Online Semi-Supervised Learning

Size: px
Start display at page:

Download "Online Semi-Supervised Learning"

Transcription

1 Online Semi-Supervised Learning Andrew B. Goldberg, Ming Li, Xiaojin Zhu Computer Sciences University of Wisconsin Madison Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 1 / 18

2 Life-long learning x 1 x 2... x x y 1 = y 1000 = 1... y = 0... Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 2 / 18

3 his is how children learn, too x 1 x 2... x x y 1 = y 1000 = 1... y = 0... Unlike standard supervised learning: n examples arrive sequentially, cannot even store them all most examples unlabeled no iid assumption, p(x, y) can change over time Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 3 / 18

4 New paradigm: online semi-supervised learning Main contribution: merging 1 online learning: learn non-iid sequentially, but fully labeled 2 semi-supervised learning: learn from labeled and unlabeled data, but in batch mode 1 At time t, adversary picks x t X, y t Y not necessarily iid, shows x t 2 Learner has classifier f t : X R, predicts f t (x t ) 3 With small probability, adversary reveals y t ; otherwise it abstains (unlabeled) 4 Learner updates to f t+1 based on x t and y t (if given). Repeat. Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 4 / 18

5 Review: batch manifold regularization A form of graph-based semi-supervised learning [Belkin et al. JMLR06]: Graph on x 1... x n Edge weights w st encode similarity between x s, x t, e.g., knn Assumption: similar examples have similar labels Manifold regularization minimizes risk: J(f) = 1 l t=1 δ(y t )c(f(x t ), y t ) + λ 1 2 f 2 K + λ 2 2 (f(x s ) f(x t )) 2 w st s,t=1 d1 c(f(x), y) convex loss function, e.g., the hinge loss. Solution f = arg min f J(f). Generalizes graph mincut and label propagation. d4 d2 d3 Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 5 / 18

6 From batch to online batch risk = average instantaneous risks J(f) = 1 t=1 J t(f) Batch risk J(f) = 1 l t=1 δ(y t )c(f(x t ), y t ) + λ 1 2 f 2 K + λ 2 2 (f(x s ) f(x t )) 2 w st s,t=1 Instantaneous risk J t (f) = l δ(y t)c(f(x t ), y t ) + λ 1 2 f 2 K + λ 2 t (f(x i ) f(x t )) 2 w it (includes graph edges between x t and all previous examples) i=1 Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 6 / 18

7 Online convex programming Instead of minimizing convex J(f), reduce convex J t (f) at each step t. J t (f) f t+1 = f t η t f Remarkable no regret guarantee against adversary: Accuracy can be arbitrarily bad if adversary flips target often If so, no batch learner in hindsight can do well either ft regret 1 J t (f t ) J(f ) t=1 [Zinkevich ICML03] No regret: lim sup 1 t=1 J t(f t ) J(f ) 0. If no adversary (iid), the average classifier f = 1/ t=1 f t is good: J( f) J(f ). Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 7 / 18

8 Kernelized algorithm Init: t = 1, f 1 = 0 Repeat t 1 f t ( ) = α (t) i K(x i, ) i=1 1 receive x t, predict f t (x t ) = t 1 2 occasionally receive y t 3 update f t to f t+1 by i=1 α(t) i K(x i, x t ) α (t+1) i = (1 η t λ 1 )α (t) i 2η t λ 2 (f t (x i ) f t (x t ))w it, i < t t α (t+1) t = 2η t λ 2 4 store x t, let t = t + 1 i=1 (f t (x i ) f t (x t ))w it η t l δ(y t)c (f(x t ), y t ) Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 8 / 18

9 Sparse approximation he algorithm is impractical space O( ): stores all previous examples time O( 2 ): each new example compared to all previous ones wo ways to speed up: buffering, or random projection tree Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 9 / 18

10 Sparse approximation 1: buffering Keep a size τ buffer approximate representers: f t = t 1 i=t τ α(t) i K(x i, ) approximate instantaneous risk J t (f) = l δ(y t)c(f(x t ), y t ) + λ 1 t 2 f 2 K + λ 2 τ dynamic graph on examples in the buffer t (f(x i ) f(x t )) 2 w it i=t τ Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 10 / 18

