SECTIONS NOTES ON GRAPH THEORY NOTATION AND ITS USE IN THE STUDY OF SPARSE SYMMETRIC MATRICES


 Ethelbert Cook
 1 years ago
 Views:
Transcription
1 SECIONS.5.6 NOES ON GRPH HEORY NOION ND IS USE IN HE SUDY OF SPRSE SYMMERIC MRICES graph G ( X, E) consists of a finite set of nodes or vertices X and edges E. EXMPLE : road map of part of British Columbia Kamloops Whistler Merrit Vancouver Hope Princeton he information contained in this map can be represented by a graph with N 6 vertices. X { Van, Whi, Kam, Hop, Pri, Mer } E { (Van, Whi), (Whi, Kam), (Hop, Van), (Kam, Mer), (Hop, Pri), (Mer, Hop) } Note that E is a set of unordered pairs; that is, (Van, Whi) is the same edge as (Whi, Van). Usually a graph is represented as follows (rather than by listing the sets X and E): Van Hop Mer Pri Kam Whi 3
2 Note that although the above graph looks quite different from the map of B.C., all of the information contained in the sets X and E is retained. he above is an example of an unordered (or unlabelled) graph. n ordering (or labelling) α is a mapping of the integers {, 2,, N} onto X. For example, if α is the mapping Van 2 Hop 3 Mer 4 Pri 5 Kam 6 Whi then the above unordered graph becomes the ordered graph in Figure 3.. : he relationship between graphs on N nodes and N N symmetric matrices: an N N symmetric matrix has an associated ordered graph with node set X {, 2,, N } and edge set E such that ( i, j) ( j, i) E if and only if a a and i j. ij ji s we will be interested only in positive definite matrices, which always have all diagonal entries nonzero, we will put nonzeros in all positions on the main diagonal. hus, as in Figure 3.., the matrix associated with the above graph has nonzeros in positions indicated by an as follows: 32
3 33 (Note in the George/Liu notes, the diagonal entries are denoted by circled integers, rather than.) Let I P be an N N permutation matrix. hen PP is a symmetric reordering of the rows and columns of. For example, in Figure 3..2, P and (using the above matrix ) PP and the associated graph for this matrix is
4 How do you determine the permutation matrix P such that for the original matrix above and its associated graph, the graph associated with PP is as above? he nonzeros in P can be determined as follows: Mapping of the nodes Nonzeros in P 2 (2, ) 2 4 (4, 2) 3 3 (3, 3) 4 6 (6, 4) 5 (, 5) 6 5 (5, 6) he unlabelled (or unordered) graphs of and PP are the same they represent the structure of or the equivalence class of all matrices PP where P is any N N permutation matrix. he ordered graphs are associated with PP for different permutation matrices P. he problem of finding a good permutation matrix for (with respect to some sparse matrix problem) is equivalent to finding a good ordering (or labeling) of the graph of. ERMINOLGY wo nodes x and y are adjacent in a graph G if the nodes x and y are said to be neighbors. he adjacent set of a node y in G is ( x, y) ( y, x) E. In this case, dj(y) { x X : ( x, y) E } he degree of a node y is dj (y)., the cardinality of the set dj(y). 34
5 (simple) path from node x to node y of length l in G is an ordered set of l + distinct nodes ( v, v2, K, v l + ) such that vi+ dj( vi ), for i, 2, K, l with v x and v l y. + graph G is connected if every pair of distinct nodes is joined by at least one path. Otherwise, G is disconnected and consists of two or more connected components. disconnected graph with two connected components: Relationship with matrices: the graph of a matrix is disconnected if and only if there exists a permutation matrix P such that PP 22 where and 22 are square (nonempty) submatrices. Such a matrix block diagonal matrix. PP is called a EXMPLE Suppose that a matrix has the following zero/nonzero structure:. he graph of is 35
6 With P, we obtain PP, which is a block diagonal matrix. he graph of PP is Definition symmetric matrix is reducible if there exists a permutation matrix P such that 22 PP, where 22 and are square (nonempty) submatrices. If such a permutation matrix P does not exist, then is irreducible. HEOREM symmetric matrix is reducible if and only if its associated graph is disconnected. symmetric matrix is irreducible if and only if its associated graph is connected.
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationElements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
More informationClassification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
More information(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.
11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order
More informationSOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
More informationSimplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More informationGroup Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition
Chapter 1 Group Fundamentals 1.1 Groups and Subgroups 1.1.1 Definition A group is a nonempty set G on which there is defined a binary operation (a, b) ab satisfying the following properties. Closure: If
More information4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More information3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.
Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R
More information1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationFIRST and FOLLOW sets a necessary preliminary to constructing the LL(1) parsing table
FIRST and FOLLOW sets a necessary preliminary to constructing the LL(1) parsing table Remember: A predictive parser can only be built for an LL(1) grammar. A grammar is not LL(1) if it is: 1. Left recursive,
More informationx 2 if 2 x < 0 4 x if 2 x 6
Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) =
More informationAlgebra & Number Theory. A. Baker
Algebra & Number Theory [0/0/2009] A. Baker Department of Mathematics, University of Glasgow. Email address: a.baker@maths.gla.ac.uk URL: http://www.maths.gla.ac.uk/ ajb Contents Chapter. Basic Number
More informationON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
More information3. SETS, FUNCTIONS & RELATIONS
3. SETS, FUNCTIONS & RELATIONS If I see the moon, then the moon sees me 'Cos seeing's symmetric as you can see. If I tell Aunt Maude and Maude tells the nation Then I've told the nation 'cos the gossiping
More informationNotes on finite group theory. Peter J. Cameron
Notes on finite group theory Peter J. Cameron October 2013 2 Preface Group theory is a central part of modern mathematics. Its origins lie in geometry (where groups describe in a very detailed way the
More informationNOTES ON GROUP THEORY
NOTES ON GROUP THEORY Abstract. These are the notes prepared for the course MTH 751 to be offered to the PhD students at IIT Kanpur. Contents 1. Binary Structure 2 2. Group Structure 5 3. Group Actions
More informationBayesian Models of Graphs, Arrays and Other Exchangeable Random Structures
Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures Peter Orbanz and Daniel M. Roy Abstract. The natural habitat of most Bayesian methods is data represented by exchangeable sequences
More informationRandom matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs
Random matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs Jeong Han Kim Microsoft Research One Microsoft Way Redmond, WA 9805 USA jehkim@microsoft.com Nicholas
More informationGroup Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
More informationA Tutorial on Spectral Clustering
A Tutorial on Spectral Clustering Ulrike von Luxburg Max Planck Institute for Biological Cybernetics Spemannstr. 38, 7276 Tübingen, Germany ulrike.luxburg@tuebingen.mpg.de This article appears in Statistics
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationUNIVERSIDADE DE SÃO PAULO
UNIVERSIDADE DE SÃO PAULO Instituto de Ciências Matemáticas e de Computação ISSN 01032569 Comments on On minimizing the lengths of checking sequences Adenilso da Silva Simão N ō 307 RELATÓRIOS TÉCNICOS
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationThe Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonaldiagonalorthogonal type matrix decompositions Every
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More information