Vector Time Series Model Representations and Analysis with XploRe


 Edward Kelly
 1 years ago
 Views:
Transcription
1 01 Vector Time Series Model Representations and Analysis with plore Julius Mungo CASE  Center for Applied Statistics and Economics HumboldtUniversität zu Berlin plore MulTi
2 Motivation 11 Multiple time series analysis approach involves a frame work for analyzing time series systems and the possible cross relationships among its levels. Modelling such systems entails investigating whether some variables in the system have a tendency to lead others. there is feedbacks between the variables, the question of contemporaneous movements, impulses (shocks, innovations) transfer from one time series to another plore MulTi
3 Motivation 12 The modelling procedure in plore uses the quantlet library MulTi to model a system of multiple time series. how plore MulTi is used to empirically investigate and modell various MTS systems. attention is on Vector Autoregressive (VAR) and the Vector Equilibrium Correction (ECM) models representations and modelling. Granger & Newbold ( 1986) plore MulTi
4 Motivation 13 Outline 1. Motivation 2. plore Quantlib MulTi 3. Modelling Time Dependent Factor Loadings from a DSFM for IV String Dynamics 4. Summary 5. References plore MulTi
5 plore Quantlib MulTi 21 MulTiplot.xpl Generates a MTS plot from a kdimensional time series data, allowing for the series transformation, with graphics, plots and their properties to be investigated MulTiplot01.xpl plore MulTi
6 plore Quantlib MulTi 22 MulTifr.xpl For general analysis of the Full VAR Model; VAR order selection criteria, parameter estimation, Residual Analysis, Structural Analysis and Forecasting. MulTifr02.xpl plore MulTi
7 plore Quantlib MulTi 23 MulTiira.xpl For VAR impulse response analysis 1 library (" multi ") 2 x= read (" mts. dat ") 3 MulTiira (x,4,"m " " Y " " I") MulTiira01.xpl plore MulTi
8 plore Quantlib MulTi 24 MulTirr.xpl For Reduced Rank VAR analysis MulTiss.xpl General analysis for a Subset VAR Model MulTici.xpl General analysis for cointegration plore MulTi
9 VAR modelling with plore 31 VAR modelling plore specifies a kdimensional VAR(p) model of the form Y t = υ + A 1 Y t 1 + A 2 Y t 2 +,..., +A p Y t p + ε t (1) Y t = (Y 1t,..., Y kt ) are observable vectors of k endogenous variables υ = (υ 1,..., υ k ) is a vector of intercept terms, A i are (K K) coefficient matrices ε t is a white noise with covariance matrix Σ ε > 0 plore MulTi
10 Modelling Time Dependent Factor Loadings 41 Modelling Time Dependent Factor Loadings from a DSFM for IV String Dynamics The DSFM is represented by Y i,j = m o ( i,j ) + l β i,l m l ( i,j ) + ɛ i,j l=1 m l are smooth basis function (l = 0, 1,..., L) i,j are two dimensional covariables β i,l are weights of m l depending on time i β i = (β i,1, β i,2,..., β i,l ) t (Fengler et al (2004)) form an observed MTS plore MulTi
11 time time time Time series plots for the beta coeff. series ( ) MTSplot.xpl Beta1 coeff. time plot number sold(thousands) Beta2 coeff. time plot number sold(thousands) Beta3 coeff. time plot number sold(thousands)*e
12 Modelling Time Dependent Factor Loadings 43 Min. Max. Mean Median Stdd. Skewn. Kurt. beta beta beta Table 1: Summary statistics for Beta coeff. series beta1 beta2 beta3 beta beta beta3 1 Table 2: Contemp. correlation Betasummary.xpl plore MulTi
13 Y Y Distribution: Beta Distribution: Beta Distribution: Beta *E2 Y Y Y*E Y Modelling Time Dependent Factor Loadings 44 Betadensity.xpl Kernel density (Epanechnikov, h = ) and boxplot for levels plore MulTi
14 Y *E2 Y Modelling Time Dependent Factor Loadings Y*E Figure 1: QQ plots of the normal against the emprical quanttiles for the Beta series plore MulTi
15 acf acf acf Sample autocorrelation function (acf) lag Sample autocorrelation function (acf) lag Sample autocorrelation function (acf) lag pacf pacf pacf Sample partial autocorrelation function (pacf) lag Sample partial autocorrelation function (pacf) lag Sample partial autocorrelation function (pacf) Modelling Time Dependent Factor Loadings 46 preanalysbetas.xpl lag Y plore MulTi Figure 2: ACF and PACF of levels
16 Modelling Time Dependent Factor Loadings 47 Testing β i levels for random walk Coeff. Test Deterministic lags testvalue asymptotic crit. values term (David & Mackinnon, (1993)) 1% 5% 10% Beta1 ADF constant Beta2 ADF constant Beta3 ADF constant Table 3: ADFTest of unitroot for levels series plore MulTi
