General Specification for Synchronous Modular Meters



Similar documents
SML. Smart Message Language. Version 1.02

Chapter 5. Data Communication And Internet Technology

Polyphase kwh Electricity Meter

USER MANUAL. PingBrother EPIW104 managed passive poe switch & IP watchdog

Cryptography in Metrology

TK800-Series Industrial GPRS / UMTS / LTE Router

Documentation. M-Bus 130-mbx

WELMEC European cooperation in legal metrology

Ethernet. Customer Provided Equipment Configuring the Ethernet port.

ABB i-bus EIB / KNX Analogue Input AE/S 4.2

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Chapter 2 - The TCP/IP and OSI Networking Models

Ethernet. Ethernet. Network Devices

Convenient Charging of Electric Vehicles

TK C -25 C 95% RH EMC TK701G TK701U TK704G TK704U TK704W. TK-Series Cellular Router

Chapter 2 TCP/IP Networking Basics

ModBus Server - KNX. Gateway for integration of KNX equipment into Modbus (RTU and TCP) control systems.

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet

Quick Installation Guide 24-port PoE switch with 2 copper Gigabit ports and 2 Gigabit SFP ports (af Version 15.4W)

Protocol Specification & Design. The Internet and its Protocols. Course Outline (trivia) Introduction to the Subject Teaching Methods

784 INTELLIGENT TRANSPORTATION SYSTEMS NETWORK DEVICES. (REV ) (FA ) (7-12)

On the M-BUS Interface you can add up to 60 M-BUS Devices (60 unit loads).

Virtual KNX/EIB devices in IP networks

Process Control and Automation using Modbus Protocol

3.1 RS-232/422/485 Pinout:PORT1-4(RJ-45) RJ-45 RS-232 RS-422 RS-485 PIN1 TXD PIN2 RXD PIN3 GND PIN4 PIN5 T PIN6 T PIN7 R+ PIN8 R-

Internetworking and IP Address

Users manual. TCW181B-CM_R1 Page 1

UIP1868P User Interface Guide

Follow these steps to prepare the module and evaluation board for testing.

Indoor / Outdoor Antenna

BL compact multiprotocol station for Industrial Ethernet SSI interface BLCEN-1M12MT-1SSI

PCS0100en Persy Control Services B.V. Netherlands

E350 series 2. Electricity Meters IEC/MID Residential. ZxF100Ax/Cx. User Manual

ABB RTU560A Series CMU & Modules

Application/Connection Examples

SSVP SIP School VoIP Professional Certification

Appendix B Network, Routing, Firewall, and Basics

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet

Manual. IP Sensor and Watchdog IPSW2210. I P S W M a n u a l P a g e 1. Relay Output. Power input. 12VDC adapter LED Indicators. 2 Dry.

CompTIA Network+ (Exam N10-005)

DL TC72 Communication Protocols: HDLC, SDLC, X.25, Frame Relay, ATM

IT4405 Computer Networks (Compulsory)

User s Manual TCP/IP TO RS-232/422/485 CONVERTER. 1.1 Introduction. 1.2 Main features. Dynamic DNS

CSCI 362 Computer and Network Security

The Product Description of SmartAX. MT882 ADSL2+ Router

48 GE PoE-Plus + 2 GE SFP L2 Managed Switch, 375W

IT Data Communication and Networks (Optional)

5235 Single Phase Credit Meter

5-port / 8-port 10/100BaseTX Industrial Ethernet Switch User Manual

Quick Connect. quick - simple - efficient.

DECT Gigaset N510 IP PRO

Telemetry system for cathodic protection equipment of underground metal pipelines

VOIP-211RS/210RS/220RS/440S. SIP VoIP Router. User s Guide

Installation and setup guide V 1.0

SSVVP SIP School VVoIP Professional Certification

ENET-710. ENET Ethernet Module ENET-710 JAN / 06 FOUNDATION

Broadband Phone Gateway BPG510 Technical Users Guide

Multi-Homing Security Gateway

Agenda. Distributed System Structures. Why Distributed Systems? Motivation

LevelOne IFE Port PoE + 1-Port TP Industrial Fast Ethernet Switch User Manual

Industrial RS-232/ RS-422/ RS-485 over Ethernet Media Converter

Data Link Protocols. TCP/IP Suite and OSI Reference Model

WEB CONFIGURATION. Configuring and monitoring your VIP-101T from web browser. PLANET VIP-101T Web Configuration Guide

Power over Ethernet technology for industrial Ethernet networks

Networking 4 Voice and Video over IP (VVoIP)

IntesisBox KNX Modbus TCP master

FOUNDATION Fieldbus High Speed Ethernet Control System

Notes Odom, Chapter 4 Flashcards Set:

CCNA 1: Networking Basics. Cisco Networking Academy Program Version 3.0

BNI IOL K006 BNI IOL K006. IO-Link Sensor-Hub analog User s Guide

Algemene Theorie en Vaardigheden 2. April 2014 Theaterschool OTT-2 1

Management Software. Web Browser User s Guide AT-S106. For the AT-GS950/48 Gigabit Ethernet Smart Switch. Version Rev.

Provides one channel for Ethernet over existing

INTEGRAL REMOTE MANAGEMENT SOLUTION cirwatt b series

Access Point Configuration

Computer Networks CS321

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

ICTTEN8195B Evaluate and apply network security

Remote Monitoring Unit SC8100. Monitoring Unit SC8100

6.40A AudioCodes Mediant 800 MSBG

1.3. The network element must have the ability to be configured in a point to point, point to multi point, and daisy chain configuration.

