with their values greater than (or equal to) 1, whose design graph is shown in Fig.2, together with matrix C by Eq.(20) and matrix D by Eq.(21). Fig.2 Pairwise comparison design graph with their pairwise comparison values graph than one (20) (21) Note that pairwise comparison matrix A is related to D by Eq.(22). (22) Also note that d 15 = 12.5 and d 51 = 5 in Fig.2 or in Eq.(21), which means that item 1 is 12.5 times better than item 5 at a measurement (or a transaction) and that item 5 is 5 times better than item 1 at another measurement (or another transaction). That is, an addition of a transaction in DEBK corresponds to an addition of a measurement in AHP. Moreover, it is interesting to notice that c ij = 0 in C of AHP can correspond to two cases of DEBK, a case of no transaction between i and j, and a case of multiple transactions with their sum being 0 between i and j. The latter case includes a case of a single transaction with its value being 0. These two cases can be regarded almost the same in DEBK, but they cannot be regarded the same in AHP unless we employ the principle of insufficient reason. Since this example is made such that matrix C equals to matrix T, the priority weight potential U and the transaction flow balance f also become the same.

6 (23) (24) Note that the transaction flow balance conservation law 1 T f = 0 holds since 1 T f = 1 T T1 1 T T T 1 = 0. Finally, the priority weights in AHP will be examined. Since U i = 5u i, the logarithmic priority weight of item i, u i (u i = U i / 5), and the priority weight of item i, x i (x i = 10 ui ), are given by Eqs.(25) and (26). (25) (26) Normalizing the priority weight vector x of Eq.(26) so that the sum of its elements is 1 (x T 1 normalized priority weight vector is given by Eq.(27). = 1), the (27) 5. Conclusion It is shown that there exists a one-to-one correspondence (or an isomorphism) between the framework of estimating priority weight vector of AHP from a pairwise comparison matrix by the logarithmic least square method and the matrix theory of double-entry book-keeping system, which is summarized in Table 1. Note that the reciprocity of pairwise comparison measurement directly contributes the double-entry property of book-keeping system. Moreover, through an example with a set of transactions during a period, the presented isomorphism is thoroughly examined and it is shown that an addition of one transaction t ij (>0) in the double-entry book-keeping system corresponds to an addition of one pairwise comparison measurement a ij (>1). That is, during a period there can exist a number of transactions cancelling and enhancing each other between two account nodes in the double-entry book-keeping system, which corresponds to a number of pairwise comparison measurements cancelling and enhancing each other between two items in the AHP. In the theoretical development of proposed isomorphism, the complete information of pairwise comparison measurement among items and the reciprocity of pairwise comparison measurement have been assumed. Theoretical development of the isomorphism between LAHP and DEBK for the

7 concept of Consistency Index and the cases of cutset analysis, incomplete information, multiple measurements, and non-reciprocal comparison matrix, are future research problems. References [1] Yuji Ijiri: Arthur Cayley and the Absolute Perfectness of Double-entry Bookkeeping (in Japanese), The Journal of Tokyo Keizai University, No.250, pp (2006.3). [2] Ludwig Mochty: The isomorphism between double-entry accounting and the analytic hierarchy process, Proceedings of ISAHP2001, pp (2001.8). [3] Masaaki Shinohara, Keikichi Osawa and Ken Shinohara: Flow and potential in Logarithmic Least Squares Estimation of AHP, Proceedings of ISAHP 2005, pp (2005.7). [4] Masaaki Shinohara and Ken Shinohara: Topological Consideration on Double-entry Bookkeeping System Part : Cutset analysis for transaction flow (in Japanese), Proceeding of the 41 st Mathematical Information Research Conference, College of Industrial Technology, Nihon University, pp.1-4 ( ).

Estimation of Unknown Comparisons in Incomplete AHP and It s Compensation

Estimation of Unknown Comparisons in Incomplete AHP and It s Compensation ISSN 0386-1678 Report of the Research Institute of Industrial Technology, Nihon University Number 77, 2005 Estimation of Unknown

How to do AHP analysis in Excel

How to do AHP analysis in Excel Khwanruthai BUNRUAMKAEW (D) Division of Spatial Information Science Graduate School of Life and Environmental Sciences University of Tsukuba ( March 1 st, 01) The Analytical

MULTIPLE-OBJECTIVE DECISION MAKING TECHNIQUE Analytical Hierarchy Process

MULTIPLE-OBJECTIVE DECISION MAKING TECHNIQUE Analytical Hierarchy Process Business Intelligence and Decision Making Professor Jason Chen The analytical hierarchy process (AHP) is a systematic procedure

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

Decision-making with the AHP: Why is the principal eigenvector necessary

European Journal of Operational Research 145 (2003) 85 91 Decision Aiding Decision-making with the AHP: Why is the principal eigenvector necessary Thomas L. Saaty * University of Pittsburgh, Pittsburgh,

Mathematics of Cryptography

CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

Mathematics Notes for Class 12 chapter 3. Matrices

1 P a g e Mathematics Notes for Class 12 chapter 3. Matrices A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as matrix is enclosed by [ ] or ( ) or Compact form

