Improve performance and availability of Banking Portal with HADOOP

Size: px
Start display at page:

Download "Improve performance and availability of Banking Portal with HADOOP"

Transcription

1 Improve performance and availability of Banking Portal with HADOOP Our client is a leading U.S. company providing information management services in Finance Investment, and Banking. This company has a variety of different web services, applications, and databases which are serviced by different teams in geographically distributed datacenters.

2 Powering Banking Portal with Hadoop Powering Banking Portal with Hadoop Business Challenge For end-client services, client satisfaction is one of the most valuable business metrics. If you've lost your customer s satisfaction, you ve lost your customers. Maintaining customer satisfaction is a top priority for any business, but it can often be quite a tall order. There are always factors beyond our control, but luckily with prudent application of the right technologies we Web service response time (WSRT) Time to implement new useful for clients functionality Value added services Our customer experienced problems with WSRT when rolling out new features and this caused decreasing client satisfaction. As a result of our initial assessment, we delivered the customer a list of business problems, a detailed gap analysis report, and a list of potential solutions. Extreme geographic separation of development and operations teams led to miscommunication and reduced productivity, leading to degraded solution performance. A 5% performance loss in web services and analytics applications was enough to overwhelm all services, including the data center - increasing WSRT by a factor of two. All these factors led to lost profit due to release delays, both in production and in development. To ensure stability, the following recommendations were made: Control product quality and performance at all stages. Develop an automated product and server monitoring system which analyses system and application metrics as well as product health. Provide a fully automated solution. Here is a list of the most important problems, which caused decreasing product stability: Complicated solution architecture caused unpredictable effects in case of any changes to product functionality. Banking Portal with Hadoop 1 Banking Portal with Hadoop 2

3 Project Description Based on our consulting recommendations and the characteristics of their products, the client set the following Powering Banking Portal with Hadoop Automated test development environments with real production data Automated performance testing for every module during the development phase Automated performance monitoring Performance history logging with analysis features Gor Web Servers Web Apps Ambari Sensu Client Log Shipper Sensu Logstash Flapjack: Notification ElasticSearch: Search DB Kale: Anomaly Detection Engine YARN Kibana: Visualisation The concept for this solution was to provide an easy way to add availability and performance monitoring tools, from the development to production phase - from the QA team to end users. As this is a modular system, each of these modules can be easily replaced by a better one if need be. Apps Services Hadoop Cluster PROD DEV QA HDFS Hive: Query CLI Hadoop modules data flow Banking Portal with Hadoop 4 Banking Portal with Hadoop 3

4 Scaled power of Hadoop The system was designed to be a multi-layer, highly scalable platform with the ability to detect anomalies in all modules within production, development, and QA environments. Our solution included the following integrated features: Traffic forwarding This component provides the ability to forward any HTTP traffic replay in real-time in production, staging, and dev environments. This component was implemented based on the open-source tool Gor. anomaly detection component was created by Datamart LLC and is part of our Datamart Analytics Framework. Notification and Visualisation These components were built on top of the open-source tools Flapjack and Kibana. Both these frameworks provide very sophisticated API and can be integrated with almost any external modules. Flapjack provides integration with SMS gates, and Apple and Google Push Services. Metrics collection and aggregation This component uses both Ambari API to collect Hadoop cluster metrics; Sensu clients for collecting general system metrics, like CPU and Memory usage, and Logstash for collecting log files from applications. All these modules are open-source and free of cost. These powerful components can support horizontal scaling, and monitor up to 50,000 servers right out of the box. Anomaly detection This component is responsible for analysing all the data and detecting anomalies in the collected metrics. Kale, a detection reporter, uploads to the ElasticSearch database for next visualisation with the Kibana web visualisation framework. This Delivered Value Datamart LLC successfully delivered a new, ready-to-use platform monitoring system with all of the required features and capabilities. Key Benefits: Implementation of this solution allowed the size of the operations team to be reduced by half while maintaining the highest level of product availability. Banking Portal with Hadoop 5 Banking Portal with Hadoop 6

