STREAM PROCESSING AT LINKEDIN: APACHE KAFKA & APACHE SAMZA. Processing billions of events every day
|
|
|
- Emery Nelson
- 10 years ago
- Views:
Transcription
1 STREAM PROCESSING AT LINKEDIN: APACHE KAFKA & APACHE SAMZA Processing billions of events every day
2 Neha Narkhede Co-founder and Head of Stealth Startup Prior to this Lead, Streams LinkedIn (Kafka & Samza) One of the initial authors of Apache Kafka, committer and PMC member Reach out
3 Agenda Real-time Data Integration Introduction to Logs & Apache Kafka Logs & Stream processing Apache Samza Stateful stream processing
4 The Data Needs Pyramid Self actualization Automation Esteem Understanding Love/Belonging Safety Physiological Data processing Data collection Maslow's hierarchy of needs Data needs
5 Agenda Real-time Data Integration Introduction to Logs & Apache Kafka Logs & Stream processing Apache Samza Stateful stream processing
6 Increase in diversity of data Database data (users, products, orders etc) Events (clicks, impressions, pageviews) Application logs (errors, service calls) Application metrics (CPU usage, requests/sec) Siloed data feeds IoT sensors
7 Explosion in diversity of systems Live Systems Voldemort Espresso GraphDB Search Samza Batch Hadoop Teradata
8 Data integration disaster Espresso Espresso Espresso Voldemort Voldemort Voldemort Oracle Oracle Oracle User Tracking Logs Operational Metrics Hadoop Log Search Monitoring Data Warehous e Social Graph Rec. Engine Search Security... Production Services
9 Centralized service Espresso Espresso Espresso Voldemort Voldemort Voldemort Oracle Oracle Oracle User Tracking Logs Operational Metrics Data Pipeline Hadoop Log Search Monitorin g Data Warehous e Social Graph Rec Engine & Life Search Security... Production Services
10 Agenda Real-time Data Integration Introduction to Logs & Apache Kafka Logs & Stream processing Apache Samza Stateful stream processing
11 Kafka at 10,000 ft Producer Producer Producer Producer Cluster of brokers Producer Producer Distributed from ground up Persistent Multi-subscriber Producer Consumer Producer Consumer Producer Consumer
12 Key design principles Scalability of a file system Hundreds of MB/sec/server throughput Many TBs per server Guarantees of a database Messages strictly ordered All data persistent Distributed by default Replication model Partitioning model
13 Kafka adoption
14 Apache LinkedIn 175 TB of in-flight log data per colo Low-latency: ~1.5ms Replicated to each datacenter Tens of thousands of data producers Thousands of consumers 7 million messages written/sec 35 million messages read/sec Hadoop integration
15 Logs The data structure every systems engineer should know
16 The Log 1st record next record written Ordered Append only Immutable
17 The Log: Partitioning Partition Partition Partition
18 Logs: pub/sub done right Data source writes reads reads Destination system A (time = 7) Destination system B (time = 11)
19 Logs for data integration User updates profile with new job KAFKA Newsfeed Search Hadoop Standardization engine
20 Agenda Real-time Data Integration Introduction to Logs & Apache Kafka Logs & Stream processing Apache Samza Stateful stream processing
21 Stream processing = f(log) Log A Job 1 Log B
22 Stream processing = f(log) Log A Job 1 Log B Log C Job 2 Log D Log E
23 Apache Samza at LinkedIn User updates profile with new job KAFKA Newsfeed Search Hadoop Standardization engine
24 Latency spectrum of data systems RPC Latency Asynchronous processing (seconds to minutes) Synchronous (milliseconds) Batch (Hours)
25 Agenda Real-time Data Integration Introduction to Logs & Apache Kafka Logs & Stream processing Apache Samza Stateful stream processing
26 Samza API getkey(), getmsg() public interface StreamTask { void process (IncomingMessageEnvelope envelope, MessageCollector collector, TaskCoordinator coordinator); } sendmsg(topic, key, value) commit(), shutdown()
27 Samza Architecture (Logical view) Log A partition 0 partition 1 partition 2 Task 1 Task 2 Task 3 partition 0 partition 1 Log B
28 Samza Architecture (Logical view) Log A partition 0 partition 1 partition 2 Samza container 1 Samza container 2 Task 1 Task 2 Task 3 partition 0 partition 1 Log B
29 Samza Architecture (Physical view) Samza container 1 Samza container 2 Host 1 Host 2
30 Samza Architecture (Physical view) Node manager Node manager Samza container 1 Samza container 2 Samza YARN AM Host 1 Host 2
31 Samza Architecture (Physical view) Node manager Node manager Samza container 1 Samza container 2 Samza YARN AM Kafka Kafka Host 1 Host 2
