SECTIONS NOTES ON GRAPH THEORY NOTATION AND ITS USE IN THE STUDY OF SPARSE SYMMETRIC MATRICES


 Ethelbert Cook
 1 years ago
 Views:
Transcription
1 SECIONS.5.6 NOES ON GRPH HEORY NOION ND IS USE IN HE SUDY OF SPRSE SYMMERIC MRICES graph G ( X, E) consists of a finite set of nodes or vertices X and edges E. EXMPLE : road map of part of British Columbia Kamloops Whistler Merrit Vancouver Hope Princeton he information contained in this map can be represented by a graph with N 6 vertices. X { Van, Whi, Kam, Hop, Pri, Mer } E { (Van, Whi), (Whi, Kam), (Hop, Van), (Kam, Mer), (Hop, Pri), (Mer, Hop) } Note that E is a set of unordered pairs; that is, (Van, Whi) is the same edge as (Whi, Van). Usually a graph is represented as follows (rather than by listing the sets X and E): Van Hop Mer Pri Kam Whi 3
2 Note that although the above graph looks quite different from the map of B.C., all of the information contained in the sets X and E is retained. he above is an example of an unordered (or unlabelled) graph. n ordering (or labelling) α is a mapping of the integers {, 2,, N} onto X. For example, if α is the mapping Van 2 Hop 3 Mer 4 Pri 5 Kam 6 Whi then the above unordered graph becomes the ordered graph in Figure 3.. : he relationship between graphs on N nodes and N N symmetric matrices: an N N symmetric matrix has an associated ordered graph with node set X {, 2,, N } and edge set E such that ( i, j) ( j, i) E if and only if a a and i j. ij ji s we will be interested only in positive definite matrices, which always have all diagonal entries nonzero, we will put nonzeros in all positions on the main diagonal. hus, as in Figure 3.., the matrix associated with the above graph has nonzeros in positions indicated by an as follows: 32
3 33 (Note in the George/Liu notes, the diagonal entries are denoted by circled integers, rather than.) Let I P be an N N permutation matrix. hen PP is a symmetric reordering of the rows and columns of. For example, in Figure 3..2, P and (using the above matrix ) PP and the associated graph for this matrix is
4 How do you determine the permutation matrix P such that for the original matrix above and its associated graph, the graph associated with PP is as above? he nonzeros in P can be determined as follows: Mapping of the nodes Nonzeros in P 2 (2, ) 2 4 (4, 2) 3 3 (3, 3) 4 6 (6, 4) 5 (, 5) 6 5 (5, 6) he unlabelled (or unordered) graphs of and PP are the same they represent the structure of or the equivalence class of all matrices PP where P is any N N permutation matrix. he ordered graphs are associated with PP for different permutation matrices P. he problem of finding a good permutation matrix for (with respect to some sparse matrix problem) is equivalent to finding a good ordering (or labeling) of the graph of. ERMINOLGY wo nodes x and y are adjacent in a graph G if the nodes x and y are said to be neighbors. he adjacent set of a node y in G is ( x, y) ( y, x) E. In this case, dj(y) { x X : ( x, y) E } he degree of a node y is dj (y)., the cardinality of the set dj(y). 34
5 (simple) path from node x to node y of length l in G is an ordered set of l + distinct nodes ( v, v2, K, v l + ) such that vi+ dj( vi ), for i, 2, K, l with v x and v l y. + graph G is connected if every pair of distinct nodes is joined by at least one path. Otherwise, G is disconnected and consists of two or more connected components. disconnected graph with two connected components: Relationship with matrices: the graph of a matrix is disconnected if and only if there exists a permutation matrix P such that PP 22 where and 22 are square (nonempty) submatrices. Such a matrix block diagonal matrix. PP is called a EXMPLE Suppose that a matrix has the following zero/nonzero structure:. he graph of is 35
6 With P, we obtain PP, which is a block diagonal matrix. he graph of PP is Definition symmetric matrix is reducible if there exists a permutation matrix P such that 22 PP, where 22 and are square (nonempty) submatrices. If such a permutation matrix P does not exist, then is irreducible. HEOREM symmetric matrix is reducible if and only if its associated graph is disconnected. symmetric matrix is irreducible if and only if its associated graph is connected.
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationZachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
More information6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 201112) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
More informationA permutation can also be represented by describing its cycles. What do you suppose is meant by this?
Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More informationSocial Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
More information10. Graph Matrices Incidence Matrix
10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a
More informationOPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION
OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationElementary Matrices and The LU Factorization
lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three
More informationMatrix Multiplication
Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationSection 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj
Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More information2.5 Elementary Row Operations and the Determinant
2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)
More informationDETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH
DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH CHRISTOPHER RH HANUSA AND THOMAS ZASLAVSKY Abstract We investigate the least common multiple of all subdeterminants,
More information. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9
Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a
More informationYousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal  April 30, 2008
A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal  April 30, 2008 Outline Part 1 Sparse matrices and sparsity
More informationDeterminants. Dr. Doreen De Leon Math 152, Fall 2015
Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.
More informationDiscrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
More informationWarshall s Algorithm: Transitive Closure
CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths
More information3/25/2014. 3/25/2014 Sensor Network Security (Simon S. Lam) 1
Sensor Network Security 3/25/2014 Sensor Network Security (Simon S. Lam) 1 1 References R. Blom, An optimal class of symmetric key generation systems, Advances in Cryptology: Proceedings of EUROCRYPT 84,
More informationLecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
More informationDirect Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
More informationSHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More information(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
More informationMatrices, transposes, and inverses
Matrices, transposes, and inverses Math 40, Introduction to Linear Algebra Wednesday, February, 202 Matrixvector multiplication: two views st perspective: A x is linear combination of columns of A 2 4
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationTechnology, Kolkata, INDIA, pal.sanjaykumar@gmail.com. sssarma2001@yahoo.com
Sanjay Kumar Pal 1 and Samar Sen Sarma 2 1 Department of Computer Science & Applications, NSHM College of Management & Technology, Kolkata, INDIA, pal.sanjaykumar@gmail.com 2 Department of Computer Science
More informationGENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More informationMinimum rank of graphs that allow loops. Rana Catherine Mikkelson. A dissertation submitted to the graduate faculty
Minimum rank of graphs that allow loops by Rana Catherine Mikkelson A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major:
More informationIE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
More informationMathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR
Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGrawHill The McGrawHill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,
More information= [a ij ] 2 3. Square matrix A square matrix is one that has equal number of rows and columns, that is n = m. Some examples of square matrices are
This document deals with the fundamentals of matrix algebra and is adapted from B.C. Kuo, Linear Networks and Systems, McGraw Hill, 1967. It is presented here for educational purposes. 1 Introduction In
More informationClassification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationDesign of LDPC codes
Design of LDPC codes Codes from finite geometries Random codes: Determine the connections of the bipartite Tanner graph by using a (pseudo)random algorithm observing the degree distribution of the code
More informationAsking Hard Graph Questions. Paul Burkhardt. February 3, 2014
Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate  R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)
More informationCOMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the HigmanSims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
More informationV. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More informationUnit 18 Determinants
Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of
More informationMining SocialNetwork Graphs
342 Chapter 10 Mining SocialNetwork Graphs There is much information to be gained by analyzing the largescale data that is derived from social networks. The bestknown example of a social network is
More informationDeterminants in the Kronecker product of matrices: The incidence matrix of a complete graph
FPSAC 2009 DMTCS proc (subm), by the authors, 1 10 Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph Christopher R H Hanusa 1 and Thomas Zaslavsky 2 1 Department
More informationChapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors
Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col
More informationInverses. Stephen Boyd. EE103 Stanford University. October 27, 2015
Inverses Stephen Boyd EE103 Stanford University October 27, 2015 Outline Left and right inverses Inverse Solving linear equations Examples Pseudoinverse Left and right inverses 2 Left inverses a number
More informationSplit Nonthreshold Laplacian Integral Graphs
Split Nonthreshold Laplacian Integral Graphs Stephen Kirkland University of Regina, Canada kirkland@math.uregina.ca Maria Aguieiras Alvarez de Freitas Federal University of Rio de Janeiro, Brazil maguieiras@im.ufrj.br
More informationNotes on Symmetric Matrices
CPSC 536N: Randomized Algorithms 201112 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationClass One: Degree Sequences
Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of
More informationA linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form
Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...
More informationAN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC
AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC W. T. TUTTE. Introduction. In a recent series of papers [l4] on graphs and matroids I used definitions equivalent to the following.
More informationGRASP and Path Relinking for the Matrix Bandwidth Minimization *
GRASP and Path Relinking for the Matrix Bandwidth Minimization * Estefanía Piñana, Isaac Plana, Vicente Campos and Rafael Martí Dpto. de Estadística e Investigación Operativa, Facultad de Matemáticas,
More informationOn Integer Additive SetIndexers of Graphs
On Integer Additive SetIndexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A setindexer of a graph G is an injective setvalued function f : V (G) 2 X such that
More informationCOUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS
COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS Alexander Burstein Department of Mathematics Howard University Washington, DC 259, USA aburstein@howard.edu Sergey Kitaev Mathematics
More informationIntegers and division
CS 441 Discrete Mathematics for CS Lecture 12 Integers and division Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Symmetric matrix Definition: A square matrix A is called symmetric if A = A T.