11 Sparse approximation 1: buffer update At each step, start with the current τ representers: f t = t 1 i=t τ Gradient descent on τ + 1 terms: f = α (t) i K(x i, ) + 0K(x t, ) t i=t τ Reduce to τ representers f t+1 = t Kernel matching pursuit α ik(x i, ) i=t τ+1 α(t+1) i min f f t+1 2 α (t+1) K(x i, ) by Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 11 / 18

12 Sparse approximation 2: random projection tree [Dasgupta and Freund, SOC08] Discretize data manifold by online clustering. When a cluster accumulates enough examples, split along random hyperplane. Extends k-d tree. Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 12 / 18

13 Sparse approximation 2: random projection tree We use the clusters N (µ i, Σ i ) as representers: f t = s i=1 β (t) i K(µ i, ) Cluster graph edge weight between a cluster µ i and example x t is [ w µi t = E x N (µi,σ i ) exp ( x x t 2 )] 2σ 2 = (2π) d 2 Σi 1 2 Σ Σ 2 ( exp A further approximation is ( 1 2 µ i Σ 1 i w µi t = e µ i x t 2 /2σ 2 Update f (i.e., β) and the RPtree, discard x t. µ i + x t Σ 1 0 x t µ Σ µ ) ) Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 13 / 18

14 Experiment: runtime Buffering and RPtree scales linearly, enabling life-long learning. Spirals MNIS 0 vs. 1 ime (seconds) Batch MR Online MR Online MR (buffer) Online RPtree Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 14 / 18

15 Experiment: risk Online MR risk J air ( ) 1 t=1 J t(f t ) approaches batch risk J(f ) as increases. Risk J(f*) Batch MR J air () Online MR J air () Online MR (buffer) J air () Online RPtree Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 15 / 18

16 Experiment: generalization error of f if iid A variation of buffering as good as batch MR (preferentially keep labeled examples, but not their labels, in buffer). Generalization error rate Batch MR Online MR Online MR (buffer) Online MR (buffer U) Online RPtree Online RPtree (PPK) Generalization error rate Batch MR Online MR Online MR (buffer) Online MR (buffer U) Online RPtree (a) Spirals (b) Face Generalization error rate Batch MR Online MR Online MR (buffer) Online MR (buffer U) Online RPtree Generalization error rate Batch MR Online MR Online MR (buffer) Online MR (buffer U) Online RPtree (c) MNIS 0 vs. 1 (d) MNIS 1 vs. 2 Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 16 / 18

17 Experiment: adversarial concept drift Slowly rotating spirals, both p(x) and p(y x) changing. Batch f vs. online MR buffering f est set drawn from the current p(x, y) at time. 0.7 Batch MR Online MR (buffer) 0.6 Generalization error rate Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 17 / 18

18 Conclusions Online semi-supervised learning framework Sparse approximations: buffering and RPtree Future work: new bounds, new algorithms (e.g., S3VM) Xiaojin Zhu (Univ. Wisconsin-Madison) Online Semi-Supervised Learning 18 / 18

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014 LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING ----Changsheng Liu 10-30-2014 Agenda Semi Supervised Learning Topics in Semi Supervised Learning Label Propagation Local and global consistency Graph

More information

17.3.1 Follow the Perturbed Leader

17.3.1 Follow the Perturbed Leader CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

More information

1 Introduction. 2 Prediction with Expert Advice. Online Learning 9.520 Lecture 09

1 Introduction. 2 Prediction with Expert Advice. Online Learning 9.520 Lecture 09 1 Introduction Most of the course is concerned with the batch learning problem. In this lecture, however, we look at a different model, called online. Let us first compare and contrast the two. In batch

More information

Learning with Local and Global Consistency

Learning with Local and Global Consistency Learning with Local and Global Consistency Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics, 7276 Tuebingen, Germany

More information

Learning with Local and Global Consistency

Learning with Local and Global Consistency Learning with Local and Global Consistency Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics, 7276 Tuebingen, Germany

More information

Graph-based Semi-supervised Learning

Graph-based Semi-supervised Learning Graph-based Semi-supervised Learning Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ MLSS 2012 La Palma Motivation Large

More information

Introduction to Online Learning Theory

Introduction to Online Learning Theory Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent

More information

Trading regret rate for computational efficiency in online learning with limited feedback

Trading regret rate for computational efficiency in online learning with limited feedback Trading regret rate for computational efficiency in online learning with limited feedback Shai Shalev-Shwartz TTI-C Hebrew University On-line Learning with Limited Feedback Workshop, 2009 June 2009 Shai