32 Samza Architecture: Equivalence to Map Reduce Node manager Node manager Map Reduce Map Reduce YARN AM HDFS HDFS Host 1 Host 2
33 M/R Operation Primitives Filter records matching some condition Map record = f(record) Join Two/more datasets by key Group records with same key Aggregate f(records within the same group) Pipe job 1 s output => job 2 s input
34 M/R Operation Primitives on streams Filter records matching some condition Map record = f(record) Join Two/more datasets by key Group records with same key Aggregate f(records within the same group) Pipe job 1 s output => job 2 s input Requires state maintenance
35 Agenda Real-time Data Integration Introduction to Logs & Apache Kafka Logs & Stream processing Apache Samza Stateful stream processing
36 Example: Newsfeed User... posted "..." User 989 posted "Blah Blah" User 567 posted "Hello World" Status update log External connection DB Fan out messages to followers 567 -> [123, 679, 789,...] 999 -> [156, 343,... ] Push notification log Refresh user 123's newsfeed Refresh user 679's newsfeed Refresh user...'s newsfeed
37 Local state vs Remote state: Remote K msg/sec/node K msg/sec/node Samza task partition 0 Samza task partition 1 Performance Isolation Limited APIs Disk Remote state 1-5K queries/sec?? ex: Cassandra, MongoDB, etc
38 Local state: Bring data closer to computation Samza task partition 0 Samza task partition 1 Local Local LevelDB/RocksDB LevelDB/RocksDB
39 Local state: Bring data closer to computation Samza task partition 0 Samza task partition 1 Local Local LevelDB/RocksDB LevelDB/RocksDB Disk Change log stream
40 Example Revisited: Newsfeed User... posted "..." User 989 posted "Blah Blah" User 567 posted "Hello World" Status update log User... followed... User 123 followed 567 User 890 followed 234 New connection log Fan out messages to followers 567 -> [123, 679, 789,...] 999 -> [156, 343,... ] Push notification log Refresh user 123's newsfeed Refresh user 679's newsfeed Refresh user...'s newsfeed
41 Fault tolerance? Node manager Node manager Samza container 1 Samza container 2 Samza YARN AM Kafka Kafka Host 1 Host 2
42 Fault tolerance in Samza Samza task partition 0 Samza task partition 1 Local Local LevelDB/RocksDB LevelDB/RocksDB Durable change log
43 Slow jobs Log A Job 1 Log B Log C Drop data Backpressure Job 2 Queue In memory On disk (KAFKA) Log D Log E
44 Summary Real time data integration is crucial for the success and adoption of stream processing Logs form the basis for real time data integration Stream processing = f(logs) Samza is designed from ground-up for scalability and provides fault-tolerant, persistent state
45 Thank you! The Log Apache Kafka Apache Samza
I Logs. Apache Kafka, Stream Processing, and Real-time Data Jay Kreps
I Logs Apache Kafka, Stream Processing, and Real-time Data Jay Kreps The Plan 1. What is Data Integration? 2. What is Apache Kafka? 3. Logs and Distributed Systems 4. Logs and Data Integration 5. Logs
Putting Apache Kafka to Use!
Putting Apache Kafka to Use! Building a Real-time Data Platform for Event Streams! JAY KREPS, CONFLUENT! A Couple of Themes! Theme 1: Rise of Events! Theme 2: Immutability Everywhere! Level! Example! Immutable
Architectures for massive data management
Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
Apache Kafka Your Event Stream Processing Solution
01 0110 0001 01101 Apache Kafka Your Event Stream Processing Solution White Paper www.htcinc.com Contents 1. Introduction... 2 1.1 What are Business Events?... 2 1.2 What is a Business Data Feed?... 2
Realtime Apache Hadoop at Facebook. Jonathan Gray & Dhruba Borthakur June 14, 2011 at SIGMOD, Athens
Realtime Apache Hadoop at Facebook Jonathan Gray & Dhruba Borthakur June 14, 2011 at SIGMOD, Athens Agenda 1 Why Apache Hadoop and HBase? 2 Quick Introduction to Apache HBase 3 Applications of HBase at
Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015
Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
Using Kafka to Optimize Data Movement and System Integration. Alex Holmes @
Using Kafka to Optimize Data Movement and System Integration Alex Holmes @ https://www.flickr.com/photos/tom_bennett/7095600611 THIS SUCKS E T (circa 2560 B.C.E.) L a few years later... 2,014 C.E. i need
Data Pipeline with Kafka
Data Pipeline with Kafka Peerapat Asoktummarungsri AGODA Senior Software Engineer Agoda.com Contributor Thai Java User Group (THJUG.com) Contributor Agile66 AGENDA Big Data & Data Pipeline Kafka Introduction
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
Building Scalable Big Data Infrastructure Using Open Source Software. Sam William sampd@stumbleupon.