5 The overall solution performance increased by 26% in 3 months. This allowed the development team to implement new functionality twice as fast as before. New features can be tested in an environment with the same conditions as those in production, yielding realistic and reliable results. TCO was reduced. The successful results of this project led to a fruitful business partnership. Banking Portal with Hadoop 8

Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack

Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack HIGHLIGHTS Real-Time Results Elasticsearch on Cisco UCS enables a deeper

More information

Modern Web development and operations practices. Grig Gheorghiu VP Tech Operations Nasty Gal Inc. @griggheo

Modern Web development and operations practices. Grig Gheorghiu VP Tech Operations Nasty Gal Inc. @griggheo Modern Web development and operations practices Grig Gheorghiu VP Tech Operations Nasty Gal Inc. @griggheo Modern Web stack Aim for horizontal scalability! Ruby/Python front-end servers (Sinatra/Padrino,

More information

FUJITSU Software ServerView Cloud Monitoring Manager V1 Introduction

FUJITSU Software ServerView Cloud Monitoring Manager V1 Introduction FUJITSU Software ServerView Cloud Monitoring Manager V1 Introduction November 2015 Fujitsu Limited Product Overview 1 Why a Monitoring & Logging OpenStack Service? OpenStack systems are large, complex

More information

Fast Data in the Era of Big Data: Twitter s Real-

Fast Data in the Era of Big Data: Twitter s Real- Fast Data in the Era of Big Data: Twitter s Real- Time Related Query Suggestion Architecture Gilad Mishne, Jeff Dalton, Zhenghua Li, Aneesh Sharma, Jimmy Lin Presented by: Rania Ibrahim 1 AGENDA Motivation

More information

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current

More information

Real-time Data Analytics mit Elasticsearch. Bernhard Pflugfelder inovex GmbH

Real-time Data Analytics mit Elasticsearch. Bernhard Pflugfelder inovex GmbH Real-time Data Analytics mit Elasticsearch Bernhard Pflugfelder inovex GmbH Bernhard Pflugfelder Big Data Engineer @ inovex Fields of interest: search analytics big data bi Working with: Lucene Solr Elasticsearch

More information

Information Retrieval Elasticsearch

Information Retrieval Elasticsearch Information Retrieval Elasticsearch IR Information retrieval (IR) is the activity of obtaining information resources relevant to an information need from a collection of information resources. Searches

More information

Dominik Wagenknecht Accenture

Dominik Wagenknecht Accenture Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna

More information

ENTERPRISE-CLASS MONITORING SOLUTION FOR EVERYONE ALL-IN-ONE OPEN-SOURCE DISTRIBUTED MONITORING

ENTERPRISE-CLASS MONITORING SOLUTION FOR EVERYONE ALL-IN-ONE OPEN-SOURCE DISTRIBUTED MONITORING ENTERPRISE-CLASS MONITORING SOLUTION FOR EVERYONE ALL-IN-ONE OPEN-SOURCE DISTRIBUTED MONITORING 1 CONTENTS About Zabbix Software... 2 Main Functions... 3 Architecture... 4 Installation Requirements...

More information

Scalable Architecture on Amazon AWS Cloud

Scalable Architecture on Amazon AWS Cloud Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies kalpak@clogeny.com 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect

More information

Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.

Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture. Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in

More information

Data Discovery and Systems Diagnostics with the ELK stack. Rittman Mead - BI Forum 2015, Brighton. Robin Moffatt, Principal Consultant Rittman Mead

Data Discovery and Systems Diagnostics with the ELK stack. Rittman Mead - BI Forum 2015, Brighton. Robin Moffatt, Principal Consultant Rittman Mead Data Discovery and Systems Diagnostics with the ELK stack Rittman Mead - BI Forum 2015, Brighton Robin Moffatt, Principal Consultant Rittman Mead T : +44 (0) 1273 911 268 (UK) About Me Principal Consultant

More information

I Logs. Apache Kafka, Stream Processing, and Real-time Data Jay Kreps

I Logs. Apache Kafka, Stream Processing, and Real-time Data Jay Kreps I Logs Apache Kafka, Stream Processing, and Real-time Data Jay Kreps The Plan 1. What is Data Integration? 2. What is Apache Kafka? 3. Logs and Distributed Systems 4. Logs and Data Integration 5. Logs