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Tree based ensemble models regularization by convex optimization

Tree based ensemble models regularization by convex optimization Tree based ensemble models regularization by convex optimization Bertrand Cornélusse, Pierre Geurts and Louis Wehenkel Department of Electrical Engineering and Computer Science University of Liège B-4000

More information

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC)

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) 1 three frequent ideas in machine learning. independent and identically distributed data This experimental paradigm has driven

More information

DUOL: A Double Updating Approach for Online Learning

DUOL: A Double Updating Approach for Online Learning : A Double Updating Approach for Online Learning Peilin Zhao School of Comp. Eng. Nanyang Tech. University Singapore 69798 zhao6@ntu.edu.sg Steven C.H. Hoi School of Comp. Eng. Nanyang Tech. University

More information

Online Algorithms: Learning & Optimization with No Regret.

Online Algorithms: Learning & Optimization with No Regret. Online Algorithms: Learning & Optimization with No Regret. Daniel Golovin 1 The Setup Optimization: Model the problem (objective, constraints) Pick best decision from a feasible set. Learning: Model the

More information

Interactive Machine Learning. Maria-Florina Balcan

Interactive Machine Learning. Maria-Florina Balcan Interactive Machine Learning Maria-Florina Balcan Machine Learning Image Classification Document Categorization Speech Recognition Protein Classification Branch Prediction Fraud Detection Spam Detection

More information

Network Intrusion Detection using Semi Supervised Support Vector Machine

Network Intrusion Detection using Semi Supervised Support Vector Machine Network Intrusion Detection using Semi Supervised Support Vector Machine Jyoti Haweliya Department of Computer Engineering Institute of Engineering & Technology, Devi Ahilya University Indore, India ABSTRACT

More information

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut. Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Online Convex Optimization

Online Convex Optimization E0 370 Statistical Learning heory Lecture 19 Oct 22, 2013 Online Convex Optimization Lecturer: Shivani Agarwal Scribe: Aadirupa 1 Introduction In this lecture we shall look at a fairly general setting

More information

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

The Artificial Prediction Market

The Artificial Prediction Market The Artificial Prediction Market Adrian Barbu Department of Statistics Florida State University Joint work with Nathan Lay, Siemens Corporate Research 1 Overview Main Contributions A mathematical theory

More information

Multi-Class Active Learning for Image Classification

Multi-Class Active Learning for Image Classification Multi-Class Active Learning for Image Classification Ajay J. Joshi University of Minnesota Twin Cities ajay@cs.umn.edu Fatih Porikli Mitsubishi Electric Research Laboratories fatih@merl.com Nikolaos Papanikolopoulos

More information

Lecture 2: The SVM classifier

Lecture 2: The SVM classifier Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function

More information

Large Scale Learning

Large Scale Learning Large Scale Learning Data hypergrowth: an example Reuters- 21578: about 10K docs (ModApte) Bekkerman et al, SIGIR 2001 RCV1: about 807K docs Bekkerman & Scholz, CIKM 2008 LinkedIn job Mtle data: about

More information

Model Combination. 24 Novembre 2009

Model Combination. 24 Novembre 2009 Model Combination 24 Novembre 2009 Datamining 1 2009-2010 Plan 1 Principles of model combination 2 Resampling methods Bagging Random Forests Boosting 3 Hybrid methods Stacking Generic algorithm for mulistrategy

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

Practical Online Active Learning for Classification

Practical Online Active Learning for Classification Practical Online Active Learning for Classification Claire Monteleoni Department of Computer Science and Engineering University of California, San Diego cmontel@cs.ucsd.edu Matti Kääriäinen Department

More information

Large-Scale Sparsified Manifold Regularization

Large-Scale Sparsified Manifold Regularization Large-Scale Sparsified Manifold Regularization Ivor W. Tsang James T. Kwok Department of Computer Science and Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong

More information

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

More information

Steven C.H. Hoi. School of Computer Engineering Nanyang Technological University Singapore

Steven C.H. Hoi. School of Computer Engineering Nanyang Technological University Singapore Steven C.H. Hoi School of Computer Engineering Nanyang Technological University Singapore Acknowledgments: Peilin Zhao, Jialei Wang, Hao Xia, Jing Lu, Rong Jin, Pengcheng Wu, Dayong Wang, etc. 2 Agenda