Programming made easy. talento plus

PePWave Surf Series PePWave Surf Indoor Series: Surf 200, AP 200, AP 400

Procedure: You can find the problem sheet on Drive D: of the lab PCs. Part 1: Router & Switch

BIT COMMANDER. Serial RS232 / RS485 to Ethernet Converter

UPPER LAYER SWITCHING

PCAN-MicroMod Universal I/O Module with CAN Interface. User Manual. Document version ( )

Chapter 7: Computer Networks, the Internet, and the World Wide Web. Invitation to Computer Science, C++ Version, Third Edition

Energy Communication Unit (ECU)

Computer Networking: A Survey

OpenScape Business V2

Technical Information POWER PLANT CONTROLLER

Teltonika FM41XX. Configurator v. 1.0

CSE 3461 / 5461: Computer Networking & Internet Technologies

2. IP Networks, IP Hosts and IP Ports

OSBRiDGE 5XLi. Configuration Manual. Firmware 3.10R

Configuration Management: Best Practices White Paper

GPS NTP TIME SERVER Rack Version V2

1.Eastron SDM220Modbus Smart Meter Modbus Protocol Implementation V1.0

Transcription:

Verantwortlich: Dokument-Betreuung: Letzte Bearbeitung: tlz-projektgruppe Wisy 06.10.09 / MW Freigabe zur Veröffentlichung: Ja General Specification for Synchronous Modular Meters Version 1.03 Page 1/186

History Version Date Comment Responsible 0.95 08.02.07 Corrected version after review as a submission for approval tlz Project Group 0.96 18.02.07 Corrected version after discussion in tlz WG dated 13.02.07 tlz Project Group 0.97 23.02.07 Corrected version after discussion with L+G dated 23.02.07 tlz Project Group 1.00 28.02.07 Development basis for the tlz pilot project tlz Project Group 1.01 19.12.07 Incorporation of all alterations/supplements involved Appendix B, SML was removed completely tlz Project Group 1.02 Feb. 08 Revison for publication as from 1 March 2008 tlz Project Group 1.03 21.09.09 23.09.09 06.10.09 Incorporation of all changes/additions occurring during the course of the tlz pilot project Inclusion of feedback from the FNN expert network Conformity of Metering Systems Detailing the reboot behaviour at KM modules in conjunction with writing certain parameters Addition of network masks for parameterisation of RAW-TCP and Adaptation of the functioning of the load profile collector in the event of a power failure over a register period change (see Para. (109) and Fig. 39) tlz Project Group Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 2/186

List of contents i List of illustrations 8 ii List of tables 10 iii List of abbreviations 14 1 Foreword 19 2 Execution 21 2.1. Basic concept 21 3 Standards, documents, terms and definitions 23 3.1. Standards 23 3.2. Documents 24 3.2.1. Literature 25 3.2.2. Calibration-law requirements, requirements and information 25 3.3. Terms and definitions 25 3.3.1. Reference time 25 3.3.2. Statutory time 26 3.3.3. Data protocols, useful load 26 3.3.4. Data protocols, pull mode 26 3.3.5. Data protocols, push mode 26 3.3.6. Measured-value tuples 26 3.3.7. Correcting a period generator 26 3.3.8. Period generator / Clock generator 27 3.3.9. Registration period 27 3.3.10. Seconds index 27 3.3.11. Operating seconds counter 27 3.3.12. Signature 27 3.3.13. Synchronising a period generator 28 3.3.14. SyM² metering device 28 3.3.15. Reference-arrow system and identification of the measured variables 28 4 Requirements 29 4.1. Overview 29 4.1.1. SyM² basic device, general requirements 29 4.1.2. SyM² additional module, general requirements 32 4.2. Metrology 33 4.2.1. Adjustment 33 4.2.2. Testing (incoming inspection, calibration) 33 4.2.3. LED for outputting energy-proportional pulses 33 4.2.4. Register 34 4.3. Electromagnetic compatibility 35 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 3/186

4.4. Device clock 35 4.5. Clock generator and seconds index (clocked measured-value tuples) 35 4.5.1. Reference time 37 4.5.2. Measured-value tuples of the SyM² basic devices 37 4.5.3. Power reserve 40 4.5.4. Accuracy 40 4.6. Synchronous load profile recording 41 4.6.1. Basic principle 41 4.6.2. Load profile collector 41 4.6.3. Queries on the load profile / Filling up registration periods 42 4.6.4. Registration period and registration period generator 42 4.6.5. Synchronisation to the desired RP raster 42 4.6.6. Application note on the commissioning process 46 4.7. Optical operational readiness 46 4.8. Display and controls 46 4.8.1. Display 46 4.8.1.1. Directly displayed information 48 4.8.1.2. Rolling-display information 49 4.8.1.3. Operational readiness 49 4.8.1.4. Display test 50 4.8.1.5. Operational display for the energy flow 50 4.8.1.6. Phase display 50 4.8.1.7. Operational display for the seconds index 50 4.9. Rating plate 51 4.10. Housing and terminal design 52 4.10.1. Modularised basic principle 52 4.10.2. SyM² basic device 55 4.10.2.1. Mechanical construction 55 4.10.2.2. SyM² basic device, terminal design 59 4.10.2.3. Lead-sealing 61 4.10.3. SyM² additional module 61 4.10.3.1. Mechanical construction 61 4.10.3.2. Special requirements for the IW module 63 4.10.3.3. Special requirements for the KM module 64 4.11. Optional additional modules 64 4.12. Data interfaces 65 4.12.1. Overview 65 4.12.2. SyM² basic device and local bus interface 66 4.12.3. SyM² additional module and local bus interface 66 4.12.4. device, interface for MDE read-out ( service interface ) 66 4.13. Protocols and Code Number system 67 4.13.1. Overview 67 4.14. Signature 68 4.14.1. Overview 68 4.14.1.1. Hash code calculation 68 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 4/186