A Direct Numerical Method for Observability Analysis

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method

Early FP Estimation and the Analytic Hierarchy Process

Early FP Estimation and the Analytic Hierarchy Process Luca Santillo (luca.santillo@gmail.com) Abstract Several methods exist in order to estimate the size of a software project, in a phase when detailed

Circuits 1 M H Miller

Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

A 0.9 0.9. Figure A: Maximum circle of compatibility for position A, related to B and C

MEASURING IN WEIGHTED ENVIRONMENTS (Moving from Metric to Order Topology) Claudio Garuti Fulcrum Ingenieria Ltda. claudiogaruti@fulcrum.cl Abstract: This article addresses the problem of measuring closeness

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

We call this set an n-dimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.

Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to

THE ANALYTIC HIERARCHY PROCESS (AHP)

THE ANALYTIC HIERARCHY PROCESS (AHP) INTRODUCTION The Analytic Hierarchy Process (AHP) is due to Saaty (1980) and is often referred to, eponymously, as the Saaty method. It is popular and widely used,

The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:

Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

Split Nonthreshold Laplacian Integral Graphs

Split Nonthreshold Laplacian Integral Graphs Stephen Kirkland University of Regina, Canada kirkland@math.uregina.ca Maria Aguieiras Alvarez de Freitas Federal University of Rio de Janeiro, Brazil maguieiras@im.ufrj.br

An Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy Logic: Case Studies of Life and Annuity Insurances

Proceedings of the 8th WSEAS International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada, June 19-21, 2007 126 An Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy

The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering

10. Graph Matrices Incidence Matrix

10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a

The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

LECTURE 4. Last time: Lecture outline

LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

A new Environmental Performance Index using analytic hierarchy process: A case of ASEAN countries

Article A new Environmental Performance Index using analytic hierarchy process: A case of ASEAN countries Wan Khadijah Wan Ismail, Lazim Abdullah Department of Mathematics, Faculty of Science and Technology,

ANALYTIC HIERARCHY PROCESS (AHP) TUTORIAL

Kardi Teknomo ANALYTIC HIERARCHY PROCESS (AHP) TUTORIAL Revoledu.com Table of Contents Analytic Hierarchy Process (AHP) Tutorial... 1 Multi Criteria Decision Making... 1 Cross Tabulation... 2 Evaluation

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

The Solution of Linear Simultaneous Equations

Appendix A The Solution of Linear Simultaneous Equations Circuit analysis frequently involves the solution of linear simultaneous equations. Our purpose here is to review the use of determinants to solve

Modeling and Performance Evaluation of Computer Systems Security Operation 1

Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

The Analytic Hierarchy Process. Danny Hahn

The Analytic Hierarchy Process Danny Hahn The Analytic Hierarchy Process (AHP) A Decision Support Tool developed in the 1970s by Thomas L. Saaty, an American mathematician, currently University Chair,

TECHNIQUES OF. C.T. Pan 1. C.T. Pan

TECHNIQUES OF CIRCUIT ANALYSIS C.T. Pan 1 4.1 Introduction 4.2 The Node-Voltage Method ( Nodal Analysis ) 4.3 The Mesh-Current Method ( Mesh Analysis ) 4.4 Fundamental Loop Analysis 4.5 Fundamental Cutset

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

Social Media Mining. Graph Essentials

Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

2.1 Introduction. 2.2 Terms and definitions

.1 Introduction An important step in the procedure for solving any circuit problem consists first in selecting a number of independent branch currents as (known as loop currents or mesh currents) variables,

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL REPRESENTATIONS FOR PHASE TYPE DISTRIBUTIONS AND MATRIX-EXPONENTIAL DISTRIBUTIONS

Stochastic Models, 22:289 317, 2006 Copyright Taylor & Francis Group, LLC ISSN: 1532-6349 print/1532-4214 online DOI: 10.1080/15326340600649045 SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

Classification of Cartan matrices

Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

Enterprise Organization and Communication Network

Enterprise Organization and Communication Network Hideyuki Mizuta IBM Tokyo Research Laboratory 1623-14, Shimotsuruma, Yamato-shi Kanagawa-ken 242-8502, Japan E-mail: e28193@jp.ibm.com Fusashi Nakamura

ANALYTIC HIERARCHY PROCESS AS A RANKING TOOL FOR DECISION MAKING UNITS

ISAHP Article: Jablonsy/Analytic Hierarchy as a Raning Tool for Decision Maing Units. 204, Washington D.C., U.S.A. ANALYTIC HIERARCHY PROCESS AS A RANKING TOOL FOR DECISION MAKING UNITS Josef Jablonsy

Solution of Linear Systems

Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

Analytic Hierarchy Process, a Psychometric Approach. 1 Introduction and Presentation of the Experiment

Analytic Hierarchy Process, a Psychometric Approach Christine Choirat and Raffaello Seri Dept. of Economics, Università dell Insubria Varese, Italy Abstract. The Analytic Hierarchy Process, or AHP for