Building Scalable Big Data Infrastructure Using Open Source Software Sam William sampd@stumbleupon. What is StumbleUpon? Help users find content they did not expect to find The best way to discover new
WHITE PAPER. Reference Guide for Deploying and Configuring Apache Kafka
WHITE PAPER Reference Guide for Deploying and Configuring Apache Kafka Revised: 02/2015 Table of Content 1. Introduction 3 2. Apache Kafka Technology Overview 3 3. Common Use Cases for Kafka 4 4. Deploying
The Big Data Ecosystem at LinkedIn. Presented by Zhongfang Zhuang
The Big Data Ecosystem at LinkedIn Presented by Zhongfang Zhuang Based on the paper The Big Data Ecosystem at LinkedIn, written by Roshan Sumbaly, Jay Kreps, and Sam Shah. The Ecosystems Hadoop Ecosystem
Kafka: a Distributed Messaging System for Log Processing
Kafka: a Distributed Messaging System for Log Processing Jay Kreps LinkedIn Corp jkreps@linkedincom Neha Narkhede LinkedIn Corp nnarkhede@linkedincom Jun Rao LinkedIn Corp jrao@linkedincom ABSTRACT Log
Introduction to Apache Kafka And Real-Time ETL. for Oracle DBAs and Data Analysts
Introduction to Apache Kafka And Real-Time ETL for Oracle DBAs and Data Analysts 1 About Myself Gwen Shapira System Architect @Confluent Committer @ Apache Kafka, Apache Sqoop Author of Hadoop Application
Big Data JAMES WARREN. Principles and best practices of NATHAN MARZ MANNING. scalable real-time data systems. Shelter Island
Big Data Principles and best practices of scalable real-time data systems NATHAN MARZ JAMES WARREN II MANNING Shelter Island contents preface xiii acknowledgments xv about this book xviii ~1 Anew paradigm
Kafka & Redis for Big Data Solutions
Kafka & Redis for Big Data Solutions Christopher Curtin Head of Technical Research @ChrisCurtin About Me 25+ years in technology Head of Technical Research at Silverpop, an IBM Company (14 + years at Silverpop)
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Agenda. Some Examples from Yahoo! Hadoop. Some Examples from Yahoo! Crawling. Cloud (data) management Ahmed Ali-Eldin. First part: Second part:
Cloud (data) management Ahmed Ali-Eldin First part: ZooKeeper (Yahoo!) Agenda A highly available, scalable, distributed, configuration, consensus, group membership, leader election, naming, and coordination
How To Use A Data Center With A Data Farm On A Microsoft Server On A Linux Server On An Ipad Or Ipad (Ortero) On A Cheap Computer (Orropera) On An Uniden (Orran)
Day with Development Master Class Big Data Management System DW & Big Data Global Leaders Program Jean-Pierre Dijcks Big Data Product Management Server Technologies Part 1 Part 2 Foundation and Architecture
Getting Real Real Time Data Integration Patterns and Architectures
Getting Real Real Time Data Integration Patterns and Architectures Nelson Petracek Senior Director, Enterprise Technology Architecture Informatica Digital Government Institute s Enterprise Architecture
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Real-time Big Data Analytics with Storm
Ron Bodkin Founder & CEO, Think Big June 2013 Real-time Big Data Analytics with Storm Leading Provider of Data Science and Engineering Services Accelerating Your Time to Value IMAGINE Strategy and Roadmap
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements
WSO2 Message Broker. Scalable persistent Messaging System
WSO2 Message Broker Scalable persistent Messaging System Outline Messaging Scalable Messaging Distributed Message Brokers WSO2 MB Architecture o Distributed Pub/sub architecture o Distributed Queues architecture
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
YARN Apache Hadoop Next Generation Compute Platform
YARN Apache Hadoop Next Generation Compute Platform Bikas Saha @bikassaha Hortonworks Inc. 2013 Page 1 Apache Hadoop & YARN Apache Hadoop De facto Big Data open source platform Running for about 5 years
An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov
An Industrial Perspective on the Hadoop Ecosystem Eldar Khalilov Pavel Valov agenda 03.12.2015 2 agenda Introduction 03.12.2015 2 agenda Introduction Research goals 03.12.2015 2 agenda Introduction Research
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
HDMQ :Towards In-Order and Exactly-Once Delivery using Hierarchical Distributed Message Queues. Dharmit Patel Faraj Khasib Shiva Srivastava
HDMQ :Towards In-Order and Exactly-Once Delivery using Hierarchical Distributed Message Queues Dharmit Patel Faraj Khasib Shiva Srivastava Outline What is Distributed Queue Service? Major Queue Service
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Apache Storm vs. Spark Streaming Two Stream Processing Platforms compared
Apache Storm vs. Spark Streaming Two Stream Platforms compared DBTA Workshop on Stream Berne, 3.1.014 Guido Schmutz BASEL BERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MUNICH
Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations
Beyond Lambda - how to get from logical to physical Artur Borycki, Director International Technology & Innovations Simplification & Efficiency Teradata believe in the principles of self-service, automation
