Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB"

Transcription

1

2 Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB

3 Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what should I use

4 What is a Database? I know it when I see it USCS Justice Potter Stewart

5 What is a Database? Data storage for multi-user apps Conservative philosophy Failure better than partial success All errors should be reported Connect multiple simultaneous clients Chooses throughput over speed Currently dominated by OpenSource Oracle is an exception

6 Concepts

7 Durability Safe on disk before acknowledged Reliably saved abrupt termination power failure Disk failure should be detected Recovery often takes a long time

8 Atomicity Saves are all-or-nothing Data is rolled back for errors Know the atom for your database

9 Queries Read or change the data Filtering, Aggregating,Calculations Insert, Update, Delete, Replace Typically do not change the records Move the problem not the data Transaction is an atom of queries All queries succeed or fail Wrapped up by a commit/rollback

10 Isolation Transactions build on each other Simulate serialization Roll back conflicting transactions Not visible to others until commit

11 Consistency Saved data must fit defined rules Never allowed to not fit rules One good state to another Rules can be programs Does not guarantee correct data

12 ACID The gold-standard for databases Atomicity Consistency Isolation Durability

13 Organization Database - top level container Table and Record/Row Primary Key Columns Rows ID Name Age 1 Sam 32 2 Abigail 28 3 Ron 23 4 Jennifer 47 Primary key is required One or more columns

14 Indexes Quickly access to data and ranges Usually implemented as b-tree Lists data in-order Search is log(n) 1 million records -> 6 steps Easy access to next and previous Multiple indexes for single table Can take up more space than data

15 Drivers Specific to the database software API to connect to and use database Multiple programming languages Can allow network connections

16 FileMakerPro

17 FileMakerPro Includes both App and DB layers Create forms without developers Relational, but not SQL Less programming, more clicking Frustrates many SQL developers Suitable for smaller data sets (10K)

18 Relational Databases A.K.A.: SQL Databases

19 Structured Query Language SQL The most common form of database Standardized, but many dialects Declarative language Examples: SELECT id, name FROM people columns to return table SELECT id, name FROM people WHERE age > 21 columns to return table limits SELECT count(*) FROM people WHERE age >21 columns to return table limits

20 Schemas Tables are rigidly defined Columns each take one data type Data storage can be very efficient Types: String (fixed with an varchar) Ints, Floats, Bytes Vary by vendor

21 Joins Data matched between tables SELECT person.name, phone.number FROM person, phone WHERE person.id = phone.person_id Returns only where data matched

22 Replication Data is copied to multiple servers Available even with downed servers XA Data? Data Data B

23 MySQL Replication Master-slave replication One master that allows changes Tree of slaves that allow reads Near-line server or load balancing Slaves slightly behind Master Write Master Read Slaves

24 Vendors License Features Oracle MySQL GPL Well supported Oracle backing MariaDB GPL Many Table Types More experimental PerconaDB GPL Takes from Oracle and MariaDB PostgreSQL BSD Standard based JSON columns SQLite Public Domain Small and ubiquitous

25 Scale Up vs.scale Out

26 Scale Up A few cheap computers have more aggregate power than a single expensive one. Take advantage of hardware progress CPU speed CPU Cores/Multiple CPUs Memory increase SSDs Faster networking

27 Scale Out - Facebook PHP Servers Query Routers Database A - G H - R S - Z

28 Scale Out Pros: More CPU, Memory, and Storage Fits well with cloud servers Cons: Coordinating servers costs time Cluster can partially fail Single server failure Network outages Complexity

29 CAP Theorem Choose two: Consistency All nodes see the same thing Availability Always get success or failure Partition tolerance Handles node and network errors No such thing as CP

30 Partitioning Servers each take one part of a table Data routed to the proper server A - K A X L - Z B

31 Map-Reduce Function run on every record (Map) Can filter or manipulate records Reduce function run to aggregate First run on each server Those results are then aggregated Used on enormous data sets Results are stored in a table Hadoop and Apache Spark