More information

Using Logstash and Elasticsearch analytics capabilities as a BI tool

Using Logstash and Elasticsearch analytics capabilities as a BI tool Using Logstash and Elasticsearch analytics capabilities as a BI tool Pashalis Korosoglou, Pavlos Daoglou, Stefanos Laskaridis, Dimitris Daskopoulos Aristotle University of Thessaloniki, IT Center Outline

More information

STREAM PROCESSING AT LINKEDIN: APACHE KAFKA & APACHE SAMZA. Processing billions of events every day

STREAM PROCESSING AT LINKEDIN: APACHE KAFKA & APACHE SAMZA. Processing billions of events every day STREAM PROCESSING AT LINKEDIN: APACHE KAFKA & APACHE SAMZA Processing billions of events every day Neha Narkhede Co-founder and Head of Engineering @ Stealth Startup Prior to this Lead, Streams Infrastructure

More information

Comprehensive Analytics on the Hortonworks Data Platform

Comprehensive Analytics on the Hortonworks Data Platform Comprehensive Analytics on the Hortonworks Data Platform We do Hadoop. Page 1 Page 2 Back to 2005 Page 3 Vertical Scaling Page 4 Vertical Scaling Page 5 Vertical Scaling Page 6 Horizontal Scaling Page

More information

BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO

BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO ANTHONY A. KALINDE SIGMA DATA SCIENCE GROUP ASSOCIATE "REALTIME BEHAVIOURAL DATA COLLECTION CLICKSTREAM EXAMPLE" WHAT IS CLICKSTREAM ANALYTICS?

More information

the missing log collector Treasure Data, Inc. Muga Nishizawa

the missing log collector Treasure Data, Inc. Muga Nishizawa the missing log collector Treasure Data, Inc. Muga Nishizawa Muga Nishizawa (@muga_nishizawa) Chief Software Architect, Treasure Data Treasure Data Overview Founded to deliver big data analytics in days

More information

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform

More information

Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook

Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future

More information

Datasheet FUJITSU Software ServerView Cloud Monitoring Manager V1.0

Datasheet FUJITSU Software ServerView Cloud Monitoring Manager V1.0 Datasheet FUJITSU Software ServerView Cloud Monitoring Manager V1.0 Datasheet FUJITSU Software ServerView Cloud Monitoring Manager V1.0 A Monitoring Cloud Service for Enterprise OpenStack Systems Cloud

More information

Big Data Analytics Platform @ Nokia

Big Data Analytics Platform @ Nokia Big Data Analytics Platform @ Nokia 1 Selecting the Right Tool for the Right Workload Yekesa Kosuru Nokia Location & Commerce Strata + Hadoop World NY - Oct 25, 2012 Agenda Big Data Analytics Platform

More information

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log

More information

Big Data Management and Security

Big Data Management and Security Big Data Management and Security Audit Concerns and Business Risks Tami Frankenfield Sr. Director, Analytics and Enterprise Data Mercury Insurance What is Big Data? Velocity + Volume + Variety = Value

More information

Use case: Merging heterogeneous network measurement data

Use case: Merging heterogeneous network measurement data Use case: Merging heterogeneous network measurement data Jorge E. López de Vergara and Javier Aracil Jorge.lopez_vergara@uam.es Credits to Rubén García-Valcárcel, Iván González, Rafael Leira, Víctor Moreno,

More information

27 th March 2015 Istanbul, Turkey. Performance Testing Best Practice

27 th March 2015 Istanbul, Turkey. Performance Testing Best Practice 27 th March 2015 Istanbul, Turkey Performance Testing Best Practice Your Host.. Ian Molyneaux Leads the Intechnica performance team More years in IT than I care to remember Author of The Art of Application

More information

While a number of technologies fall under the Big Data label, Hadoop is the Big Data mascot.

While a number of technologies fall under the Big Data label, Hadoop is the Big Data mascot. While a number of technologies fall under the Big Data label, Hadoop is the Big Data mascot. Remember it stands front and center in the discussion of how to implement a big data strategy. Early adopters

More information

Workshop on Hadoop with Big Data

Workshop on Hadoop with Big Data Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly

More information

Case Study - I. Industry: Social Networking Website Technology : J2EE AJAX, Spring, MySQL, Weblogic, Windows Server 2008.