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
BookKeeper. Flavio Junqueira Yahoo! Research, Barcelona. Hadoop in China 2011
BookKeeper Flavio Junqueira Yahoo! Research, Barcelona Hadoop in China 2011 What s BookKeeper? Shared storage for writing fast sequences of byte arrays Data is replicated Writes are striped Many processes
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing Eric Charles [http://echarles.net] @echarles Datalayer [http://datalayer.io] @datalayerio FOSDEM 02 Feb 2014 NoSQL DevRoom
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
BIG DATA. Using the Lambda Architecture on a Big Data Platform to Improve Mobile Campaign Management. Author: Sandesh Deshmane
BIG DATA Using the Lambda Architecture on a Big Data Platform to Improve Mobile Campaign Management Author: Sandesh Deshmane Executive Summary Growing data volumes and real time decision making requirements
Amazon EC2 Product Details Page 1 of 5
Amazon EC2 Product Details Page 1 of 5 Amazon EC2 Functionality Amazon EC2 presents a true virtual computing environment, allowing you to use web service interfaces to launch instances with a variety of
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through
Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!!
Simplifying Big Data Analytics: Unifying Batch and Stream Processing John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Streaming Analy.cs S S S Scale- up Database Data And Compute Grid
Design and Evolution of the Apache Hadoop File System(HDFS)
Design and Evolution of the Apache Hadoop File System(HDFS) Dhruba Borthakur Engineer@Facebook Committer@Apache HDFS SDC, Sept 19 2011 Outline Introduction Yet another file-system, why? Goals of Hadoop
Fast Data in the Era of Big Data: Tiwtter s Real-Time Related Query Suggestion Architecture
Fast Data in the Era of Big Data: Tiwtter s Real-Time Related Query Suggestion Architecture Gilad Mishne, Jeff Dalton, Zhenghua Li, Aneesh Sharma, Jimmy Lin Adeniyi Abdul 2522715 Agenda Abstract Introduction
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Extending Hadoop beyond MapReduce
Extending Hadoop beyond MapReduce Mahadev Konar Co-Founder @mahadevkonar (@hortonworks) Page 1 Bio Apache Hadoop since 2006 - committer and PMC member Developed and supported Map Reduce @Yahoo! - Core
BIG DATA ANALYTICS For REAL TIME SYSTEM
BIG DATA ANALYTICS For REAL TIME SYSTEM Where does big data come from? Big Data is often boiled down to three main varieties: Transactional data these include data from invoices, payment orders, storage
the missing log collector Treasure Data, Inc. Muga Nishizawa
the missing log collector Treasure Data, Inc. Muga Nishizawa Muga Nishizawa (@muga_nishizawa) Chief Software Architect, Treasure Data Treasure Data Overview Founded to deliver big data analytics in days
JoramMQ, a distributed MQTT broker for the Internet of Things
JoramMQ, a distributed broker for the Internet of Things White paper and performance evaluation v1.2 September 214 mqtt.jorammq.com www.scalagent.com 1 1 Overview Message Queue Telemetry Transport () is
[Hadoop, Storm and Couchbase: Faster Big Data]
[Hadoop, Storm and Couchbase: Faster Big Data] With over 8,500 clients, LivePerson is the global leader in intelligent online customer engagement. With an increasing amount of agent/customer engagements,
HDFS: Hadoop Distributed File System
Istanbul Şehir University Big Data Camp 14 HDFS: Hadoop Distributed File System Aslan Bakirov Kevser Nur Çoğalmış Agenda Distributed File System HDFS Concepts HDFS Interfaces HDFS Full Picture Read Operation
Wisdom from Crowds of Machines
Wisdom from Crowds of Machines Analytics and Big Data Summit September 19, 2013 Chetan Conikee Irfan Ahmad About Us CloudPhysics' mission is to discover the underlying principles that govern systems behavior
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
Apache Hama Design Document v0.6
Apache Hama Design Document v0.6 Introduction Hama Architecture BSPMaster GroomServer Zookeeper BSP Task Execution Job Submission Job and Task Scheduling Task Execution Lifecycle Synchronization Fault
Unified Batch & Stream Processing Platform
Unified Batch & Stream Processing Platform Himanshu Bari Director Product Management Most Big Data Use Cases Are About Improving/Re-write EXISTING solutions To KNOWN problems Current Solutions Were Built
Streaming items through a cluster with Spark Streaming
Streaming items through a cluster with Spark Streaming Tathagata TD Das @tathadas CME 323: Distributed Algorithms and Optimization Stanford, May 6, 2015 Who am I? > Project Management Committee (PMC) member
Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB
Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO
BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO ANTHONY A. KALINDE SIGMA DATA SCIENCE GROUP ASSOCIATE "REALTIME BEHAVIOURAL DATA COLLECTION CLICKSTREAM EXAMPLE" WHAT IS CLICKSTREAM ANALYTICS?