17 Modelling Time Dependent Factor Loadings 48 coeff. lag test statistic crit. values (Kwiaskowski, (1992)) 1% 5% 10% Beta1 1 const Beta2 1 const Beta3 1 const Table 4: KPSSTest of stationarity for levels series unitrootest.xpl plore MulTi
18 Modelling Time Dependent Factor Loadings 49 Modelling Beta series Results: At 1% significant level, unit root exist for Beta1 and beta3 at all lags considered Beta2 indicates of some kind of misspecification Beta3 do not reject at 1% level, unitroot null hypothesis. Even at 5% or 10%, rejecting unit root will be marginal. KPSS clearly rejects its null hypothesis of stationarity around a constant plore MulTi
19 Modelling Time Dependent Factor Loadings 410 coeff. shift suggested test statistic crit. values (Lanne et, al(2001)) function break date (shift dummy ) 1% 5% 10% Beta Beta Beta Table 5: UnitrootTest of stationarity for levels series in the presence of structural break We specify a stationary model with first differences and consider fitting an VAR model, t = ( Beta1, Beta2, Beta3) and determine the autoregressive order for the model plore MulTi
20 Modelling Time Dependent Factor Loadings 411 Beta Time Series Plot Y plore MulTi Figure 3: First difference plot of Beta series
21 Modelling Time Dependent Factor Loadings 412 Order Selection Criteria Final Prediction Error Akaike Information Criterion AIC = ln (n) ε = ln FPE(n) = T + kn + 1 T kn 1 ˆ ˆ (n) ε + 2nK 2 T Schwarz Information Criterion k det( ˆ ε (n)) + 2(the number of freely estimated parameters) T SIC = ln HannanQuinnn Information Criterion plore MulTi HQ = ln ˆ (n) ε + lnt T nk 2 ˆ (n) ε + 2ln(lnT ) T nk 2
22 Modelling Time Dependent Factor Loadings 413 order ln(fpe) AIC HQ SC We choose to apply the order 3 as indicated by HQ. HQ and HC have been justified as consistent, (see, Paulsen(1984) and Tsay(1984)) plore MulTi
23 Modelling Time Dependent Factor Loadings 414 VAR estimates (OLS) with tvalues in parenthesis 2 4 Beta1t Beta2 t Beta3 t 3 5 = (3.24) 0.19(2.30) 0.06( 0.40) 0.09(6.35) 0.07( 17.17) 0.07(1.03) 0.02(2.25) 0.02(1.42) 0.26( 8.24) ( 2.40) 0.04( 0.79) 0.11(0.64) 0.03( 1.58) 0.04(7.94) 0.05( 0.66) 0.00( 0.63) 0.00(0.16) 0.06( 1.89) 0.02( 0.58) 0.13( 1.53) 0.14(+0.83) 0.00(+0.03) 0.12( 3.42) 0.02( 0.26) 0.01( 0.53) 0.02( 1.36) 0.05( 1.52) 2 4 ˆε 1,t ˆε 2,t ˆε 3,t Beta1 t 1 Beta2 t 1 Beta3 t Beta1 t 2 Beta2 t 2 Beta3 t 2 4 Beta1 t 3 Beta2 t 3 Beta3 t plore MulTi
24 Modelling Time Dependent Factor Loadings 415 Covariance matrix of residuals ˆΣ ε = Correlation matrix of residuals ˆ Corr(ε t ) = The correlation matrix indicates that there is some contemporaneous correlation structure in the residual vector. Not all elements of the parameter matrices are significantly different from zero. Especially the coefficients for Beta1 t 3. plore MulTi
25 Modelling Time Dependent Factor Loadings 416 Model Validation (i) Multivariate Portmanteau test for autocorrelation H 0 : E(ε t ε t i) = 0, i = 1,..., h H 1 : at least one autocovariance (autocorrelation) is non zero Test statistic: (Ljung & Box (1978)) h Qp = T 2 1 { T i tr C i C 1 i=1 C i = T 1 0 C i T t=i+1 ε t ε t i } C0 1 χ 2 k 2 (h p) C 0 and C i are the contemporaneous correlations and autocovariance of residuals respectively plore MulTi
26 Modelling Time Dependent Factor Loadings 417 (ii) Testing for ARCH effects Test for neglected conditional heteroscedasticity (ARCH) based on fitting ARCH(q) model to the estimated residuals. ˆε 2 t = β 0 + β 1ˆε 2 t β q ˆε 2 t q + error t H 0 : β 1 = = β q = 0, (no ARCH effects) H 1 : β 1 0 or... or β q 0 plore MulTi
27 Modelling Time Dependent Factor Loadings 418 Lagrange Multiplier (LM) statistic: (see, Engle (1982)) The R 2 form, test statistic: ARCH LM = 1 2 ˆε t ˆε χ 2 q T R 2 χ 2 q R 2 is the squared multiple R 2 value of the regression of ˆε 2 t on an intercept and q lagged values of ˆε 2 t ARCHtest.xpl plore MulTi
28 Modelling Time Dependent Factor Loadings 419 (iii) Testing for Nonnormality H 0 : E(µ s t) 3 = 0 & E(µ s t) 3 = 0 H 1 : E(µ s t) 3 0 & E(µ s t) 3 0 Test statistic: (Jarque and Bera (1987)) JB = T 6 ( T ) 2 ( T 1 (ˆµ s t) 3 + T T T 1 (ˆµ s 24 t) 4 3 t=1 The test displays the χ 2 statistics associated with the skewness and kurtosis of the standardized residuals for testing nonnormality. t=1 ) 2 plore MulTi