4.14.1.2. Crypto-algorithm for signing the measured-value tuples 68 4.14.1.3. Crypto-algorithm for firmware downloading 69 4.15. Additional functional requirements 70 4.15.1. General 70 4.15.2. Software / Firmware 70 4.15.3. Remote Software (Firmware) Download 70 4.15.3.1. Process for data transmission at firmware downloading 75 4.15.4. Access protection 79 4.15.5. Access level protection 80 4.15.6. Functional error monitoring 81 4.15.7. Signalling operationally entailed events 82 5 Functional behaviour 83 5.1. Data interfaces 83 5.1.1. Local bus (lower layers, integrated supply) 83 5.1.1.1. Requirements for MAC addressing 83 5.1.1.2. Requirements for using broadcasts 83 5.1.1.3. Requirements for the RJ45 sockets (operational display) 85 5.1.1.4. Requirements for the integrated module supply 86 5.1.2. Wide-area interfaces 88 5.2. Protocols (network and higher layers) 88 5.2.1. Plug n play protocol 89 5.2.1.1. Automatic assignment of IP addresses 89 5.2.1.2. Automatic bonding of SyM² additional module to SyM² basic devices 90 5.2.2. Requirements for the transport protocols at the local bus 94 5.2.2.1. User Datagram Protocol 94 5.2.2.2. Transmission Control Protocol 95 5.2.3. Application protocol SML 95 5.2.3.1. SML options used with SML_PublicOpen 98 5.2.3.2. SML options used with SML_ProfilePack and SML_ProfileList 98 5.2.3.3. SML options used with SML_GetProcPar 98 5.2.3.4. SML options used with SML_SetProcPar 98 5.2.3.5. Transport of SML files via IP telemetry 98 5.2.3.6. Device classes 98 5.2.3.7. SyM²-specific error numbers used 99 5.3. Synchronisation operations per data interface 99 5.4. Detecting existing bus subscribers 101 5.5. SyM² modules 101 5.5.1. Watchdog 101 5.5.2. Reading/writing characteristics per OBIS 101 5.5.3. SyM² basic device 101 5.5.3.1. Requirements for the interface to the local bus 103 5.5.3.2. Requirements for the plug n play protocol 103 5.5.3.3. Requirements for the application data protocol (SML) 104 5.5.3.4. Status word 109 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 5/186

5.5.3.5. Requirements for the statutory-calibration logbook 111 5.5.4. IW module 112 5.5.4.1. Requirements for the interfaces to the local bus 114 5.5.4.2. Requirements for the plug n play protocol 115 5.5.4.3. Requirements for the application data protocol (SML) 115 5.5.4.4. Status word 118 5.5.4.5. Requirements for the switching outputs 118 5.5.4.6. Requirements for the operational displays with the IW module 120 5.5.5. KM module 120 5.5.5.1. Requirements for the interface to the local bus 124 5.5.5.2. Requirements for the plug n play protocol 124 5.5.5.3. Requirements for the application data protocol (SML) 125 5.5.5.4. Direct TCP transmission ( RAW-TCP ) 140 5.5.5.5. Operating logbook 142 5.5.5.6. Requirements for the application data protocol with PSTN 144 5.5.5.7. Requirements for the application data protocol with GSM 145 5.5.5.8. Requirements for the application data protocol with GPRS 146 5.5.5.9. Requirements for the application data protocol with LAN / DSL 146 5.5.5.10. Requirements for the operational displays with PSTN 147 5.5.5.11. Requirements for operational displays with the variants GSM / GPRS 147 5.5.5.12. Requirements for the operational displays in the case of LAN / DSL 148 5.5.5.13. Characteristics of a push operation 149 5.5.5.14. Functional behaviour of a push operation 155 5.5.5.15. Functional behaviour for a pull operation 157 5.5.5.16. Process for establishing the time reference with PULL and PUSH 159 5.5.6. NK/HS module 160 5.5.6.1. Requirements for the interfaces to the local bus 160 5.5.6.2. Requirements for the plug n play protocol 160 5.5.6.3. Requirements for the application data protocol (SML) 160 5.5.6.4. Requirements for the auxiliary supply 161 5.5.6.5. Requirements for the operational displays at the NK/HS 161 5.6. Service interface 161 5.6.1. Requirements 161 5.6.2. Detailed stipulations 162 6 Appendix A, list of Code Numbers used 164 6.1. General data 164 6.2. Code numbers for describing telemetry characteristics ( OBIS-T ) 165 6.2.1. General device characteristics 166 6.2.2. Device characteristics, interfaces 166 6.2.2.1. Classification 166 6.2.2.2. Type of interface 166 6.2.2.3. Names 167 6.2.2.4. Attributes in detail 167 6.2.2.5. List of the Code Numbers used in SyM² metering devices 173 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 6/186

7 Appendix B, Manufacturer s Declaration 176 8 Appendix C, general hints, informative 177 8.1. Notes on applications 177 8.1.1. Global application 177 8.1.2. Notes on utilising the push mode 178 8.1.2.1. Communication options 178 8.2. Explanations on load profile recording and seconds index 179 8.3. Ethernet interfaces at the local bus (informative) 184 8.4. Creating the time reference (informative) 186 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 7/186