Case Study - I. Industry: Social Networking Website Technology : J2EE AJAX, Spring, MySQL, Weblogic, Windows Server 2008. Case Study - I Industry: Social Networking Website Technology : J2EE AJAX, Spring, MySQL, Weblogic, Windows Server 2008 Challenges The scalability of the database servers to execute batch processes under

More information

Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies

Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08

More information

Siebel & Portal Performance Testing and Tuning GCP - IT Performance Practice

Siebel & Portal Performance Testing and Tuning GCP - IT Performance Practice & Portal Performance Testing and Tuning GCP - IT Performance Practice By Zubair Syed (zubair.syed@tcs.com) April 2014 Copyright 2012 Tata Consultancy Services Limited Overview A large insurance company

More information

How to Move Your Business to Big Data: The Next Generation Enterprise Architecture

How to Move Your Business to Big Data: The Next Generation Enterprise Architecture How to Move Your Business to Big Data: The Next Generation Enterprise Architecture Jim Scott Director, Enterprise Strategy & Architecture @kingmesal #BigDataEverywhere London 1 Agenda Current State History

More information

Leveraging the power of social media & mobile applications

Leveraging the power of social media & mobile applications Leveraging the power of social media & mobile applications Xoriant delivers an innovative solution blending mobile applications and web based social networking media for our client focusing on local marketing.

More information

... ... PEPPERDATA OVERVIEW AND DIFFERENTIATORS ... ... ... ... ...

... ... PEPPERDATA OVERVIEW AND DIFFERENTIATORS ... ... ... ... ... ..................................... WHITEPAPER PEPPERDATA OVERVIEW AND DIFFERENTIATORS INTRODUCTION Prospective customers will often pose the question, How is Pepperdata different from tools like Ganglia,

More information

WHITE PAPER Redefining Monitoring for Today s Modern IT Infrastructures

WHITE PAPER Redefining Monitoring for Today s Modern IT Infrastructures WHITE PAPER Redefining Monitoring for Today s Modern IT Infrastructures Modern technologies in Zenoss Service Dynamics v5 enable IT organizations to scale out monitoring and scale back costs, avoid service

More information

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015 Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours

More information

WHITE PAPER ON. Operational Analytics. HTC Global Services Inc. Do not copy or distribute. www.htcinc.com

WHITE PAPER ON. Operational Analytics. HTC Global Services Inc. Do not copy or distribute. www.htcinc.com WHITE PAPER ON Operational Analytics www.htcinc.com Contents Introduction... 2 Industry 4.0 Standard... 3 Data Streams... 3 Big Data Age... 4 Analytics... 5 Operational Analytics... 6 IT Operations Analytics...

More information

3 Reasons Enterprises Struggle with Storm & Spark Streaming and Adopt DataTorrent RTS

3 Reasons Enterprises Struggle with Storm & Spark Streaming and Adopt DataTorrent RTS . 3 Reasons Enterprises Struggle with Storm & Spark Streaming and Adopt DataTorrent RTS Deliver fast actionable business insights for data scientists, rapid application creation for developers and enterprise-grade

More information

Case Study : 3 different hadoop cluster deployments

Case Study : 3 different hadoop cluster deployments Case Study : 3 different hadoop cluster deployments Lee moon soo moon@nflabs.com HDFS as a Storage Last 4 years, our HDFS clusters, stored Customer 1500 TB+ data safely served 375,000 TB+ data to customer

More information

Elasticsearch, Logstash, and Kibana (ELK)

Elasticsearch, Logstash, and Kibana (ELK) Elasticsearch, Logstash, and Kibana (ELK) Dwight Beaver dsbeaver@cert.org Sean Hutchison shutchison@cert.org January 2015 2014 Carnegie Mellon University This material is based upon work funded and supported

More information

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of

More information

Analyzing large flow data sets using. visualization tools. modern open-source data search and. FloCon 2014. Max Putas

Analyzing large flow data sets using. visualization tools. modern open-source data search and. FloCon 2014. Max Putas Analyzing large flow data sets using modern open-source data search and visualization tools FloCon 2014 Max Putas About me Operations Engineer - DevOps BS, MS, and CAS in Telecommunications Work/research

More information

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QlikView Technical Case Study Series Big Data June 2012 qlikview.com Introduction This QlikView technical case study focuses on the QlikView deployment

More information

Beyond Web Application Log Analysis using Apache TM Hadoop. A Whitepaper by Orzota, Inc.