29 Modelling Time Dependent Factor Loadings 420 Test Q3 JB 3 MARCH LM (3) Test statistic pvalue Table 6: Diagnostic tests for AR(3) models The tests hypothesis is rejected for pvalues smaller than Results show some autocorrelation in the residuals and the presence of heteroscedastic effects in the conditional variance. We therefore maintain that there is some ARCH effects in model residuals. plore MulTi
30 Summary 521 Summary Testing for ARCH effects reveal neglected conditional heteroscedasticity. This gives an indication of fitting an ARCH or ARCH type model. Observing that not all elements of the estimated VAR parameter matrices are significantly different from zero, we could choose a subset VAR model where single elements of the estimated coefficient matrices are restricted to zero. plore MulTi
31 References 622 References G.C Reinsel Elements of Multivariate Time Series Anylysis. Springer Verlag, New York, W. Härdle, Z. Hlávka and S. Klinke plore Application Guide SpringerVerlag, Heidelberg, H. Lütkepohl Introduction to Multiple Time Series Analysis. Springer Verlag,1993. K. Patterson An Introduction to Applied Econometrics a time series approach. Macmillan Press Ltd, plore MulTi
Chapter 6: Multivariate Cointegration Analysis
Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration
More informationChapter 5: Bivariate Cointegration Analysis
Chapter 5: Bivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie V. Bivariate Cointegration Analysis...
More informationChapter 5. Analysis of Multiple Time Series. 5.1 Vector Autoregressions
Chapter 5 Analysis of Multiple Time Series Note: The primary references for these notes are chapters 5 and 6 in Enders (2004). An alternative, but more technical treatment can be found in chapters 1011
More informationPerforming Unit Root Tests in EViews. Unit Root Testing
Página 1 de 12 Unit Root Testing The theory behind ARMA estimation is based on stationary time series. A series is said to be (weakly or covariance) stationary if the mean and autocovariances of the series
More informationTesting The Quantity Theory of Money in Greece: A Note
ERC Working Paper in Economic 03/10 November 2003 Testing The Quantity Theory of Money in Greece: A Note Erdal Özmen Department of Economics Middle East Technical University Ankara 06531, Turkey ozmen@metu.edu.tr
More informationImplied volatility transmissions between Thai and selected advanced stock markets
MPRA Munich Personal RePEc Archive Implied volatility transmissions between Thai and selected advanced stock markets Supachok Thakolsri and Yuthana Sethapramote and Komain Jiranyakul Public Enterprise
More informationTHE IMPACT OF EXCHANGE RATE VOLATILITY ON BRAZILIAN MANUFACTURED EXPORTS
THE IMPACT OF EXCHANGE RATE VOLATILITY ON BRAZILIAN MANUFACTURED EXPORTS ANTONIO AGUIRRE UFMG / Department of Economics CEPE (Centre for Research in International Economics) Rua Curitiba, 832 Belo Horizonte
More informationDepartment of Economics
Department of Economics Working Paper Do Stock Market Risk Premium Respond to Consumer Confidence? By Abdur Chowdhury Working Paper 2011 06 College of Business Administration Do Stock Market Risk Premium
More informationA Trading Strategy Based on the LeadLag Relationship of Spot and Futures Prices of the S&P 500
A Trading Strategy Based on the LeadLag Relationship of Spot and Futures Prices of the S&P 500 FE8827 Quantitative Trading Strategies 2010/11 MiniTerm 5 Nanyang Technological University Submitted By:
More informationChapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
More informationTime Series Analysis
Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina GarcíaMartos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and GarcíaMartos
More informationSome useful concepts in univariate time series analysis
Some useful concepts in univariate time series analysis Autoregressive moving average models Autocorrelation functions Model Estimation Diagnostic measure Model selection Forecasting Assumptions: 1. Nonseasonal
More informationMONEY MARKET EQUILIBRIUM IN THE CZECH REPUBLIC
MONEY MARKET EQUILIBRIUM IN THE CZECH REPUBLIC DOI: 10.18267/j.pep.564 Jana 1 Juriová* Abstract This paper examines the theoretical concept of equilibrium in the money market that is empirically verified
More informationTEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND
I J A B E R, Vol. 13, No. 4, (2015): 15251534 TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND Komain Jiranyakul * Abstract: This study