32 NewSQL

33 NewSQL SQL language with multiple servers Very different approaches/strengths Usually a subset of SQL

34 NewSQL Features Trade-off Percona Cluster Replication Complete SQL SQL-fast reads Writes are slower Full copies Clustrix Map-Reduce like speed Most SQL Slower on most queries MySQL Cluster Partitioning Replication Very fast Very Limited Joins

35 Document Databases

36 JSON Databases Usually not ACID No multi-record transactions Atom is usually one record Partitioning and Replication Can survive failures Tables are Key + JSON value No schema so records can be mixed Settings for speed vs safety

37 JSON JavaScript Object Notation Strings, Numbers, Arrays, and Dicts More types: Binary, Files, Time, etc Complex data without schemas

38 JSON Databases Features MongoDB Map-Reduce Hash sharding RethinkDB Cassandra Map-Reduce Joins Changefeeds High Speed Apache CouchDB HTTP data interface eventual consistency

39 Other Types Timeseries looking for patterns in time needle in haystack In memory very fast but small datasets limited queries Graph store relations between records friend-of-a-friend type problems

40 Conclusion Use Cases Limitations SQL NewSQL Default Well structured data Small queries on large data No partitioning Limited size Rigid Structure Limits on Queries MapReduce Huge data Difficult to use Batch operation Not ACID JSON Large data Evolving structure Not ACID

41 Questions? Karl Kuehn Automation Engineer RethinkDB

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

Integrating Big Data into the Computing Curricula

Integrating Big Data into the Computing Curricula Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big

More information

Can the Elephants Handle the NoSQL Onslaught?

Can the Elephants Handle the NoSQL Onslaught? Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15

MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 MongoDB in the NoSQL and SQL world. Horst Rechner horst.rechner@fokus.fraunhofer.de Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You

More information

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA

A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA A COMPARATIVE STUDY OF NOSQL DATA STORAGE MODELS FOR BIG DATA Ompal Singh Assistant Professor, Computer Science & Engineering, Sharda University, (India) ABSTRACT In the new era of distributed system where

More information

Cassandra vs MySQL. SQL vs NoSQL database comparison

Cassandra vs MySQL. SQL vs NoSQL database comparison Cassandra vs MySQL SQL vs NoSQL database comparison 19 th of November, 2015 Maxim Zakharenkov Maxim Zakharenkov Riga, Latvia Java Developer/Architect Company Goals Explore some differences of SQL and NoSQL

More information

these three NoSQL databases because I wanted to see a the two different sides of the CAP

these three NoSQL databases because I wanted to see a the two different sides of the CAP Michael Sharp Big Data CS401r Lab 3 For this paper I decided to do research on MongoDB, Cassandra, and Dynamo. I chose these three NoSQL databases because I wanted to see a the two different sides of the

More information

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1 Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots

More information

NoSQL in der Cloud Why? Andreas Hartmann

NoSQL in der Cloud Why? Andreas Hartmann NoSQL in der Cloud Why? Andreas Hartmann 17.04.2013 17.04.2013 2 NoSQL in der Cloud Why? Quelle: http://res.sys-con.com/story/mar12/2188748/cloudbigdata_0_0.jpg Why Cloud??? 17.04.2013 3 NoSQL in der Cloud

More information

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases

Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra dwd@fnal.gov Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359

More information

A survey of big data architectures for handling massive data

A survey of big data architectures for handling massive data CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - jordydomingos@gmail.com Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context

More information

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015

NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR,

More information

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF)

Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) Not Relational Models For The Management of Large Amount of Astronomical Data Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) What is a DBMS A Data Base Management System is a software infrastructure

More information

An Open Source NoSQL solution for Internet Access Logs Analysis

An Open Source NoSQL solution for Internet Access Logs Analysis An Open Source NoSQL solution for Internet Access Logs Analysis A practical case of why, what and how to use a NoSQL Database Management System instead of a relational one José Manuel Ciges Regueiro

More information

Transactions and ACID in MongoDB

Transactions and ACID in MongoDB Transactions and ACID in MongoDB Kevin Swingler Contents Recap of ACID transactions in RDBMSs Transactions and ACID in MongoDB 1 Concurrency Databases are almost always accessed by multiple users concurrently