List of illustrations Fig. 1: Variants of a SyM² metering device. 21 Fig. 2: Function concept for a SyM² metering device. 22 Fig. 3: Definition of the terms import and delivery (see also DIN EN 62053-52). 28 Fig. 4: Assignment of seconds index to statutory time under ideal conditions. 36 Fig. 5: Mechanism for registration period synchronisation. 43 Fig. 6: Flow diagram for filing measured-value tuples in the load profile memory (1/2). 44 Fig. 7: Flow diagram for filing measured-value tuples in the load profile memory (2/2). 45 Fig. 8: Display of the SyM², depiction informative, arrangement normative. 48 Fig. 9: Arrangement of the information on the additional plate (informative). 52 Fig. 10: SyM² basic device with terminal shroud. 53 Fig. 11: SyM² basic device without terminal shroud. 54 Fig. 12: Construction of the SyM² basic device (Fig. 1/4). 55 Fig. 13: Construction of the SyM² basic device (Fig. 2/4). 56 Fig. 14: Construction of the SyM² basic device (Fig. 3/4). 57 Fig. 15: Construction of the SyM² basic device (Fig. 4/4). 58 Fig. 16: Construction of the current and voltage terminals. 59 Fig. 17: Constructional framework stipulations for the SyM² additional module (Fig. 1/2). 61 Fig. 18: Constructional framework stipulations for the SyM² additional module (Fig. 2/2). 62 Fig. 19: Arrangement and labelling of the switching outputs for the IW module (informative). 63 Fig. 20: Standard applications for SyM² metering devices. 65 Fig. 21: Basic concept for the protocol for the data interface(s) 67 Fig. 22: Authenticity and integrity with remote firmware downloading (variant: not subject to mandatory calibration). 72 Fig. 23: Authenticity and integrity with remote firmware downloading (variant: subject to compulsory calibration). 73 Fig. 24: Process for firmware downloading. 78 Fig. 25: Arrangement of the operational displays at a RJ45 socket. 85 Fig. 26: State machine for assigning IP addresses. (informative). 90 Fig. 27: State machine for bonding a SyM² additional module to a SyM² basic device (informative). 93 Fig. 28: Functioning with UDP-Broadcast requests. 94 Fig. 29: IW module, physical and logical interfaces(s). 114 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 8/186

Fig. 30: KM module, how the logbook for operating events works. 142 Fig. 31: Temporal structure of a push operation (start after operational readiness). 151 Fig. 32: Temporal structure of a push operation (behaviour after synchronisation). 152 Fig. 33: Process for establishing the time reference with PULL / PUSH. 159 Fig. 34: Plug connector assignments for the service interface (view into the socket). 162 Fig. 35: Basic circuitry for the adapter cable for the service interface 163 Fig. 36: Standard operating case for SyM². 178 Fig. 37: Seconds index plus read-out during undisturbed operation (e.g.: RP = 15, time from one beginning-second index to one end-second index). 180 Fig. 38: Seconds index plus read-out during undisturbed operation (e.g.: RP = 15, period from a beginning seconds index to and end seconds index). 181 Fig. 39: S-I plus read-out in the event of a power cut and power reserve correct (e.g.: RP = 15, time from one beginning-second index to one end-second index). 182 Fig. 40: S-I plus read-out in the event of a power cut and power reserve exhausted (e.g. RP = 15, time from one beginning-second index to one end-second index). 183 Fig. 41: Direct Ethernet link between SyM² basic device and KM module. 184 Fig. 42: Connection variants between SyM² basic device, KM module and IW module. 184 Fig. 43: Ethernet links when using an NK/HS module. 185 Fig. 44: Overview for establishing the time reference. 186 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 9/186

List of tables Tab. 1: Overview of standards adduced 24 Tab. 2: SyM² basic device, overview of performance features required. 31 Tab. 3: SyM² additional module, general performance features. 33 Tab. 4: Specification for the behaviour of the metrological LED. 34 Tab. 5: Specification of the measured values to be supplied by the register 35 Tab. 6: Calculating the signature for the measured-value group +A, R1 and R4. 38 Tab. 7: Forming the signature auxiliary meter reading for the measured-value group +A, R1 and R4. 39 Tab. 8: Calculating the signature for Measured-Value Group -A, R2 and R3. 39 Tab. 9: Forming the signature auxiliary meter reading for Measured-Value Group -A, R2 and R3. 40 Tab. 10: Specification for the display 47 Tab. 11: List of the information outputted in a direct display (not rolling). 48 Tab. 12: List of information outputted in rolling mode. 49 Tab. 13: Specification of the particulars to be supplied on the rating plate. 51 Tab. 14: Construction of the terminals for the SyM² basic device. 59 Tab. 15: Construction of the terminals for the IW module. 63 Tab. 16: Parameters for the ECC algorithm for the signature of the measured-value tuples. 69 Tab. 17: Parameters for the ECC algorithm for firmware downloading. 70 Tab. 18: Data structure for remote firmware downloading (transmission). 74 Tab. 19: Data structure for the Activate firmware order. 75 Tab. 20: Data structure for status request for a firmware download (response). 76 Tab. 21: Data structure for initialising firmware downloading (request). 77 Tab. 22: Overview of access protection. 79 Tab. 23: Overview of the levels in access level protection. 80 Tab. 24: List of writable data for each access level. 81 Tab. 25: List of writable data for each access level. 81 Tab. 26: Data structure for transmitting manufacturer-specific event logbooks. 82 Tab. 27: Specification for the local bus (lower protocol layers). 83 Tab. 28: Specification for operational displays at the RJ45 sockets.. 85 Tab. 29: Basic features of the integrated module supply. 86 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 10/186