More informationImport and Economic Growth in Turkey: Evidence from Multivariate VAR Analysis
Journal of Economics and Business Vol. XI 2008, No 1 & No 2 Import and Economic Growth in Turkey: Evidence from Multivariate VAR Analysis Ahmet Uğur, Inonu University Abstract This study made an attempt
More informationGranger Causality between Government Revenues and Expenditures in Korea
Volume 23, Number 1, June 1998 Granger Causality between Government Revenues and Expenditures in Korea Wan Kyu Park ** 2 This paper investigates the Granger causal relationship between government revenues
More informationNote 2 to Computer class: Standard misspecification tests
Note 2 to Computer class: Standard misspecification tests Ragnar Nymoen September 2, 2013 1 Why misspecification testing of econometric models? As econometricians we must relate to the fact that the
More informationExamining the Relationship between ETFS and Their Underlying Assets in Indian Capital Market
2012 2nd International Conference on Computer and Software Modeling (ICCSM 2012) IPCSIT vol. 54 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V54.20 Examining the Relationship between
More informationThe Relationship Between Crude Oil and Natural Gas Prices
The Relationship Between Crude Oil and Natural Gas Prices by Jose A. Villar Natural Gas Division Energy Information Administration and Frederick L. Joutz Department of Economics The George Washington University
More informationENDOGENOUS GROWTH MODELS AND STOCK MARKET DEVELOPMENT: EVIDENCE FROM FOUR COUNTRIES
ENDOGENOUS GROWTH MODELS AND STOCK MARKET DEVELOPMENT: EVIDENCE FROM FOUR COUNTRIES Guglielmo Maria Caporale, South Bank University London Peter G. A Howells, University of East London Alaa M. Soliman,
More informationForecasting the US Dollar / Euro Exchange rate Using ARMA Models
Forecasting the US Dollar / Euro Exchange rate Using ARMA Models LIUWEI (9906360)  1  ABSTRACT...3 1. INTRODUCTION...4 2. DATA ANALYSIS...5 2.1 Stationary estimation...5 2.2 DickeyFuller Test...6 3.
More informationUnivariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationVector autoregressions, VAR
1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS15/16 2 / 45 Content Crosscorrelations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,
More informationSoftware Review: ITSM 2000 Professional Version 6.0.
Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455459 (June 2002). Published by Elsevier (ISSN: 01692070). http://0
More informationCointegration And Causality Analysis of Government Expenditure And Economic Growth In Nigeria
Cointegration And Causality Analysis of Government Expenditure And Economic Growth In Nigeria Chiawa, M. M, Torruam, J. T, Abur, C. C Abstract: The study investigates government expenditure and economic
More informationTime Series Graphs. Model ACF PACF. White Noise All zeros All zeros. AR(p) Exponential Decay P significant lags before dropping to zero
Time Series Graphs Model ACF PACF White Noise All zeros All zeros AR(p) Exponential Decay P significant lags before dropping to zero MA(q) q significant lags before dropping to zero Exponential Decay ARMA(p,q)
More informationAnalysis and Computation for Finance Time Series  An Introduction
ECMM703 Analysis and Computation for Finance Time Series  An Introduction Alejandra González Harrison 161 Email: mag208@exeter.ac.uk Time Series  An Introduction A time series is a sequence of observations
More informationChapter 12: Time Series Models
Chapter 12: Time Series Models In this chapter: 1. Estimating ad hoc distributed lag & Koyck distributed lag models (UE 12.1.3) 2. Testing for serial correlation in Koyck distributed lag models (UE 12.2.2)
More informationEstimation and Inference in Cointegration Models Economics 582
Estimation and Inference in Cointegration Models Economics 582 Eric Zivot May 17, 2012 Tests for Cointegration Let the ( 1) vector Y be (1). Recall, Y is cointegrated with 0 cointegrating vectors if there
More informationForecasting Stock Market Series. with ARIMA Model
Journal of Statistical and Econometric Methods, vol.3, no.3, 2014, 6577 ISSN: 22410384 (print), 22410376 (online) Scienpress Ltd, 2014 Forecasting Stock Market Series with ARIMA Model Fatai Adewole
More informationITSMR Reference Manual
ITSMR Reference Manual George Weigt June 5, 2015 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................