Beyond Web Application Log Analysis using Apache TM Hadoop. A Whitepaper by Orzota, Inc. Beyond Web Application Log Analysis using Apache TM Hadoop A Whitepaper by Orzota, Inc. 1 Web Applications As more and more software moves to a Software as a Service (SaaS) model, the web application has

More information

Big Data? Definition # 1: Big Data Definition Forrester Research

Big Data? Definition # 1: Big Data Definition Forrester Research Big Data Big Data? Definition # 1: Big Data Definition Forrester Research Big Data? Definition # 2: Quote of Tim O Reilly brings it all home: Companies that have massive amounts of data without massive

More information

IBM InfoSphere Guardium Data Activity Monitor for Hadoop-based systems

IBM InfoSphere Guardium Data Activity Monitor for Hadoop-based systems IBM InfoSphere Guardium Data Activity Monitor for Hadoop-based systems Proactively address regulatory compliance requirements and protect sensitive data in real time Highlights Monitor and audit data activity

More information

Massive Cloud Auditing using Data Mining on Hadoop

Massive Cloud Auditing using Data Mining on Hadoop Massive Cloud Auditing using Data Mining on Hadoop Prof. Sachin Shetty CyberBAT Team, AFRL/RIGD AFRL VFRP Tennessee State University Outline Massive Cloud Auditing Traffic Characterization Distributed

More information

Assignment # 1 (Cloud Computing Security)

Assignment # 1 (Cloud Computing Security) Assignment # 1 (Cloud Computing Security) Group Members: Abdullah Abid Zeeshan Qaiser M. Umar Hayat Table of Contents Windows Azure Introduction... 4 Windows Azure Services... 4 1. Compute... 4 a) Virtual

More information

Large scale processing using Hadoop. Ján Vaňo

Large scale processing using Hadoop. Ján Vaňo Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine

More information

Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source

Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source DMITRIY SETRAKYAN Founder, PPMC http://www.ignite.incubator.apache.org @apacheignite @dsetrakyan Agenda About In- Memory

More information

Modern Data Architecture for Predictive Analytics

Modern Data Architecture for Predictive Analytics Modern Data Architecture for Predictive Analytics David Smith VP Marketing and Community - Revolution Analytics John Kreisa VP Strategic Marketing- Hortonworks Hortonworks Inc. 2013 Page 1 Your Presenters

More information

A Performance Analysis of Distributed Indexing using Terrier

A Performance Analysis of Distributed Indexing using Terrier A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search

More information

Performance Management for Enterprise Applications

Performance Management for Enterprise Applications performance MANAGEMENT a white paper Performance Management for Enterprise Applications Improving Performance, Compliance and Cost Savings Teleran Technologies, Inc. 333A Route 46 West Fairfield, NJ 07004

More information

Efficient Management of System Logs using a Cloud Radoslav Bodó, Daniel Kouřil CESNET. ISGC 2013, March 2013

Efficient Management of System Logs using a Cloud Radoslav Bodó, Daniel Kouřil CESNET. ISGC 2013, March 2013 Efficient Management of System Logs using a Cloud Radoslav Bodó, Daniel Kouřil CESNET ISGC 2013, March 2013 Agenda Introduction Collecting logs Log Processing Advanced analysis Resume Introduction Status

More information

APPLICATION VISIBILITY AND CONTROL

APPLICATION VISIBILITY AND CONTROL TELERAN SOLUTION BRIEF Building Better Intelligence APPLICATION VISIBILITY AND CONTROL For Oracle 11g and Exadata Data Warehouse Environments BUILDING BETTER INTELLIGENCE WITH BI/DW VISIBILITY AND CONTROL

More information

ITP 342 Mobile App Development. APIs

ITP 342 Mobile App Development. APIs ITP 342 Mobile App Development APIs API Application Programming Interface (API) A specification intended to be used as an interface by software components to communicate with each other An API is usually

More information

Best Practices for Monitoring: Reduce Outages and Downtime. Develop an effective monitoring strategy with the right metrics, processes and alerts.