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

Sparse Online Learning via Truncated Gradient

Sparse Online Learning via Truncated Gradient Sparse Online Learning via Truncated Gradient John Langford Yahoo! Research jl@yahoo-inc.com Lihong Li Department of Computer Science Rutgers University lihong@cs.rutgers.edu Tong Zhang Department of Statistics

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Unsupervised Data Mining (Clustering)

Unsupervised Data Mining (Clustering) Unsupervised Data Mining (Clustering) Javier Béjar KEMLG December 01 Javier Béjar (KEMLG) Unsupervised Data Mining (Clustering) December 01 1 / 51 Introduction Clustering in KDD One of the main tasks in

More information

Online Learning. 1 Online Learning and Mistake Bounds for Finite Hypothesis Classes

Online Learning. 1 Online Learning and Mistake Bounds for Finite Hypothesis Classes Advanced Course in Machine Learning Spring 2011 Online Learning Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz In this lecture we describe a different model of learning which is called online

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05 Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification

More information

Making Sense of the Mayhem: Machine Learning and March Madness

Making Sense of the Mayhem: Machine Learning and March Madness Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University atran3@stanford.edu ginzberg@stanford.edu I. Introduction III. Model The goal of our research

More information

Decompose Error Rate into components, some of which can be measured on unlabeled data

Decompose Error Rate into components, some of which can be measured on unlabeled data Bias-Variance Theory Decompose Error Rate into components, some of which can be measured on unlabeled data Bias-Variance Decomposition for Regression Bias-Variance Decomposition for Classification Bias-Variance

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus 1. Introduction Facebook is a social networking website with an open platform that enables developers to extract and utilize user information

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

List of Publications by Claudio Gentile

List of Publications by Claudio Gentile List of Publications by Claudio Gentile Claudio Gentile DiSTA, University of Insubria, Italy claudio.gentile@uninsubria.it November 6, 2013 Abstract Contains the list of publications by Claudio Gentile,

More information

Machine Teaching: An Inverse Problem to Machine Learning and an Approach Toward Optimal Education

Machine Teaching: An Inverse Problem to Machine Learning and an Approach Toward Optimal Education Machine Teaching: An Inverse Problem to Machine Learning and an Approach Toward Optimal Education Xiaojin Zhu Department of Computer Sciences, University of Wisconsin Madison Madison, WI, USA 53706 jerryzhu@cs.wisc.edu

More information

Multi-Class and Structured Classification

Multi-Class and Structured Classification Multi-Class and Structured Classification [slides prises du cours cs294-10 UC Berkeley (2006 / 2009)] [ p y( )] http://www.cs.berkeley.edu/~jordan/courses/294-fall09 Basic Classification in ML Input Output

More information

Robust personalizable spam filtering via local and global discrimination modeling

Robust personalizable spam filtering via local and global discrimination modeling Knowl Inf Syst DOI 10.1007/s10115-012-0477-x REGULAR PAPER Robust personalizable spam filtering via local and global discrimination modeling Khurum Nazir Junejo Asim Karim Received: 29 June 2010 / Revised:

More information

CSC 411: Lecture 07: Multiclass Classification

CSC 411: Lecture 07: Multiclass Classification CSC 411: Lecture 07: Multiclass Classification Class based on Raquel Urtasun & Rich Zemel s lectures Sanja Fidler University of Toronto Feb 1, 2016 Urtasun, Zemel, Fidler (UofT) CSC 411: 07-Multiclass

More information

A semi-supervised Spam mail detector

A semi-supervised Spam mail detector A semi-supervised Spam mail detector Bernhard Pfahringer Department of Computer Science, University of Waikato, Hamilton, New Zealand Abstract. This document describes a novel semi-supervised approach

More information

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based

More information

Active Graph Reachability Reduction for Network Security and Software Engineering

Active Graph Reachability Reduction for Network Security and Software Engineering Active Graph Reachability Reduction for Network Security and Software Engineering Alice X. Zheng Microsoft Research Redmond, WA alicez@microsoft.com John Dunagan Microsoft Redmond, WA jdunagan@microsoft.com

More information

Local features and matching. Image classification & object localization

Local features and matching. Image classification & object localization Overview Instance level search Local features and matching Efficient visual recognition Image classification & object localization Category recognition Image classification: assigning a class label to