Journal of Chemical and Pharmaceutical Research, 2014, 6(3):34-39. Research Article. Analysis of results of CET 4 & CET 6 Based on AHP

Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(3):34-39 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Analysis of results of CET 4 & CET 6 Based on AHP

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

The Hadamard Product Elizabeth Million April 12, 2007 1 Introduction and Basic Results As inexperienced mathematicians we may have once thought that the natural definition for matrix multiplication would

College Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1

College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

Cofactor Expansion: Cramer s Rule

Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating

Supplier Performance Evaluation and Selection in the Herbal Industry

Supplier Performance Evaluation and Selection in the Herbal Industry Rashmi Kulshrestha Research Scholar Ranbaxy Research Laboratories Ltd. Gurgaon (Haryana), India E-mail : rashmi.kulshreshtha@ranbaxy.com

4. MATRICES Matrices

4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

Solution to Homework 2

Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do

DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH

DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH CHRISTOPHER RH HANUSA AND THOMAS ZASLAVSKY Abstract We investigate the least common multiple of all subdeterminants,

Notes on Determinant

ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring

Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Qiang Zheng, Student Member, IEEE, and Guohong Cao, Fellow, IEEE Department of Computer Science and Engineering

Diagonal, Symmetric and Triangular Matrices

Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks

A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks H. T. Kung Dario Vlah {htk, dario}@eecs.harvard.edu Harvard School of Engineering and Applied Sciences

Tensors on a vector space

APPENDIX B Tensors on a vector space In this Appendix, we gather mathematical definitions and results pertaining to tensors. The purpose is mostly to introduce the modern, geometrical view on tensors,

A paired comparisons ranking and Swiss-system chess team tournaments

A paired comparisons ranking and Swiss-system chess team tournaments László Csató Department of Operations Research and Actuarial Sciences Corvinus University of Budapest October 15, 2012 Abstract The

Suk-Geun Hwang and Jin-Woo Park

Bull. Korean Math. Soc. 43 (2006), No. 3, pp. 471 478 A NOTE ON PARTIAL SIGN-SOLVABILITY Suk-Geun Hwang and Jin-Woo Park Abstract. In this paper we prove that if Ax = b is a partial signsolvable linear

DETERMINANTS. b 2. x 2

DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

Metrics on SO(3) and Inverse Kinematics

Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

SECTIONS 1.5-1.6 NOTES ON GRAPH THEORY NOTATION AND ITS USE IN THE STUDY OF SPARSE SYMMETRIC MATRICES

SECIONS.5-.6 NOES ON GRPH HEORY NOION ND IS USE IN HE SUDY OF SPRSE SYMMERIC MRICES graph G ( X, E) consists of a finite set of nodes or vertices X and edges E. EXMPLE : road map of part of British Columbia

Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph

FPSAC 2009 DMTCS proc (subm), by the authors, 1 10 Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph Christopher R H Hanusa 1 and Thomas Zaslavsky 2 1 Department

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

Project Management Software Selection Using Analytic Hierarchy Process Method

International Journal of Applied Science and Technology Vol. 4, No. ; November 04 Project Management Software Selection Using Analytic Hierarchy Process Method Birgul Kutlu Professor Bogazici University

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars

Journal of International Council on Electrical Engineering Vol. 3, No. 2, pp.164~168, 2013 http://dx.doi.org/10.5370/jicee.2013.3.2.164 A Design of DC/DC Converter of Photovoltaic Generation System for

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Chapter 10 Boundary Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

USING THE ANALYTIC HIERARCHY PROCESS FOR DECISION MAKING IN ENGINEERING APPLICATIONS: SOME CHALLENGES

Published in: Inter l Journal of Industrial Engineering: Applications and Practice, Vol. 2, No. 1, pp. 35-44, 1995. 1 USING THE ANALYTIC HIERARCHY PROCESS FOR DECISION MAKING IN ENGINEERING APPLICATIONS:

Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

Performance of networks containing both MaxNet and SumNet links

Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for

Statistical Foundations: Measures of Location and Central Tendency and Summation and Expectation

Statistical Foundations: and Central Tendency and and Lecture 4 September 5, 2006 Psychology 790 Lecture #4-9/05/2006 Slide 1 of 26 Today s Lecture Today s Lecture Where this Fits central tendency/location

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

Project Management Software Selection Using Analytic Hierarchy Process Method

Project Management Software Selection Using Analytic Hierarchy Process Method ISSN - 35-055 Sweety Sen (B.tech: Information Technology) Dronacharya College of Engineering Gurgaon, India Phone no. : 00343

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. by John C. Davis Clarificationof zonationprocedure described onpp. 38-39 Because the notation used in this section (Eqs. 4.8 through 4.84) is inconsistent

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

Determinants. Dr. Doreen De Leon Math 152, Fall 2015

Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.

Power Rankings: Math for March Madness

Power Rankings: Math for March Madness James A. Swenson University of Wisconsin Platteville swensonj@uwplatt.edu March 5, 2011 Math Club Madison Area Technical College James A. Swenson (UWP) Power Rankings:

Introduction to Matrix Algebra I

Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis

Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................