More information

Structured Data Storage

Structured Data Storage Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct

More information

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets

More information

nosql and Non Relational Databases

nosql and Non Relational Databases nosql and Non Relational Databases Image src: http://www.pentaho.com/big-data/nosql/ Matthias Lee Johns Hopkins University What NoSQL? Yes no SQL.. Atleast not only SQL Large class of Non Relaltional Databases

More information

wow CPSC350 relational schemas table normalization practical use of relational algebraic operators tuple relational calculus and their expression in a declarative query language relational schemas CPSC350

More information

The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect

The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through

More information

Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk

Benchmarking Couchbase Server for Interactive Applications. By Alexey Diomin and Kirill Grigorchuk Benchmarking Couchbase Server for Interactive Applications By Alexey Diomin and Kirill Grigorchuk Contents 1. Introduction... 3 2. A brief overview of Cassandra, MongoDB, and Couchbase... 3 3. Key criteria

More information

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world

Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3

More information

NoSQL and Hadoop Technologies On Oracle Cloud

NoSQL and Hadoop Technologies On Oracle Cloud NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

bigdata Managing Scale in Ontological Systems

bigdata Managing Scale in Ontological Systems Managing Scale in Ontological Systems 1 This presentation offers a brief look scale in ontological (semantic) systems, tradeoffs in expressivity and data scale, and both information and systems architectural

More information

NoSQL Data Base Basics

NoSQL Data Base Basics NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS

More information

In Memory Accelerator for MongoDB

In Memory Accelerator for MongoDB In Memory Accelerator for MongoDB Yakov Zhdanov, Director R&D GridGain Systems GridGain: In Memory Computing Leader 5 years in production 100s of customers & users Starts every 10 secs worldwide Over 15,000,000

More information

Data Services Advisory

Data Services Advisory Data Services Advisory Modern Datastores An Introduction Created by: Strategy and Transformation Services Modified Date: 8/27/2014 Classification: DRAFT SAFE HARBOR STATEMENT This presentation contains

More information

Preparing Your Data For Cloud

Preparing Your Data For Cloud Preparing Your Data For Cloud Narinder Kumar Inphina Technologies 1 Agenda Relational DBMS's : Pros & Cons Non-Relational DBMS's : Pros & Cons Types of Non-Relational DBMS's Current Market State Applicability

More information

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation

Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election

More information

Cloud Scale Distributed Data Storage. Jürmo Mehine

Cloud Scale Distributed Data Storage. Jürmo Mehine Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented

More information

Scalable Architecture on Amazon AWS Cloud

Scalable Architecture on Amazon AWS Cloud Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies kalpak@clogeny.com 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect

More information

Lecture Data Warehouse Systems

Lecture Data Warehouse Systems Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores

More information

NoSQL Database Systems and their Security Challenges

NoSQL Database Systems and their Security Challenges NoSQL Database Systems and their Security Challenges Morteza Amini amini@sharif.edu Data & Network Security Lab (DNSL) Department of Computer Engineering Sharif University of Technology September 25 2

More information

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing

More information

MongoDB Developer and Administrator Certification Course Agenda

MongoDB Developer and Administrator Certification Course Agenda MongoDB Developer and Administrator Certification Course Agenda Lesson 1: NoSQL Database Introduction What is NoSQL? Why NoSQL? Difference Between RDBMS and NoSQL Databases Benefits of NoSQL Types of NoSQL

More information

Database Scalability and Oracle 12c

Database Scalability and Oracle 12c Database Scalability and Oracle 12c Marcelle Kratochvil CTO Piction ACE Director All Data/Any Data marcelle@piction.com Warning I will be covering topics and saying things that will cause a rethink in

More information

Comparing SQL and NOSQL databases

Comparing SQL and NOSQL databases COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2015 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations

More information

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 F1: A Distributed SQL Database That Scales Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 What is F1? Distributed relational database Built to replace sharded MySQL back-end of AdWords

More information

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010

extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010 System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached

More information

Big Data Management. Big Data Management. (BDM) Autumn 2013. Povl Koch September 30, 2013 29-09-2013 1

Big Data Management. Big Data Management. (BDM) Autumn 2013. Povl Koch September 30, 2013 29-09-2013 1 Big Data Management Big Data Management (BDM) Autumn 2013 Povl Koch September 30, 2013 29-09-2013 1 Overview Today s program 1. Little more practical details about this course 2. Recap from last time 3.