Best Practices for Monitoring: Reduce Outages and Downtime. Develop an effective monitoring strategy with the right metrics, processes and alerts. Best Practices for Monitoring: Reduce Outages and Downtime. Develop an effective monitoring strategy with the right metrics, processes and alerts. 1 TABLE OF CONTENTS INTRODUCTION WHAT TO MONITOR ENSURING

More information

Making Sense of the Numbers DOs and DON'Ts of Quality Performance Testing

Making Sense of the Numbers DOs and DON'Ts of Quality Performance Testing Making Sense of the Numbers DOs and DON'Ts of Quality Performance Testing Erik Webb, Jeff Beeman Sr. Technical Consultants, Acquia Building Bridges, Connecting Communities About Erik Senior Technical Consultant

More information

One click Hadoop clusters - anywhere

One click Hadoop clusters - anywhere One click Hadoop clusters - anywhere Janos Matyas, Senior Director of Engineering October, Page 1 2015 Overview Page 2 Introduction Goals and motivations Technology stack How it works Results/achievements/future

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov

An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov An Industrial Perspective on the Hadoop Ecosystem Eldar Khalilov Pavel Valov agenda 03.12.2015 2 agenda Introduction 03.12.2015 2 agenda Introduction Research goals 03.12.2015 2 agenda Introduction Research

More information

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics

More information

Big Data Web Analytics Platform on AWS for Yottaa

Big Data Web Analytics Platform on AWS for Yottaa Big Data Web Analytics Platform on AWS for Yottaa Background Yottaa is a young, innovative company, providing a website acceleration platform to optimize Web and mobile applications and maximize user experience,

More information

effective performance monitoring in SAP environments

effective performance monitoring in SAP environments WHITE PAPER September 2012 effective performance monitoring in SAP environments Key challenges and how CA Nimsoft Monitor helps address them agility made possible table of contents executive summary 3

More information

KNIME & Avira, or how I ve learned to love Big Data

KNIME & Avira, or how I ve learned to love Big Data KNIME & Avira, or how I ve learned to love Big Data Facts about Avira (AntiVir) 100 mio. customers Extreme Reliability 500 employees (Tettnang, San Francisco, Kuala Lumpur, Bucharest, Amsterdam) Company

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, sborkar95@gmail.com Assistant Professor, Information

More information

End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ

End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,

More information

BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata

BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING

More information

Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 15

Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 15 Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 15 Big Data Management V (Big-data Analytics / Map-Reduce) Chapter 16 and 19: Abideboul et. Al. Demetris

More information

Moving Large Workloads from a Public Cloud to an OpenStack Private Cloud: Is It Really Worth It?

Moving Large Workloads from a Public Cloud to an OpenStack Private Cloud: Is It Really Worth It? Moving Large Workloads from a Public Cloud to an OpenStack Private Cloud: Is It Really Worth It? April 7th, 2016 Nicolas Brousse Sr. Director Of Operations Engineering nicolas@tubemogul.com Who are we?

More information

Big Data Use Case: Business Analytics

Big Data Use Case: Business Analytics Big Data Use Case: Business Analytics Starting point A telecommunications company wants to allude to the topic of Big Data. The established Big Data working group has access to the data stock of the enterprise

More information

10 Best Practices for Application Performance Testing

10 Best Practices for Application Performance Testing Business white paper 10 Best Practices for Application Performance Testing Leveraging Agile Performance Testing for Web and Mobile Applications 10 Best Practices for Application Performance Testing Table

More information

DevOps Best Practices: Combine Coding with Collaboration

DevOps Best Practices: Combine Coding with Collaboration Cognizant 20-20 Insights DevOps Best Practices: Combine Coding with Collaboration (Part Two of a Two-Part Series) Effectively merging application development and operations requires organizations to assess

More information

Web applications today are part of every IT operation within an organization.