More information3.1 Stationary Processes and Mean Reversion
3. Univariate Time Series Models 3.1 Stationary Processes and Mean Reversion Definition 3.1: A time series y t, t = 1,..., T is called (covariance) stationary if (1) E[y t ] = µ, for all t Cov[y t, y t
More informationStudying Achievement
Journal of Business and Economics, ISSN 21557950, USA November 2014, Volume 5, No. 11, pp. 20522056 DOI: 10.15341/jbe(21557950)/11.05.2014/009 Academic Star Publishing Company, 2014 http://www.academicstar.us
More informationBusiness Cycles and Natural Gas Prices
Department of Economics Discussion Paper 200419 Business Cycles and Natural Gas Prices Apostolos Serletis Department of Economics University of Calgary Canada and Asghar Shahmoradi Department of Economics
More informationTime Series Analysis
Time Series 1 April 9, 2013 Time Series Analysis This chapter presents an introduction to the branch of statistics known as time series analysis. Often the data we collect in environmental studies is collected
More informationBusiness cycles and natural gas prices
Business cycles and natural gas prices Apostolos Serletis and Asghar Shahmoradi Abstract This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural
More informationTesting for Granger causality between stock prices and economic growth
MPRA Munich Personal RePEc Archive Testing for Granger causality between stock prices and economic growth Pasquale Foresti 2006 Online at http://mpra.ub.unimuenchen.de/2962/ MPRA Paper No. 2962, posted
More informationForecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model
Tropical Agricultural Research Vol. 24 (): 23 (22) Forecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model V. Sivapathasundaram * and C. Bogahawatte Postgraduate Institute
More informationAdvanced Forecasting Techniques and Models: ARIMA
Advanced Forecasting Techniques and Models: ARIMA Short Examples Series using Risk Simulator For more information please visit: www.realoptionsvaluation.com or contact us at: admin@realoptionsvaluation.com
More informationSales forecasting # 2
Sales forecasting # 2 Arthur Charpentier arthur.charpentier@univrennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting
More informationExplaining Cointegration Analysis: Part II
Explaining Cointegration Analysis: Part II David F. Hendry and Katarina Juselius Nuffield College, Oxford, OX1 1NF. Department of Economics, University of Copenhagen, Denmark Abstract We describe the concept
More informationThe LongRun Relation Between The Personal Savings Rate And Consumer Sentiment
The LongRun Relation Between The Personal Savings Rate And Consumer Sentiment Bradley T. Ewing 1 and James E. Payne 2 This study examined the long run relationship between the personal savings rate and
More informationPreholiday Returns and Volatility in Thai stock market
Preholiday Returns and Volatility in Thai stock market Nopphon Tangjitprom Martin de Tours School of Management and Economics, Assumption University Bangkok, Thailand Tel: (66) 858156177 Email: tnopphon@gmail.com
More informationTIME SERIES ANALYSIS
TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi0 02 lmb@iasri.res.in. Introduction Time series (TS) data refers to observations
More informationCointegration. Basic Ideas and Key results. Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board
Cointegration Basic Ideas and Key results Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board Summer School in Financial Mathematics Faculty of Mathematics & Physics University of Ljubljana
More informationUnit root properties of natural gas spot and futures prices: The relevance of heteroskedasticity in high frequency data
DEPARTMENT OF ECONOMICS ISSN 14415429 DISCUSSION PAPER 20/14 Unit root properties of natural gas spot and futures prices: The relevance of heteroskedasticity in high frequency data Vinod Mishra and Russell
More informationTime Series Analysis
JUNE 2012 Time Series Analysis CONTENT A time series is a chronological sequence of observations on a particular variable. Usually the observations are taken at regular intervals (days, months, years),