More information

NoSQL Databases. Nikos Parlavantzas

NoSQL Databases. Nikos Parlavantzas !!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!

More information

How, What, and Where of Data Warehouses for MySQL

How, What, and Where of Data Warehouses for MySQL How, What, and Where of Data Warehouses for MySQL Robert Hodges CEO, Continuent. Introducing Continuent The leading provider of clustering and replication for open source DBMS Our Product: Continuent Tungsten

More information

Introduction to Big Data! with Apache Spark" UC#BERKELEY#

Introduction to Big Data! with Apache Spark UC#BERKELEY# Introduction to Big Data! with Apache Spark" UC#BERKELEY# So What is Data Science?" Doing Data Science" Data Preparation" Roles" This Lecture" What is Data Science?" Data Science aims to derive knowledge!

More information

Advanced Data Management Technologies

Advanced Data Management Technologies ADMT 2014/15 Unit 15 J. Gamper 1/44 Advanced Data Management Technologies Unit 15 Introduction to NoSQL J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE ADMT 2014/15 Unit 15

More information

Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software

Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications

More information

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre

NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre NoSQL systems: introduction and data models Riccardo Torlone Università Roma Tre Why NoSQL? In the last thirty years relational databases have been the default choice for serious data storage. An architect

More information

NoSQL Database Options

NoSQL Database Options NoSQL Database Options Introduction For this report, I chose to look at MongoDB, Cassandra, and Riak. I chose MongoDB because it is quite commonly used in the industry. I chose Cassandra because it has

More information

Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment

Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment International Journal of Applied Information Systems (IJAIS) ISSN : 2249-868 Performance Evaluation of NoSQL Systems Using YCSB in a resource Austere Environment Yusuf Abubakar Department of Computer Science

More information

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00 Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn

More information

Understanding NoSQL Technologies on Windows Azure

Understanding NoSQL Technologies on Windows Azure David Chappell Understanding NoSQL Technologies on Windows Azure Sponsored by Microsoft Corporation Copyright 2013 Chappell & Associates Contents Data on Windows Azure: The Big Picture... 3 Windows Azure

More information

MongoDB. The Definitive Guide to. The NoSQL Database for Cloud and Desktop Computing. Apress8. Eelco Plugge, Peter Membrey and Tim Hawkins

MongoDB. The Definitive Guide to. The NoSQL Database for Cloud and Desktop Computing. Apress8. Eelco Plugge, Peter Membrey and Tim Hawkins The Definitive Guide to MongoDB The NoSQL Database for Cloud and Desktop Computing 11 111 TECHNISCHE INFORMATIONSBIBLIO 1 HEK UNIVERSITATSBIBLIOTHEK HANNOVER Eelco Plugge, Peter Membrey and Tim Hawkins

More information

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce

More information

HBase A Comprehensive Introduction. James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367

HBase A Comprehensive Introduction. James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367 HBase A Comprehensive Introduction James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367 Overview Overview: History Began as project by Powerset to process massive

More information

Understanding NoSQL on Microsoft Azure

Understanding NoSQL on Microsoft Azure David Chappell Understanding NoSQL on Microsoft Azure Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Data on Azure: The Big Picture... 3 Relational Technology: A Quick

More information

Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone

Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it Dan Ariely MYSQL AND HBASE ECOSYSTEM

More information

Scalability of web applications. CSCI 470: Web Science Keith Vertanen

Scalability of web applications. CSCI 470: Web Science Keith Vertanen Scalability of web applications CSCI 470: Web Science Keith Vertanen Scalability questions Overview What's important in order to build scalable web sites? High availability vs. load balancing Approaches