Web applications today are part of every IT operation within an organization. 1 Introduction Web applications today are part of every IT operation within an organization. Independent software vendors (ISV) as well as enterprises create web applications to support their customers,

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

LOG INTELLIGENCE FOR SECURITY AND COMPLIANCE

LOG INTELLIGENCE FOR SECURITY AND COMPLIANCE PRODUCT BRIEF uugiven today s environment of sophisticated security threats, big data security intelligence solutions and regulatory compliance demands, the need for a log intelligence solution has become

More information

Oracle Database 12c Plug In. Switch On. Get SMART.

Oracle Database 12c Plug In. Switch On. Get SMART. Oracle Database 12c Plug In. Switch On. Get SMART. Duncan Harvey Head of Core Technology, Oracle EMEA March 2015 Safe Harbor Statement The following is intended to outline our general product direction.

More information

Modernizing Your Data Warehouse for Hadoop

Modernizing Your Data Warehouse for Hadoop Modernizing Your Data Warehouse for Hadoop Big data. Small data. All data. Audie Wright, DW & Big Data Specialist Audie.Wright@Microsoft.com O 425-538-0044, C 303-324-2860 Unlock Insights on Any Data Taking

More information

A New Approach to Network Visibility at UBC. Presented by the Network Management Centre and Wireless Infrastructure Teams

A New Approach to Network Visibility at UBC. Presented by the Network Management Centre and Wireless Infrastructure Teams A New Approach to Network Visibility at UBC Presented by the Network Management Centre and Wireless Infrastructure Teams Agenda Business Drivers Technical Overview Network Packet Broker Tool Network Monitoring

More information

Modern IT Operations Management. Why a New Approach is Required, and How Boundary Delivers

Modern IT Operations Management. Why a New Approach is Required, and How Boundary Delivers Modern IT Operations Management Why a New Approach is Required, and How Boundary Delivers TABLE OF CONTENTS EXECUTIVE SUMMARY 3 INTRODUCTION: CHANGING NATURE OF IT 3 WHY TRADITIONAL APPROACHES ARE FAILING

More information

Chase Wu New Jersey Ins0tute of Technology

Chase Wu New Jersey Ins0tute of Technology CS 698: Special Topics in Big Data Chapter 4. Big Data Analytics Platforms Chase Wu New Jersey Ins0tute of Technology Some of the slides have been provided through the courtesy of Dr. Ching-Yung Lin at

More information

Elevating Data Center Performance Management

Elevating Data Center Performance Management Elevating Data Center Performance Management Data Center innovation reduces operating expense, maximizes employee productivity, and generates new sources of revenue. However, many I&O teams lack proper

More information

Cloud Computing Now and the Future Development of the IaaS

Cloud Computing Now and the Future Development of the IaaS 2010 Cloud Computing Now and the Future Development of the IaaS Quanta Computer Division: CCASD Title: Project Manager Name: Chad Lin Agenda: What is Cloud Computing? Public, Private and Hybrid Cloud.

More information

Proactive database performance management

Proactive database performance management Proactive database performance management white paper 1. The Significance of IT in current business market 3 2. What is Proactive Database Performance Management? 3 Performance analysis through the Identification

More information

ntopng: Realtime Network Traffic View

ntopng: Realtime Network Traffic View ntopng: Realtime Network Traffic View Luca Deri 3/28/14 1 ntop in 1998 In 1998, the original ntop has been created. Available for Unix and Windows under GPL. Contrary to many tools available

More information

America s Most Wanted a metric to detect persistently faulty machines in Hadoop

America s Most Wanted a metric to detect persistently faulty machines in Hadoop America s Most Wanted a metric to detect persistently faulty machines in Hadoop Dhruba Borthakur and Andrew Ryan dhruba,andrewr1@facebook.com Presented at IFIP Workshop on Failure Diagnosis, Chicago June