Real-time Data Replication
Real-time Data Replication from Oracle to other databases using DataCurrents WHITEPAPER Contents Data Replication Concepts... 2 Real time Data Replication... 3 Heterogeneous Data Replication... 4 Different
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
Hadoop: Embracing future hardware
Hadoop: Embracing future hardware Suresh Srinivas @suresh_m_s Page 1 About Me Architect & Founder at Hortonworks Long time Apache Hadoop committer and PMC member Designed and developed many key Hadoop
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
Data Warehousing and Analytics Infrastructure at Facebook. Ashish Thusoo & Dhruba Borthakur athusoo,[email protected]
Data Warehousing and Analytics Infrastructure at Facebook Ashish Thusoo & Dhruba Borthakur athusoo,[email protected] Overview Challenges in a Fast Growing & Dynamic Environment Data Flow Architecture,
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
NOT IN KANSAS ANY MORE
NOT IN KANSAS ANY MORE How we moved into Big Data Dan Taylor - JDSU Dan Taylor Dan Taylor: An Engineering Manager, Software Developer, data enthusiast and advocate of all things Agile. I m currently lucky
How To Use Big Data For Telco (For A Telco)
ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Improve performance and availability of Banking Portal with HADOOP
Improve performance and availability of Banking Portal with HADOOP Our client is a leading U.S. company providing information management services in Finance Investment, and Banking. This company has a
Big Data Technology Core Hadoop: HDFS-YARN Internals
Big Data Technology Core Hadoop: HDFS-YARN Internals Eshcar Hillel Yahoo! Ronny Lempel Outbrain *Based on slides by Edward Bortnikov & Ronny Lempel Roadmap Previous class Map-Reduce Motivation This class
Big Data on AWS. Services Overview. Bernie Nallamotu Principle Solutions Architect
on AWS Services Overview Bernie Nallamotu Principle Solutions Architect \ So what is it? When your data sets become so large that you have to start innovating around how to collect, store, organize, analyze
Big Data Trends and HDFS Evolution
Big Data Trends and HDFS Evolution Sanjay Radia Founder & Architect Hortonworks Inc Page 1 Hello Founder, Hortonworks Part of the Hadoop team at Yahoo! since 2007 Chief Architect of Hadoop Core at Yahoo!
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies [email protected] 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
GigaSpaces Real-Time Analytics for Big Data
GigaSpaces Real-Time Analytics for Big Data GigaSpaces makes it easy to build and deploy large-scale real-time analytics systems Rapidly increasing use of large-scale and location-aware social media and
NextGen Infrastructure for Big DATA Analytics.
NextGen Infrastructure for Big DATA Analytics. So What is Big Data? Data that exceeds the processing capacity of conven4onal database systems. The data is too big, moves too fast, or doesn t fit the structures
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Dominik Wagenknecht Accenture
Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna
Introducing Storm 1 Core Storm concepts Topology design
Storm Applied brief contents 1 Introducing Storm 1 2 Core Storm concepts 12 3 Topology design 33 4 Creating robust topologies 76 5 Moving from local to remote topologies 102 6 Tuning in Storm 130 7 Resource
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Real Time Analytics for Big Data. NtiSh Nati Shalom @natishalom
Real Time Analytics for Big Data A Twitter Inspired Case Study NtiSh Nati Shalom @natishalom Big Data Predictions Overthe next few years we'll see the adoption of scalable frameworks and platforms for
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect
Matteo Migliavacca (mm53@kent) School of Computing Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Simple past - Traditional