More information

Moving From Hadoop to Spark

Moving From Hadoop to Spark + Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com sujee@elephantscale.com Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee

More information

Domain driven design, NoSQL and multi-model databases

Domain driven design, NoSQL and multi-model databases Domain driven design, NoSQL and multi-model databases Java Meetup New York, 10 November 2014 Max Neunhöffer www.arangodb.com Max Neunhöffer I am a mathematician Earlier life : Research in Computer Algebra

More information

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released

More information

NoSQL: Going Beyond Structured Data and RDBMS

NoSQL: Going Beyond Structured Data and RDBMS NoSQL: Going Beyond Structured Data and RDBMS Scenario Size of data >> disk or memory space on a single machine Store data across many machines Retrieve data from many machines Machine = Commodity machine

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

SOLVING ANALYTICAL PROBLEMS USING SPARK, CASSANDRA, DATASTAX. Rohit Bhardwaj Principal Cloud Engineer Twitter: rbhardwaj1

SOLVING ANALYTICAL PROBLEMS USING SPARK, CASSANDRA, DATASTAX. Rohit Bhardwaj Principal Cloud Engineer Twitter: rbhardwaj1 SOLVING ANALYTICAL PROBLEMS USING SPARK, CASSANDRA, DATASTAX Rohit Bhardwaj Principal Cloud Engineer rbhardwaj@kronos.com Twitter: rbhardwaj1 AGENDA Big data characteristics Real time analytics Apache

More information

Using Object Database db4o as Storage Provider in Voldemort

Using Object Database db4o as Storage Provider in Voldemort Using Object Database db4o as Storage Provider in Voldemort by German Viscuso db4objects (a division of Versant Corporation) September 2010 Abstract: In this article I will show you how

More information

Introduction to Polyglot Persistence. Antonios Giannopoulos Database Administrator at ObjectRocket by Rackspace

Introduction to Polyglot Persistence. Antonios Giannopoulos Database Administrator at ObjectRocket by Rackspace Introduction to Polyglot Persistence Antonios Giannopoulos Database Administrator at ObjectRocket by Rackspace FOSSCOMM 2016 Background - 14 years in databases and system engineering - NoSQL DBA @ ObjectRocket

More information

NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases

NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases NoSQL replacement for SQLite (for Beatstream) Antti-Jussi Kovalainen Seminar OHJ-1860: NoSQL databases Background Inspiration: postgresapp.com demo.beatstream.fi (modern desktop browsers without

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment

Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment Hacettepe University Department Of Computer Engineering BBM 471 Database Management Systems Experiment Subject NoSQL Databases - MongoDB Submission Date 20.11.2013 Due Date 26.12.2013 Programming Environment

More information

Please ask questions! Have people used non-relational dbs before? MongoDB?

Please ask questions! Have people used non-relational dbs before? MongoDB? Kristina Chodorow Please ask questions! Have people used non-relational dbs before? MongoDB? Software Engineer at $ whoami Scaling a Pre-WWW DB literally scale literally scale (Courtesy of Ask Bjorn Hansen)

More information

Hadoop IST 734 SS CHUNG

Hadoop IST 734 SS CHUNG Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to

More information

Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya

Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services

More information

Big Data. Facebook Wall Data using Graph API. Presented by: Prashant Patel-2556219 Jaykrushna Patel-2619715

Big Data. Facebook Wall Data using Graph API. Presented by: Prashant Patel-2556219 Jaykrushna Patel-2619715 Big Data Facebook Wall Data using Graph API Presented by: Prashant Patel-2556219 Jaykrushna Patel-2619715 Outline Data Source Processing tools for processing our data Big Data Processing System: Mongodb

More information

Database Management System Choices. Introduction To Database Systems CSE 373 Spring 2013

Database Management System Choices. Introduction To Database Systems CSE 373 Spring 2013 Database Management System Choices Introduction To Database Systems CSE 373 Spring 2013 Outline Introduction PostgreSQL MySQL Microsoft SQL Server Choosing A DBMS NoSQL Introduction There a lot of options

More information

Slave. Master. Research Scholar, Bharathiar University

Slave. Master. Research Scholar, Bharathiar University Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper online at: www.ijarcsse.com Study on Basically, and Eventually

More information

MySQL Comes of Age. Robert Hodges Sr. Staff Engineer Percona Live London November 4, 2014. 2014 VMware Inc. All rights reserved.