More informationReal Exchange Rates and Real Interest Differentials: The Case of a Transitional Economy  Cambodia
Department of Economics Issn 14415429 Discussion paper 08/10 Real Exchange Rates and Real Interest Differentials: The Case of a Transitional Economy  Cambodia Tuck Cheong Tang 1 Abstract: This study
More informationThe Report of Modeling Stock Market Volatility in Four Asian Tigers. During Global Subprime Crisis Using ARMAGARCH Approach
Dr. Mak, Billy S C The Report of Modeling Stock Market Volatility in Four Asian Tigers During Global Subprime Crisis Using ARMAGARCH Approach BY MUNG Tin Hong 12012084 Finance Concentration LI Yeung 12002127
More informationTOURISM AS A LONGRUN ECONOMIC GROWTH FACTOR: AN EMPIRICAL INVESTIGATION FOR GREECE USING CAUSALITY ANALYSIS. Nikolaos Dritsakis
TOURISM AS A LONGRUN ECONOMIC GROWTH FACTOR: AN EMPIRICAL INVESTIGATION FOR GREECE USING CAUSALITY ANALYSIS Nikolaos Dritsakis Department of Applied Informatics University of Macedonia Economics and Social
More informationProvided in Cooperation with: Darmstadt University of Technology, Department of Law and Economics
econstor www.econstor.eu Der OpenAccessPublikationsserver der ZBW LeibnizInformationszentrum Wirtschaft The Open Access Publication Server of the ZBW Leibniz Information Centre for Economics Röthig,
More informationFDI and Economic Growth Relationship: An Empirical Study on Malaysia
International Business Research April, 2008 FDI and Economic Growth Relationship: An Empirical Study on Malaysia Har Wai Mun Faculty of Accountancy and Management Universiti Tunku Abdul Rahman Bander Sungai
More informationThreshold Autoregressive Models in Finance: A Comparative Approach
University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC)  Conference Papers Faculty of Informatics 2011 Threshold Autoregressive Models in Finance: A Comparative
More informationModeling and Forecasting of Gold Prices on Financial Markets
Modeling and Forecasting of Gold Prices on Financial Markets Rebecca Davis Department of Mathematical Sciences Pentecost University College AccraGhana. Vincent Kofi Dedu Department of Mathematics Kwame
More informationIS THERE A LONGRUN RELATIONSHIP
7. IS THERE A LONGRUN RELATIONSHIP BETWEEN TAXATION AND GROWTH: THE CASE OF TURKEY Salih Turan KATIRCIOGLU Abstract This paper empirically investigates longrun equilibrium relationship between economic
More informationAsian Economic and Financial Review THE EFFECT OF INTEREST RATE, INFLATION RATE, GDP, ON REAL ECONOMIC GROWTH RATE IN JORDAN. Abdul Aziz Farid Saymeh
Asian Economic and Financial Review journal homepage: http://aessweb.com/journaldetail.php?id=52 THE EFFECT OF INTEREST RATE, INFLATION RATE, GDP, ON REAL ECONOMIC GROWTH RATE IN JORDAN Abdul Aziz Farid
More informationThe VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
More informationTURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS. A nonlinear moving average test as a robust test for ARCH
TURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS ISSN 0786 656 ISBN 951 9 1450 6 A nonlinear moving average test as a robust test for ARCH Jussi Tolvi No 81 May
More informationUnit Labor Costs and the Price Level
Unit Labor Costs and the Price Level Yash P. Mehra A popular theoretical model of the inflation process is the expectationsaugmented Phillipscurve model. According to this model, prices are set as markup
More informationInternational Business & Economics Research Journal December 2006 Volume 5, Number 12
Performance Of Deterministic And Stochastic Trends Models In Forecasting The Behavior Of The Canadian Dollar And The Japanese Yen Against The US Dollar Arav Ouandlous, (Email: ouandlou@savstate.edu), Savannah
More informationDETERMINANTS OF THE CHILEAN SOVEREIGN SPREAD: IS IT PURELY FUNDAMENTALS?
BANCO CENTRAL DE CHILE DETERMINANTS OF THE CHILEAN SOVEREIGN SPREAD: IS IT PURELY FUNDAMENTALS? ALVARO ROJAS O. * FELIPE JAQUE S. ABSTRACT In recent years, the Chilean economy has been widely recognized
More informationIs the Basis of the Stock Index Futures Markets Nonlinear?