More information

Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

More information

Early defect identification of semiconductor processes using machine learning

Early defect identification of semiconductor processes using machine learning STANFORD UNIVERISTY MACHINE LEARNING CS229 Early defect identification of semiconductor processes using machine learning Friday, December 16, 2011 Authors: Saul ROSA Anton VLADIMIROV Professor: Dr. Andrew

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

How To Classify Data Stream Mining

How To Classify Data Stream Mining JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2873 A Semi-supervised Ensemble Approach for Mining Data Streams Jing Liu 1,2, Guo-sheng Xu 1,2, Da Xiao 1,2, Li-ze Gu 1,2, Xin-xin Niu 1,2 1.Information

More information

Active Learning SVM for Blogs recommendation

Active Learning SVM for Blogs recommendation Active Learning SVM for Blogs recommendation Xin Guan Computer Science, George Mason University Ⅰ.Introduction In the DH Now website, they try to review a big amount of blogs and articles and find the

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods

Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods Jerzy B laszczyński 1, Krzysztof Dembczyński 1, Wojciech Kot lowski 1, and Mariusz Paw lowski 2 1 Institute of Computing

More information

Analysis of Representations for Domain Adaptation

Analysis of Representations for Domain Adaptation Analysis of Representations for Domain Adaptation Shai Ben-David School of Computer Science University of Waterloo shai@cs.uwaterloo.ca John Blitzer, Koby Crammer, and Fernando Pereira Department of Computer

More information

Lecture 6: Logistic Regression

Lecture 6: Logistic Regression Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,

More information

Online Learning of Optimal Strategies in Unknown Environments

Online Learning of Optimal Strategies in Unknown Environments 1 Online Learning of Optimal Strategies in Unknown Environments Santiago Paternain and Alejandro Ribeiro Abstract Define an environment as a set of convex constraint functions that vary arbitrarily over

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

Online Learning for Big Data Analytics

Online Learning for Big Data Analytics Online Learning for Big Data Analytics Irwin King and Haiqin Yang Dept. of Computer Science and Engineering The Chinese University of Hong Kong 1 Outline Introduction Big data: definition and history Online

More information

Online Prediction on Large Diameter Graphs

Online Prediction on Large Diameter Graphs Online Prediction on Large Diameter Graphs Mark Herbster, Guy Lever, Massimiliano Pontil Department of Computer Science University College London Gower Street, London WCE 6BT, England, UK {m.herbster,

More information

Consistent Binary Classification with Generalized Performance Metrics

Consistent Binary Classification with Generalized Performance Metrics Consistent Binary Classification with Generalized Performance Metrics Nagarajan Natarajan Joint work with Oluwasanmi Koyejo, Pradeep Ravikumar and Inderjit Dhillon UT Austin Nov 4, 2014 Problem and Motivation

More information

Large Linear Classification When Data Cannot Fit In Memory

Large Linear Classification When Data Cannot Fit In Memory Large Linear Classification When Data Cannot Fit In Memory ABSTRACT Hsiang-Fu Yu Dept. of Computer Science National Taiwan University Taipei 106, Taiwan b93107@csie.ntu.edu.tw Kai-Wei Chang Dept. of Computer

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

STORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University. (Joint work with R. Chen and M. Menickelly)

STORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University. (Joint work with R. Chen and M. Menickelly) STORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University (Joint work with R. Chen and M. Menickelly) Outline Stochastic optimization problem black box gradient based Existing

More information

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Peter Richtárik School of Mathematics The University of Edinburgh Joint work with Martin Takáč (Edinburgh)

More information

A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

More information

Hyperspectral images retrieval with Support Vector Machines (SVM)

Hyperspectral images retrieval with Support Vector Machines (SVM) Hyperspectral images retrieval with Support Vector Machines (SVM) Miguel A. Veganzones Grupo Inteligencia Computacional Universidad del País Vasco (Grupo Inteligencia SVM-retrieval Computacional Universidad

More information

L3: Statistical Modeling with Hadoop

L3: Statistical Modeling with Hadoop L3: Statistical Modeling with Hadoop Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revision: December 10, 2014 Today we are going to learn...