More informationWeek 5: Binary Relations
1 Binary Relations Week 5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all
More informationAn Elementary Proof of the Markov Chain Tree Theorem. Alex Kruckman, Amy Greewald and John Wicks
An Elementary Proof of the Markov Chain Tree Theorem Alex Kruckman, Amy Greewald and John Wicks Department of Computer Science Brown University Providence, Rhode Island 9 CS4 August AN ELEMENTARY PROOF
More informationUNCOUPLING THE PERRON EIGENVECTOR PROBLEM
UNCOUPLING THE PERRON EIGENVECTOR PROBLEM Carl D Meyer INTRODUCTION Foranonnegative irreducible matrix m m with spectral radius ρ,afundamental problem concerns the determination of the unique normalized
More informationAbstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
More informationNetwork (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,
More informationMatrix Inverse and Determinants
DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationArithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
More informationFacts About Eigenvalues
Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationLinkbased Analysis on Large Graphs. Presented by Weiren Yu Mar 01, 2011
Linkbased Analysis on Large Graphs Presented by Weiren Yu Mar 01, 2011 Overview 1 Introduction 2 Problem Definition 3 Optimization Techniques 4 Experimental Results 2 1. Introduction Many applications
More informationSGL: Stata graph library for network analysis
SGL: Stata graph library for network analysis Hirotaka Miura Federal Reserve Bank of San Francisco Stata Conference Chicago 2011 The views presented here are my own and do not necessarily represent the
More informationSukGeun Hwang and JinWoo Park
Bull. Korean Math. Soc. 43 (2006), No. 3, pp. 471 478 A NOTE ON PARTIAL SIGNSOLVABILITY SukGeun Hwang and JinWoo Park Abstract. In this paper we prove that if Ax = b is a partial signsolvable linear
More informationAn Application of Linear Algebra to Image Compression
An Application of Linear Algebra to Image Compression Paul Dostert July 2, 2009 1 / 16 Image Compression There are hundreds of ways to compress images. Some basic ways use singular value decomposition
More informationDiscrete Mathematics. Hans Cuypers. October 11, 2007
Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................
More informationPROBLEM SET 7: PIGEON HOLE PRINCIPLE
PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.
More informationSpring 2007 Math 510 Hints for practice problems
Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an chessboard There are doors between all adjacent cells A prisoner in one
More informationLattice Point Geometry: Pick s Theorem and Minkowski s Theorem. Senior Exercise in Mathematics. Jennifer Garbett Kenyon College
Lattice Point Geometry: Pick s Theorem and Minkowski s Theorem Senior Exercise in Mathematics Jennifer Garbett Kenyon College November 18, 010 Contents 1 Introduction 1 Primitive Lattice Triangles 5.1
More informationHISTORICAL DEVELOPMENTS AND THEORETICAL APPROACHES IN SOCIOLOGY Vol. I  Social Network Analysis  Wouter de Nooy
SOCIAL NETWORK ANALYSIS University of Amsterdam, Netherlands Keywords: Social networks, structuralism, cohesion, brokerage, stratification, network analysis, methods, graph theory, statistical models Contents
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationTHE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationUsing determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:
Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible
More informationFrancesco Sorrentino Department of Mechanical Engineering
Master stability function approaches to analyze stability of the synchronous evolution for hypernetworks and of synchronized clusters for networks with symmetries Francesco Sorrentino Department of Mechanical
More informationJust the Factors, Ma am
1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationA note on companion matrices
Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod
More informationConnected Identifying Codes for Sensor Network Monitoring
Connected Identifying Codes for Sensor Network Monitoring Niloofar Fazlollahi, David Starobinski and Ari Trachtenberg Dept. of Electrical and Computer Engineering Boston University, Boston, MA 02215 Email:
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationLinear Algebra and TI 89
Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing
More informationAllPairs Shortest Paths with Matrix Multiplication
AllPairs Shortest Paths with Matrix Multiplication Chandler Burfield March 15, 2013 Chandler Burfield APSP with Matrix Multiplication March 15, 2013 1 / 19 Outline 1 Seidel s algorithm 2 Faster Matrix
More informationAN APPROACH FOR TESTING THE DESIGN OF WEBSITE
AN APPROACH FOR TESTING THE DESIGN OF WEBSITE Vandana Khatkar, MPhil Scholar Chaudhary Devi Lal University Sirsa, Haryana (INDIA) ABSTRACT In this paper, a new approach has been described that models a
More informationn 2 + 4n + 3. The answer in decimal form (for the Blitz): 0, 75. Solution. (n + 1)(n + 3) = n + 3 2 lim m 2 1
. Calculate the sum of the series Answer: 3 4. n 2 + 4n + 3. The answer in decimal form (for the Blitz):, 75. Solution. n 2 + 4n + 3 = (n + )(n + 3) = (n + 3) (n + ) = 2 (n + )(n + 3) ( 2 n + ) = m ( n
More informationSection Summary. Introduction to Graphs Graph Taxonomy Graph Models
Chapter 10 Chapter Summary Graphs and Graph Models Graph Terminology and Special Types of Graphs Representing Graphs and Graph Isomorphism Connectivity Euler and Hamiltonian Graphs ShortestPath Problems
More informationSystem Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology  2. Terminology  1
System Interconnect Architectures CSCI 8150 Advanced Computer Architecture Hwang, Chapter 2 Program and Network Properties 2.4 System Interconnect Architectures Direct networks for static connections Indirect
More informationDeterminants LECTURE Calculating the Area of a Parallelogram. Definition Let A be a 2 2 matrix. A = The determinant of A is the number
LECTURE 13 Determinants 1. Calculating the Area of a Parallelogram Definition 13.1. Let A be a matrix. [ a c b d ] The determinant of A is the number det A) = ad bc Now consider the parallelogram formed
More informationInverses and powers: Rules of Matrix Arithmetic
Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3
More information