Tab. 30: Parameters of the integrated module supply. 87 Tab. 31: Time behaviour for connecting the supply voltage at PoE. 87 Tab. 32: SyM² modules approved as sinks for the integrated module supply. 88 Tab. 33: Specification of the protocols used. 89 Tab. 34: State machine for assigning IP addresses. 90 Tab. 35: State machine for bonding a SyM² additional module to a SyM² basic device. 92 Tab. 36: List of the UDP ports used with a SyM² metering device. 94 Tab. 37: List of the TCP ports used with a SyM² metering device. 95 Tab. 38: SyM² modules, data structure for emptying the load profile memory. 97 Tab. 39: List of SyM² device classes. 99 Tab. 40: List of SyM²-specific note/error numbers. 99 Tab. 41: Data structure for triggering a synchronous token. 100 Tab. 42: Basic behaviour for the SyM² basic device. 103 Tab. 43: Specification for local bus interface for the SyM² basic device. 103 Tab. 44: Specification for the plug n play play protocol for the SyM² basic device. 103 Tab. 45: List of the directly readable/writable characteristics. 104 Tab. 46: SyM² basic device, data structure for retrieving the device identification. 104 Tab. 47: SyM² basic device, data structure for answering special measured-value tuples. 105 Tab. 48: SyM² basic device, data structure for retrieving special measured-value tuples. 105 Tab. 49: SyM² basic device, data structure for answering special measured-value tuples. 106 Tab. 50: SyM² basic device, data structure for retrieving additional measured values. 106 Tab. 51: SyM² basic device, data structure for response on additional measured values. 108 Tab. 52: SyM² basic device, data structure for the order for key pair calculation. 108 Tab. 53: SyM² basic device, data structure for emptying the statutory-calibration logbook. 108 Tab. 54: SyM² basic device, data structure for the order for switching over the LED function. 109 Tab. 55: Specification for the status bits used. 111 Tab. 56: Specification for the statutory-calibration logbook for the SyM² basic device. 112 Tab. 57: Basic requirements for the IW module. 112 Tab. 58: IW module, how pulse forwarding works. 113 Tab. 59: IW module, functioning for the registration period output. 114 Tab. 60: Specification for the physical local bus interfaces of an IW module. 114 Tab. 61: Specification for the plug n play- protocol for the IW module. 115 Tab. 62: IW module, list of the directly readable/writable characteristics. 116 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 11/186

Tab. 63: IW module, data structure for retrieving device identification. 117 Tab. 64: IW module, data structure for answering device identification. 117 Tab. 65: IW module, status word. 118 Tab. 66: Specification for the switching outputs of an IW module. 119 Tab. 67: IW module, behaviour of the operational display. 120 Tab. 68: KM module, data structure for requesting the NTP parameters. 123 Tab. 69: KM module, data structure with reply / for setting the NTP parameters. 124 Tab. 70: Specification for the phys. interface local bus of a KM module. 124 Tab. 71: Specification for plug n play protocol for the KM module. 125 Tab. 72: KM module, list of the directly readable/writable characteristics. 126 Tab. 73: KM module, data structure for retrieving the WAN operating parameters. 126 Tab. 74: KM module, data structure for reading /writing the WAN parameters. 127 Tab. 75: KM module, data structure for reading / writing the PSTN parameters. 128 Tab. 76: KM module, data structure for reading / writing the AT-Hayes strings. 129 Tab. 77: KM module, data structure for retrieving the GSM/GPRS operating parameters. 130 Tab. 78: KM module, data structure for reading / writing the GSM parameters. 131 Tab. 79: KM module, data structure for reading /writing permissible GSM/GPRS providers. 132 Tab. 80: KM module, data structure for reading / writing the GPRS provider parameters. 133 Tab. 81: KM module, data structure for reading / writing the LAN/DSL operating parameters. 133 Tab. 82: KM module, data structure for reading / writing the LAN/DSL parameters. 136 Tab. 83: KM module, data structure for retrieving the IP-T operating parameters. 136 Tab. 84: KM module, data structure for reading / writing the IP-T parameters. 138 Tab. 85: KM module, data structure for the Execute command reset order. 139 Tab. 86: Specification of status bits for the KM module. 140 Tab. 87: Optional data structure for parameterising the RAW-TCP transport channel. 141 Tab. 88: List of the characteristics to be recorded in the operating logbook. 143 Tab. 89: KM module, coding of the operating logbook events. 144 Tab. 90: KM module, operational displays with the variant PSTN. 147 Tab. 91: KM module, operational displays with the variants GSM / GPRS. 148 Tab. 92: KM module, operational displays with the variants LAN / DSL. 149 Tab. 93: Data structure for the characteristics of a push operation. 151 Tab. 94: List of possible push services. 152 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 12/186