More information

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

More information

Manifold regularized kernel logistic regression for web image annotation

Manifold regularized kernel logistic regression for web image annotation Manifold regularized kernel logistic regression for web image annotation W. Liu 1, H. Liu 1, D.Tao 2*, Y. Wang 1, K. Lu 3 1 China University of Petroleum (East China) 2 *** 3 University of Chinese Academy

More information

Stochastic Inventory Control

Stochastic Inventory Control Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the

More information

Clustering. Data Mining. Abraham Otero. Data Mining. Agenda

Clustering. Data Mining. Abraham Otero. Data Mining. Agenda Clustering 1/46 Agenda Introduction Distance K-nearest neighbors Hierarchical clustering Quick reference 2/46 1 Introduction It seems logical that in a new situation we should act in a similar way as in

More information

Supervised Feature Selection & Unsupervised Dimensionality Reduction

Supervised Feature Selection & Unsupervised Dimensionality Reduction Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or

More information

Spark and the Big Data Library

Spark and the Big Data Library Spark and the Big Data Library Reza Zadeh Thanks to Matei Zaharia Problem Data growing faster than processing speeds Only solution is to parallelize on large clusters» Wide use in both enterprises and

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

Cluster Analysis: Advanced Concepts

Cluster Analysis: Advanced Concepts Cluster Analysis: Advanced Concepts and dalgorithms Dr. Hui Xiong Rutgers University Introduction to Data Mining 08/06/2006 1 Introduction to Data Mining 08/06/2006 1 Outline Prototype-based Fuzzy c-means

More information

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014 Parallel Data Mining Team 2 Flash Coders Team Research Investigation Presentation 2 Foundations of Parallel Computing Oct 2014 Agenda Overview of topic Analysis of research papers Software design Overview

More information

Large-Scale Similarity and Distance Metric Learning

Large-Scale Similarity and Distance Metric Learning Large-Scale Similarity and Distance Metric Learning Aurélien Bellet Télécom ParisTech Joint work with K. Liu, Y. Shi and F. Sha (USC), S. Clémençon and I. Colin (Télécom ParisTech) Séminaire Criteo March

More information

Scalable Machine Learning - or what to do with all that Big Data infrastructure

Scalable Machine Learning - or what to do with all that Big Data infrastructure - or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

More information

Model Trees for Classification of Hybrid Data Types

Model Trees for Classification of Hybrid Data Types Model Trees for Classification of Hybrid Data Types Hsing-Kuo Pao, Shou-Chih Chang, and Yuh-Jye Lee Dept. of Computer Science & Information Engineering, National Taiwan University of Science & Technology,

More information

203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. ~ Spring~r

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. ~ Spring~r Bing Liu Web Data Mining Exploring Hyperlinks, Contents, and Usage Data With 177 Figures ~ Spring~r Table of Contents 1. Introduction.. 1 1.1. What is the World Wide Web? 1 1.2. ABrief History of the Web

More information

Robust Personalizable Spam Filtering Via Local and Global Discrimination Modeling

Robust Personalizable Spam Filtering Via Local and Global Discrimination Modeling Robust Personalizable Spam Filtering Via Local and Global Discrimination Modeling Khurum Nazir Junejo Asim Karim Department of Computer Science LUMS School of Science and Engineering Lahore, Pakistan junejo@lums.edu.pk

More information

OUTLIER ANALYSIS. Data Mining 1

OUTLIER ANALYSIS. Data Mining 1 OUTLIER ANALYSIS Data Mining 1 What Are Outliers? Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism Ex.: Unusual credit card purchase,

More information

The Advantages and Disadvantages of Online Linear Optimization

The Advantages and Disadvantages of Online Linear Optimization LINEAR PROGRAMMING WITH ONLINE LEARNING TATSIANA LEVINA, YURI LEVIN, JEFF MCGILL, AND MIKHAIL NEDIAK SCHOOL OF BUSINESS, QUEEN S UNIVERSITY, 143 UNION ST., KINGSTON, ON, K7L 3N6, CANADA E-MAIL:{TLEVIN,YLEVIN,JMCGILL,MNEDIAK}@BUSINESS.QUEENSU.CA

More information

Distributed Machine Learning and Big Data

Distributed Machine Learning and Big Data Distributed Machine Learning and Big Data Sourangshu Bhattacharya Dept. of Computer Science and Engineering, IIT Kharagpur. http://cse.iitkgp.ac.in/~sourangshu/ August 21, 2015 Sourangshu Bhattacharya

More information