MySQL Comes of Age. Robert Hodges Sr. Staff Engineer Percona Live London November 4, 2014. 2014 VMware Inc. All rights reserved. MySQL Comes of Age Robert Hodges Sr. Staff Engineer Percona Live London November 4, 2014 2014 VMware Inc. All rights reserved. Continuent is now part of VMware! VMware acquired Continuent on 28 October

More information

Distributed Storage Systems

Distributed Storage Systems Distributed Storage Systems John Leach john@brightbox.com twitter @johnleach Brightbox Cloud http://brightbox.com Our requirements Bright box has multiple zones (data centres) Should tolerate a zone failure

More information

YouTube Vitess. Cloud-Native MySQL. Oracle OpenWorld Conference October 26, 2015. Anthony Yeh, Software Engineer, YouTube. http://vitess.

YouTube Vitess. Cloud-Native MySQL. Oracle OpenWorld Conference October 26, 2015. Anthony Yeh, Software Engineer, YouTube. http://vitess. YouTube Vitess Cloud-Native MySQL Oracle OpenWorld Conference October 26, 2015 Anthony Yeh, Software Engineer, YouTube http://vitess.io/ Spoiler Alert Spoilers 1. History of Vitess 2. What is Cloud-Native

More information

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, XLDB Conference at Stanford University, Sept 2012

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, XLDB Conference at Stanford University, Sept 2012 Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, XLDB Conference at Stanford University, Sept 2012 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP)

More information

Real-time reporting at 10,000 inserts per second. Wesley Biggs CTO 25 October 2011 Percona Live

Real-time reporting at 10,000 inserts per second. Wesley Biggs CTO 25 October 2011 Percona Live Real-time reporting at 10,000 inserts per second Wesley Biggs CTO 25 October 2011 Percona Live Agenda 1. Who we are, what we do, and (maybe) why we do it 2. Solution architecture and evolution 3. Top 5

More information

Emerging Requirements and DBMS Technologies:

Emerging Requirements and DBMS Technologies: Emerging Requirements and DBMS Technologies: When Is Relational the Right Choice? Carl Olofson Research Vice President, IDC April 1, 2014 Agenda 2 Why Relational in the First Place? Evolution of Databases

More information

Realtime Apache Hadoop at Facebook. Jonathan Gray & Dhruba Borthakur June 14, 2011 at SIGMOD, Athens

Realtime Apache Hadoop at Facebook. Jonathan Gray & Dhruba Borthakur June 14, 2011 at SIGMOD, Athens Realtime Apache Hadoop at Facebook Jonathan Gray & Dhruba Borthakur June 14, 2011 at SIGMOD, Athens Agenda 1 Why Apache Hadoop and HBase? 2 Quick Introduction to Apache HBase 3 Applications of HBase at

More information

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform

More information

Replicating to everything

Replicating to everything Replicating to everything Featuring Tungsten Replicator A Giuseppe Maxia, QA Architect Vmware About me Giuseppe Maxia, a.k.a. "The Data Charmer" QA Architect at VMware Previously at AB / Sun / 3 times

More information

Open Source Technologies on Microsoft Azure

Open Source Technologies on Microsoft Azure Open Source Technologies on Microsoft Azure A Survey @DChappellAssoc Copyright 2014 Chappell & Associates The Main Idea i Open source technologies are a fundamental part of Microsoft Azure The Big Questions

More information

Firebird meets NoSQL (Apache HBase) Case Study

Firebird meets NoSQL (Apache HBase) Case Study Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI

More information

A Performance Analysis of Distributed Indexing using Terrier

A Performance Analysis of Distributed Indexing using Terrier A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search

More information

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call

More information

Services. Relational. Databases & JDBC. Today. Relational. Databases SQL JDBC. Next Time. Services. Relational. Databases & JDBC. Today.