Tab. 95: List of possible push sources. 153 Tab. 96: Data structure for addressing a particular push source. 154 Tab. 97: Data structure for transporting the installation parameters. 155 Tab. 98: Data structure for establishing the time reference (Request CMD_GetTimebase ). 157 Tab. 99: Data structure for establishing the time reference (response). 158 Tab. 100: Specification for the physical local bus interfaces of an NK/HS module. 160 Tab. 101: Specification for the plug n play protocol for the NK/HS module. 160 Tab. 102: NK/HS module, operational displays. 161 Tab. 103: Detailed specifications for the physical execution of the service interface. 162 Tab. 104: List of the code numbers (ranges) additionally defined with the SyM². 165 Tab. 105: List of OBIS-T code numbers for general device characteristics. 166 Tab. 106: Coding for classification of interfaces (OBIS, Value Group B ). 166 Tab. 107: List of relevant types / subtypes for OBIS-T. 167 Tab. 108: OBIS-T, list of attributes with administration data. 168 Tab. 109: Identification of tariff-linked information and preceding values. 169 Tab. 110: Particulars of the measured variable with OBIS-T. 171 Tab. 111: Particulars of the metering method with OBIS-T. 172 Tab. 112: List of SyM²-specific code numbers from OBIS-T (Part 1/3, stated in hex). 173 Tab. 113: List of SyM²-specific code numbers from OBIS-T (Part 2/3, stated in hex). 174 Tab. 114: List of SyM²-specific code numbers from OBIS-T (Part 3/3, stated in hex). 175 Tab. 115: List of SyM²-specific Code Numbers from OBIS-T for the Value Group B (stated in hex). 175 Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 13/186

Units: List of abbreviations (1) In regard to physical measured variables and units, the agreements made in the SI (see DIN 1301, Part 1) shall apply. Relevant abbreviations: (2) Arabic numerals can be appended to the following abbreviations, enabling a distinction to be made between multiply occurring instances of the same function / same signal. (3) Abbreviations relevant to labelling are identified with a in the first column. A Active energy, +A Active energy, customer imports from grid, -A Active energy, customer delivers to grid, AC alternating current, AL Application Layer, ARP Address Resolution Protocol, ASCII American Standard Code for Information Interchange, ASN.1 Abstract Syntax Notation One, AT advanced technology, BER BDEW BM BV Basic Encoding Rules, Bundesverband der Energie- und Wasserwirtschaft e.v., Basic module, Reactive-power consumption. CCITT Comité Consultatif International Télégraphique et Téléphonique, Cl. Accuracy Class, CR Carriage Return, DC DCF77 DHCP DIN DKE direct current, Long-wave transmitter, Dynamic Host Configuration Protocol, Deutsches Institut für Normung e.v. (German Standardisation Institute), Deutsche Elektrotechnische Kommision im DIN, (German Electrical Engineering Commission in DIN), Device Language Message Specification, Domain Name System, Digital Subscriber Line, Data interface, DLMS DNS DSL DSS DÜ Data transmission, DZ Three-phase current meter, ECC elliptic curve cryptosystem, EDIFACT Electronic Data Interchange For Administration, Commerce and Transport, (E) DIN Draft version of a DIN standard, EDM Energy data management, ehz electronic domestic meter, Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 14/186

EL el. EN EnWG EVU FNN FTP G GARP GMRP GPRS GSM GW HS HTTP HTTPS HW External load profile collector, electrical, European Standard, Germany Energy Industry Act (Energiewirtschaftsgesetz), Power utility, Network Technology / Network Operations Forum in the VDE File Transfer Protocol, Flag power reserve exhausted, Generic Attribute Registration Protocol, GARP Multicast Registration Protocol, General Packet Radio Service, Global System for Mobile Communications, Gateway, Auxiliary voltage, Hypertext transfer protocol, Hypertext Transfer Protocol Secure, Hardware port, I Current, IARP Inverse Address Resolution Protocol, I b Rated current for directly connected meters, ICC-ID Integrated Circuit Card Identifier (SIM-Identifier) ICMP Internet Control Message Protocol, ID Identification Number, IEC International Electrotechnical Commission, IEEE Institute of Electrical and Electronics Engineers, IETF Internet Engineering Task Force IGMP Internet Group Management Protocol, I max Limit current of meters, IMEI International Mobile Equipment Identity, IMSI International Mobile Subscriber Identity, Imp Pulses, Imp/kvarh Pulses per kvarh, Imp/kWh Pulses per kwh, I N Rated current for indirectly connected meters, IP Internet Protocol, ISO International Organisation for Standardisation, IW Pulse Forwarding Module, KM Communication module, KZ Code number, L1, L2, L3 Phase conductor, LAN Local Area Network, LC Liquid Crystal, Flüssigkristall, LCD Liquid Crystal Display / Flüssigkristallanzeige, LED Light Emitting Diode, Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 15/186

LF LSB Line Feed, Least Significant Bit, niederwertigstes Bit, MAC Media Access Control, M-Bus Metering Bus MDE Mobile data acquisition device, MDI Medium Dependent Interface MDI-X Medium Dependent Interface, crossed, MDI(X) used only as Auto-MDI(X): automatic detection whether MDI or MDI-X is to be encountered, MID Measuring Instruments Directive, MSB Most Significant Bit, höchstwertigstes Bit, MSCONS Metered Services CONSumption report message, MSN Multiple Subscriber Number, N N NAT NIC NK NK NTP OBIS OBIS-T OSI P P PD PDP PHY PIN PoE PUK PnP RPA RPC RPL PPP PPPoE PSE PSTN PTB Neutral conductor, Flag restoration of supply, Network Address Translation, Network Interface Card, Decimal places, Network nodes, Network Time Protocol, Object Identification System, OBIS Telemetry, Open Systems Interconnection Reference Model, Active power, Flag in private area, Powered Device (sink as per IEEE802.3af), Packet Data Protocol, Physical interface, Personal Identifiation Number, Power over Ethernet, Personal Unblocking Key, Plug and Play, Registration Period output, Registration Period Counter, Registration Period Length, Point-to-Point Protocol, Point-to-Point Protocol over Ethernet, Power Supply Equipment (Quelle nach IEEE802.3af), Public Switched Telephone Network, Physikalisch-Technische Bundesanstalt (German Federal Institute of Physics), R1 Reactive energy, Quadrant I, R2 Reactive energy, Quadrant II, R3 Reactive energy, Quadrant III, R4 Reactive energy, Quadrant IV, Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 16/186