More information

Splunk Enterprise in the Cloud Vision and Roadmap

Splunk Enterprise in the Cloud Vision and Roadmap Copyright 2013 Splunk Inc. Splunk Enterprise in the Cloud Vision and Roadmap Alex Munk PM Cloud #splunkconf Ledio Ago Director of Engineering Cloud Legal NoJces During the course of this presentajon, we

More information

Open Source for Cloud Infrastructure

Open Source for Cloud Infrastructure Open Source for Cloud Infrastructure June 29, 2012 Jackson He General Manager, Intel APAC R&D Ltd. Cloud is Here and Expanding More users, more devices, more data & traffic, expanding usages >3B 15B Connected

More information

Jenkins World Tour 2015 Santa Clara, CA, September 2-3

Jenkins World Tour 2015 Santa Clara, CA, September 2-3 1 Jenkins World Tour 2015 Santa Clara, CA, September 2-3 Continuous Delivery with Container Ecosystem CAD @ Platform Equinix - Overview CAD Current Industry - Opportunities Monolithic to Micro Service

More information

How SITEFORUM provides you with main components to build and run an innovative cloud computing service for an industry or special interest group

How SITEFORUM provides you with main components to build and run an innovative cloud computing service for an industry or special interest group Status: June 2011 How SITEFORUM provides you with main components to build and run an innovative cloud computing service for an industry or special interest group tags: software, social business, online

More information

Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations

Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations Beyond Lambda - how to get from logical to physical Artur Borycki, Director International Technology & Innovations Simplification & Efficiency Teradata believe in the principles of self-service, automation

More information

Testing Big data is one of the biggest

Testing Big data is one of the biggest Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing

More information

Virtualization and IaaS management

Virtualization and IaaS management CLOUDFORMS Virtualization and IaaS management Calvin Smith, Senior Solutions Architect calvin@redhat.com VIRTUALIZATION TO CLOUD CONTINUUM Virtual Infrastructure Management Drivers Server Virtualization

More information

Testing & Assuring Mobile End User Experience Before Production. Neotys

Testing & Assuring Mobile End User Experience Before Production. Neotys Testing & Assuring Mobile End User Experience Before Production Neotys Agenda Introduction The challenges Best practices NeoLoad mobile capabilities Mobile devices are used more and more At Home In 2014,

More information

NAVIGATING THE BIG DATA JOURNEY

NAVIGATING THE BIG DATA JOURNEY Making big data come alive NAVIGATING THE BIG DATA JOURNEY Big Data and Hadoop: Moving from Strategy to Production London Dublin Mumbai Boston New York Atlanta Chicago Salt Lake City Silicon Valley (650)

More information

GS Big Data Platform

GS Big Data Platform GS Big Data Platform DataPhilosophy 1 Instrument everything 2 Put all data in one place 3 Data first, questions later 4 Store first, structure later 5 Let everyone party on the data (with controls) 6 Keep

More information

PLA 7 WAYS TO USE LOG DATA FOR PROACTIVE PERFORMANCE MONITORING. [ WhitePaper ]

PLA 7 WAYS TO USE LOG DATA FOR PROACTIVE PERFORMANCE MONITORING. [ WhitePaper ] [ WhitePaper ] PLA 7 WAYS TO USE LOG DATA FOR PROACTIVE PERFORMANCE MONITORING. Over the past decade, the value of log data for monitoring and diagnosing complex networks has become increasingly obvious.

More information

Log infrastructure & Zabbix. logging tools integration

Log infrastructure & Zabbix. logging tools integration Log infrastructure & Zabbix logging tools integration About me Me Linux System Architect @ ICTRA from Belgium (...) IT : Linux & SysAdmin work, Security, ICTRA ICT for Rail for Transport Mobility Security

More information

Proactive and Reactive Monitoring

Proactive and Reactive Monitoring Proactive and Reactive Monitoring Serg Mescheryakov, Doctor of Science, Professor Dmitry Shchemelinin, Philosophy Doctor RingCentral Inc., San Mateo, CA, USA RingCentral IP Telecommunication Company 2

More information

Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!!

Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Simplifying Big Data Analytics: Unifying Batch and Stream Processing John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Streaming Analy.cs S S S Scale- up Database Data And Compute Grid

More information