University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC)  Conference Papers Faculty of Engineering and Information Sciences 2011 Is the Basis of the Stock
More informationModeling and forecasting regional GDP in Sweden. using autoregressive models
MASTER THESIS IN MICRODATA ANALYSIS Modeling and forecasting regional GDP in Sweden using autoregressive models Author: Haonan Zhang Supervisor: Niklas Rudholm 2013 Business Intelligence Program School
More informationGovernment bond market linkages: evidence from Europe
Applied Financial Economics, 2005, 15, 599 610 Government bond market linkages: evidence from Europe Jian Yang Department of Accounting, Finance & MIS, Prairie View A&M University, Prairie View, TX 77446,
More informationADVANCED FORECASTING MODELS USING SAS SOFTWARE
ADVANCED FORECASTING MODELS USING SAS SOFTWARE Girish Kumar Jha IARI, Pusa, New Delhi 110 012 gjha_eco@iari.res.in 1. Transfer Function Model Univariate ARIMA models are useful for analysis and forecasting
More informationSYSTEMS OF REGRESSION EQUATIONS
SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations
More informationEmpirical Properties of the Indonesian Rupiah: Testing for Structural Breaks, Unit Roots, and White Noise
Volume 24, Number 2, December 1999 Empirical Properties of the Indonesian Rupiah: Testing for Structural Breaks, Unit Roots, and White Noise Reza Yamora Siregar * 1 This paper shows that the real exchange
More informationInternet Appendix to Stock Market Liquidity and the Business Cycle
Internet Appendix to Stock Market Liquidity and the Business Cycle Randi Næs, Johannes A. Skjeltorp and Bernt Arne Ødegaard This Internet appendix contains additional material to the paper Stock Market
More informationUniversity. Georgia State University. The Viability of Fiscal Policy in South Korea, Taiwan, and Thailand. International Studies Program
University International Studies Program Working Paper 0209 March 2002 The Viability of Fiscal Policy in South Korea, Taiwan, and Thailand Tsangyao Chang WenRong Liu Henry Thompson Georgia State University
More informationTable 1: Unit Root Tests KPSS Test Augmented DickeyFuller Test with Time Trend
Table 1: Unit Root Tests KPSS Test Augmented DickeyFuller Test with Time Trend with Time Trend test statistic pvalue test statistic Corn 2.953.146.179 Soy 2.663.252.353 Corn 2.752.215.171 Soy 2.588.285.32
More informationModeling volatility for the Swedish stock market
Modeling volatility for the Swedish stock market Emilio Vega Ezpeleta Uppsala University Department of Statistics Advisor: Lars Forsberg Fall, 2015 Abstract This thesis will investigate if adding an exogenous
More information2. What are the theoretical and practical consequences of autocorrelation?
Lecture 10 Serial Correlation In this lecture, you will learn the following: 1. What is the nature of autocorrelation? 2. What are the theoretical and practical consequences of autocorrelation? 3. Since
More informationPredictability of NonLinear Trading Rules in the US Stock Market Chong & Lam 2010
Department of Mathematics QF505 Topics in quantitative finance Group Project Report Predictability of onlinear Trading Rules in the US Stock Market Chong & Lam 010 ame: Liu Min Qi Yichen Zhang Fengtian
More informationRob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1
Rob J Hyndman Forecasting using 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Example: Japanese cars 3 Using Fourier terms for seasonality 4
More informationRELATIONSHIP BETWEEN STOCK MARKET VOLATILITY AND EXCHANGE RATE: A STUDY OF KSE
RELATIONSHIP BETWEEN STOCK MARKET VOLATILITY AND EXCHANGE RATE: A STUDY OF KSE Waseem ASLAM Department of Finance and Economics, Foundation University Rawalpindi, Pakistan seem_aslam@yahoo.com Abstract:
More informationUsing graphical modelling in official statistics
Quaderni di Statistica Vol. 6, 2004 Using graphical modelling in official statistics Richard N. Penny Fidelio Consultancy Email: cpenny@xtra.co.nz Marco Reale Mathematics and Statistics Department, University
More informationTIME SERIES ANALYSIS
TIME SERIES ANALYSIS Ramasubramanian V. I.A.S.R.I., Library Avenue, New Delhi 110 012 ram_stat@yahoo.co.in 1. Introduction A Time Series (TS) is a sequence of observations ordered in time. Mostly these
More informationA cointegration and causality analysis of Scandinavian stock markets
A cointegration and causality analysis of Scandinavian stock markets Sanda Hubana Trondheim, May 2013 Master s thesis in Financial Economics Norwegian University of Science and Technology Faculty of Social
More informationDepartment of Economics
Department of Economics On Testing for Diagonality of Large Dimensional Covariance Matrices George Kapetanios Working Paper No. 526 October 2004 ISSN 14730278 On Testing for Diagonality of Large Dimensional
More informationOn the Predictive Power of the Implied Correlation Index
On the Predictive Power of the Implied Correlation Index Hongtao Zhou Job Market Paper Abstract This paper explores the forecasting power of the ICJ index, i.e. the S&P 500 Implied Correlation Index, for
More informationLeast Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN13: 9780470860809 ISBN10: 0470860804 Editors Brian S Everitt & David
More informationCOINTEGRATION AND CAUSAL RELATIONSHIP AMONG CRUDE PRICE, DOMESTIC GOLD PRICE AND FINANCIAL VARIABLES AN EVIDENCE OF BSE AND NSE *
Journal of Contemporary Issues in Business Research ISSN 23058277 (Online), 2013, Vol. 2, No. 1, 110. Copyright of the Academic Journals JCIBR All rights reserved. COINTEGRATION AND CAUSAL RELATIONSHIP
More informationLecture 6: Poisson regression
Lecture 6: Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction EDA for Poisson regression Estimation and testing in Poisson regression
More informationKeywords: Baltic stock markets, unit root, EngleGranger approach, Johansen cointegration test, causality, impulse response, variance decomposition.