RAB RAW RARP RFC RG RP RPL RS232 S SHA-1 SEZ SFTP S-I SIM SML SMS SMTP STD SV SyM² TAB TAE TAG TCP TL tlz TP TRMS Output pulse constant for reactive energy, Output pulse constant for active energy, Reverse Address Resolution Protocol, Request for Comment, Radio Government, Registration period, Registration period length, Serial interface, Flag Synchronisation, Secure Hash Algorithm, Standard energy quantity meter, Secure File Transfer Protocol, Seconds index, Subscriber Identity Module, Smart Message Language, Short Message Service, Simple Mail Transfer Protocol, Standard, Service interface, Synchronous Modular Meter, Technical connection conditions, Telecommunication connection unit, Feature / Designation / Identification when coding data elements, Transmission Control Protocol, Type-Length, Clocked load profile meter, Twisted-Pair Cable, True Root Mean Square, U Voltage, UDP User Datagram Protocol, U n Rated voltage (see DIN EN 62053-21), V VDE VDEW VDN VK VL VNB VZS Flag provisional value, Verband der Elektrotechnik Elektronik Informationstechnik e.v., (Confederation of the German Electrical Engineering, Electronics and Information Technology Industries) Verband der Elektrizitätswirtschaft VDEW e.v., (Confederation of the German Electricity Industry) Verband der Netzbetreiber VDN e.v. at the VDEW (German Confederation of Network Operators), Number of places before the decimal point, Billing list, Distribution network operator, Consumer reference-arrow system, Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 17/186

WAN Wide Area Network, WELMEC Western European Legal Metrology Cooperation, WV Active energy, time integral 1 as per OBIS, WZ AC meter, XML ZFA ZM ZVEI Extensible Markup Language, Remote meter readout, Additional modules, Zentralverband Elektrotechnik- und Elektronikindustrie (German Confederation of the Electrical Engineering and Electronics Industries). Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 18/186

1 Foreword (4) The general specification for Synchronous Modular Meters (SyM² ) serves to provide development engineers at the meter manufacturers and the staff dealing with invoicing metering equipment at network operators, metering point operators and vendors with a harmonised working document for load profile meters featuring a clocked registration period. (5) The goals of the SyM² have been defined as follows under the paramount consideration of cost reduction in operations management: - Modularised device concept with mounted or integrated function units and a standardised interface, and thus installation of only those elements specifically required on site plus continual easy adaptation to new developments. - use of meter readings in place of increments / power mean values, - dispensing with the maximum metering mechanism, - dispensing with integrated tariff control, - reducing the influence of the device clock by changing to a seconds index, - separation into a compulsory-calibration register and additional modules not subject to compulsory calibration for upgrading transparency by returning to simple measured values, - reducing the complexity of the individual modules, - firmware download utilising the concepts of the WELMEC guideline. - (6) This first version of the general specification for Synchronous Modular Meters is based on the empirical feedback from previous versions from VDEW General Specification 2.x, which has proved to be problematical and ultimately cost-intensive, due particularly to the wide multiplicity of variations agreed there. The SyM² general specification replaces the versions of the tlz specification drawn up previously during the course of development work. (7) The empirical feedback available has likewise revealed that the conformity already targeted in the past for data interfaces in regard to the protocols actually implemented by the manufacturers could not be achieved. The differences discernible in the field are attributable to the high level of complexity involved, and in numerous degrees of freedom ultimately not adequately restricted with the existing VDEW general specification. A further goal for the new system technology is accordingly to fill in the existing definition gaps and to specify new and simpler approaches. (8) As the third goal, the new system technology of the SyM² incorporates experience gained with the many device clocks distributed in the field. In this context, it must be noted that the synchronism of these device clocks necessarily stipulated can be provided only with a high outlay on engineering and organisation, with a concomitant increase in cost-intensity. The Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 19/186

idea of a clockless meter, better designated as a Synchronous Modular Meter, was taken on board and has resulted in a significant reduction of the complexity previously obtaining (9) The overall aim of this general specification foris to make available device designs that are interchangeable on a cross-manufacturer basis, forming a standard. This reduces possible installation, read-off, operator control and data transmission errors, and in the medium term leads to standardisation of the approval procedure at the Physikalisch-Technische Bundesanstalt. Against this background the multiplicity of variants is reduced. (10) In accordance with technical progress and the agreements possible in each case on specifying further components of the electronic meter, the intention is to publish revised versions of the tlz specification. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 20/186

2 Execution (11) This general specification fordescribes SyM² basic devices and SyM² additional module, designed predominantly for billing purposes in the special-agreement customer category. For this purpose, the SyM² basic devices must be approved. (12) These metering devices are designed as four-quadrant meters. 2.1. Basic concept (13) The SyM² implements the goal of system technology for acquiring electrical variables. The term SyM² accordingly denotes an ensemble of components, grouped into a mandatory and an optional category, with the mandatory category containing the actual register ( SyM² basic device ) and an integrated load profile collector, to which opt ional categories can be added using additinalö modules ( SyM² additional module ). (14) The SyM² additional module can be mounted on the SyM² basic device or in other environments. For this operational case, only an adapter needs to be defined for connecting the SyM² additional module to this different environment. (15) Against this background, the basic concept for the SyM² can be outlined with the following variant tree: SyM 2 -Messeinrichtung SyM 2 -Basisgerät: (Pflichtmodul) Messwerk mit integriertem Signaturelement, integrierter Anzeige und integriertem Lastgang... in der Variante: direkter Anschluss Legende:... in der Variante: halbindirekter Anschluss genau eine der Varianten muss vorhanden sein, keine, eine oder mehrere der Varianten können vorhanden sein.... in der Variante: indirekter Anschluss... in den optionalen Varianten: mit einem oder mehreren Zusatzmodulen, wobei dieses Pflichtenheft eine Liste von grundlegenden Zusatzmodulen definiert und das Konzept generell so angelegt ist, dass Hersteller bedarfsweise weitere Zusatzmodule anbieten können. Fig. 1: Variants of a SyM² metering device. (16) Within these variants, different constellations are possible, whose number shall be minimised in line with the objectives of this general specification for. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 21/186