Services. Relational. Databases & JDBC. Today. Relational. Databases SQL JDBC. Next Time. Services. Relational. Databases & JDBC. Today. & & 1 & 2 Lecture #7 2008 3 Terminology Structure & & Database server software referred to as Database Management Systems (DBMS) Database schemas describe database structure Data ordered in tables, rows

More information

Document Oriented Database

Document Oriented Database Document Oriented Database What is Document Oriented Database? What is Document Oriented Database? Not Really What is Document Oriented Database? The central concept of a document-oriented database is

More information

How graph databases started the multi-model revolution

How graph databases started the multi-model revolution How graph databases started the multi-model revolution Luca Garulli Author and CEO @OrientDB QCon Sao Paulo - March 26, 2015 Welcome to Big Data 90% of the data in the world today has been created in the

More information

NoSQL - What we ve learned with mongodb. Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011

NoSQL - What we ve learned with mongodb. Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011 NoSQL - What we ve learned with mongodb Paul Pedersen, Deputy CTO paul@10gen.com DAMA SF December 15, 2011 DW2.0 and NoSQL management decision support intgrated access - local v. global - structured v.

More information

Future Prospects of Scalable Cloud Computing

Future Prospects of Scalable Cloud Computing Future Prospects of Scalable Cloud Computing Keijo Heljanko Department of Information and Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 7.3-2012 1/17 Future Cloud Topics Beyond

More information

database abstraction layer database abstraction layers in PHP Lukas Smith BackendMedia smith@backendmedia.com

database abstraction layer database abstraction layers in PHP Lukas Smith BackendMedia smith@backendmedia.com Lukas Smith database abstraction layers in PHP BackendMedia 1 Overview Introduction Motivation PDO extension PEAR::MDB2 Client API SQL syntax SQL concepts Result sets Error handling High level features

More information

Introduction to Big Data Training

Introduction to Big Data Training Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB

More information

Speed, scale, query: can NoSQL give us all three? Arun Gupta, @arungupta Matthew Revell, @matthewrevell Couchbase

Speed, scale, query: can NoSQL give us all three? Arun Gupta, @arungupta Matthew Revell, @matthewrevell Couchbase Speed, scale, query: can NoSQL give us all three? Arun Gupta, @arungupta Matthew Revell, @matthewrevell Couchbase The project management triangle 2015 Couchbase Inc. Photo by https://www.flickr.com/photos/centralasian/

More information

HDB++: HIGH AVAILABILITY WITH. l TANGO Meeting l 20 May 2015 l Reynald Bourtembourg

HDB++: HIGH AVAILABILITY WITH. l TANGO Meeting l 20 May 2015 l Reynald Bourtembourg HDB++: HIGH AVAILABILITY WITH Page 1 OVERVIEW What is Cassandra (C*)? Who is using C*? CQL C* architecture Request Coordination Consistency Monitoring tool HDB++ Page 2 OVERVIEW What is Cassandra (C*)?

More information

Database Replication with MySQL and PostgreSQL

Database Replication with MySQL and PostgreSQL Database Replication with MySQL and PostgreSQL Fabian Mauchle Software and Systems University of Applied Sciences Rapperswil, Switzerland www.hsr.ch/mse Abstract Databases are used very often in business

More information

Spark ΕΡΓΑΣΤΗΡΙΟ 10. Prepared by George Nikolaides 4/19/2015 1

Spark ΕΡΓΑΣΤΗΡΙΟ 10. Prepared by George Nikolaides 4/19/2015 1 Spark ΕΡΓΑΣΤΗΡΙΟ 10 Prepared by George Nikolaides 4/19/2015 1 Introduction to Apache Spark Another cluster computing framework Developed in the AMPLab at UC Berkeley Started in 2009 Open-sourced in 2010

More information