Department of Economics Master thesis January 28 Dynamic linkages between Baltic and International stock markets Author: Julija Moroza Supervisor: Hossein Asgharian Abstract 1 The fact is that high integration
More informationForecasting areas and production of rice in India using ARIMA model
International Journal of Farm Sciences 4(1) :99106, 2014 Forecasting areas and production of rice in India using ARIMA model K PRABAKARAN and C SIVAPRAGASAM* Agricultural College and Research Institute,
More informationNonStationary Time Series andunitroottests
Econometrics 2 Fall 2005 NonStationary Time Series andunitroottests Heino Bohn Nielsen 1of25 Introduction Many economic time series are trending. Important to distinguish between two important cases:
More informationThe pricevolume relationship of the Malaysian Stock Index futures market
The pricevolume relationship of the Malaysian Stock Index futures market ABSTRACT Carl B. McGowan, Jr. Norfolk State University Junaina Muhammad University Putra Malaysia The objective of this study is
More informationCOURSES: 1. Short Course in Econometrics for the Practitioner (P000500) 2. Short Course in Econometric Analysis of Cointegration (P000537)
Get the latest knowledge from leading global experts. Financial Science Economics Economics Short Courses Presented by the Department of Economics, University of Pretoria WITH 2015 DATES www.ce.up.ac.za
More informationTime Series Analysis and Forecasting
Time Series Analysis and Forecasting Math 667 Al Nosedal Department of Mathematics Indiana University of Pennsylvania Time Series Analysis and Forecasting p. 1/11 Introduction Many decisionmaking applications
More informationMoody Oil What is Driving the Crude Oil Price?
Moody Oil What is Driving the Crude Oil Price? Abstract The unparalleled surge of the crude oil price after 2003 has triggered a heated scientific and public debate about its ultimate causes. Unexpected
More informationTime Series Analysis
Time Series Analysis Andrea Beccarini Center for Quantitative Economics Winter 2013/2014 Andrea Beccarini (CQE) Time Series Analysis Winter 2013/2014 1 / 143 Introduction Objectives Time series are ubiquitous
More informationFinancial Integration of Stock Markets in the Gulf: A Multivariate Cointegration Analysis
INTERNATIONAL JOURNAL OF BUSINESS, 8(3), 2003 ISSN:10834346 Financial Integration of Stock Markets in the Gulf: A Multivariate Cointegration Analysis Aqil Mohd. Hadi Hassan Department of Economics, College
More informationAsymmetric behavior of volatility in gasoline prices across different regions of the United States
Asymmetric behavior of volatility in gasoline prices across different regions of the United States ABSTRACT S. Aun Hassan Colorado State University Pueblo Hailu Regassa Colorado State University Pueblo
More informationPITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU
PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard
More informationPRICING OF FOREIGN CURRENCY OPTIONS IN THE SERBIAN MARKET
ECONOMIC ANNALS, Volume LIV, No. 180, January March 2009 UDC: 3.33 ISSN: 00133264 COMMUNICATIONS Irena Janković* DOI:10.2298/EKA0980091J PRICING OF FOREIGN CURRENCY OPTIONS IN THE SERBIAN MARKET ABSTRACT:
More informationEmpirical Analysis on the Relationship between Tourism Development and Economic Growth in Sichuan
Empirical Analysis on the Relationship between Tourism Development and Economic Growth in Sichuan Lihua He School of Economics and Management, Sichuan Agricultural University Ya an 625014, China Tel:
More informationUnivariate Time Series Analysis; ARIMA Models
Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing
More informationChapter 7 The ARIMA Procedure. Chapter Table of Contents
Chapter 7 Chapter Table of Contents OVERVIEW...193 GETTING STARTED...194 TheThreeStagesofARIMAModeling...194 IdentificationStage...194 Estimation and Diagnostic Checking Stage...... 200 Forecasting Stage...205
More informationChapter 9: Univariate Time Series Analysis
Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of
More informationOn the Economic Determinants of the GoldInflation Relation
Forthcoming : Resources Policy On the Economic Determinants of the GoldInflation Relation Date: March 19 2014 JEL: Q47; O13; C22 Keywords: Gold, Inflation Jonathan A. Batten Department of Banking and
More information