SyM 2, optionale Module Bedienen die Schnittstellen zur Außenwelt, können per Software-Download beliebig administriert werden, unterliegen nicht den eichrechtlichen Regularien Privates oder öffentliches Kommunikationsnetz für Fernzugriffe Protokoll SML SyM 2 -Zusatzmodule Lastgangsammler Kommunikationstechnik (beinhaltet Zugangsschutz zur Messeinrichtung) Synchron- / Impuls-Ein- / Ausgänge Netzteil mit Spannungsweitbereichseingang zur Versorgung der Zusatzmodule Einheitliche, offen standardisierte und rückwirkungsfreie Schnittstelle im Sinne einer Bus-Struktur. SyM 2 -Basismodul (Pflichtmodul, Messwerk) Skizze hier für die Variante: direkter Anschluss vom Netz L1 L2 L3 N 1.8.x Logbuch 021099.000 Messwerk (eichrechtlich gesichert, Anzeige / Signatur integriert, Logbuch für Firmwaredownload, integrierter Lastgangsammler) zum Kunden Fig. 2: Function concept for a SyM² metering device. (17) The logbook function unit in the SyM² basic device required solely for verification of firmware downloads performed. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 22/186

3 Standards, documents, terms and definitions (18) It should quite generally be noted that the lists of standards and documents given below are to be understood merely as a guideline bibliography. Development work on the devices must always be adapted to suit the ongoing statutory stipulations and standards, with the tlz specification defining the documents to be used for actual device development work. 3.1. Standards (19) This document references the standards listed below: DIN 1301, Part 1 10.02 Units, Part 1: unit names, unit symbols DIN ISO 2768-1 06.91 General tolerances; tolerances for length and angle dimensions without individual tolerance entries DIN 43854 03.79 Lead-seal screws for electricity meters DIN 43855 10.83 Electricity meters, signs DIN 43856 09.89 Electricity meters, multi-rate tariff switches and ripple control receivers; circuit numbers, terminal designations, schematics DIN 43857-2 09.78 Electricity meters in insulating-material housings, for direct connection, up to 60 A limit current; principal dimensions for three-phase-current meters E DIN 43863-4 09.06 Meter data communication IP telemetry DIN 43870-1 02.91 Meter slots; dimensions on the basis of a raster system DIN 46231 07.70 Pin-end connectors for solder-free connections, insulated, for copper conductors DIN EN 50470-1 Draft AC electricity meters Part 1: General Requirements, Tests and Test Conditions (VDE 0418-0-1) 05.06 Metering Devices (Accuracy Classes A, B and C) DIN EN 50470-3 (VDE 0418-0-3) Draft 05.06 AC electricity meters - Part 3: Special requirements Electronic active power consumption meters of Accuracy Classes A, B and C DIN EN 60068-2-75 06.98 Environmental tests - Part 2: Tests; Test Eh: Hammer Tests (IEC 60068-2- 75:1997); German Version EN 60068-2-75:1997 DIN EN 60073 05.03 Basic and safety rules for man-machine interfaces, identification coding principles for display devices and operator controls DIN EN 60387 11.93 Symbols for AC meters DIN EN 60529 (DIN VDE 0470 T.1) 09.00 Degrees of protection through housing (IP code) DIN EN 60695-2-11 11.01 Tests for assessing the fire hazard - Part 2-11: Tests with the glow-wire; tests with the glow-wire on the ignitability of end-products (IEC 60695-2-11:2000); German Version EN 60695-2-11:2001 DIN EN 60950-1 11.06 Information technology equipment Safety Part 1: General Requirements (IEC 60950-1:2005, modified); German Version EN 60950-1:2006 DIN EN 60999-1 (VDE 0609 T. 1) 12.02 Connection material Electrical copper conductors; Safety requirements for screw terminals and screwless terminals, Part 1: General Requirements DIN EN 61358 11.96 Acceptance-testing for electronic meters KC. 1+2 DIN EN 62052-11 IEC 62052-11 11.03 AC electricity meters General Requirements, Tests and Test Conditions, Part 11: Metering devices Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 23/186

DIN EN 62053-21 (VDE 0418 T. 3-21) IEC 62053-21 DIN EN 62053-22 (VDE 0418-3-22) IEC 62053-22 DIN EN 62053-23 (VDE 0418-3-23) IEC 62053-23 11.03 AC electricity meters; Special Requirements, Part 21: Electronic active-power meters of Accuracy Classes 1 and 2 (previously DIN EN 61036, VDE 0418 Part 7, from 01/01) 11.03 AC electricity meters - Special Requirements - Part 22: Electronic active-power meters of Accuracy Classes 0.2 S and 0.5 S (previously DIN EN 60687 from 02/94) 11.03 AC electricity meters Special Requirements - Part 23: Electronic reactive power consumption meters of Accuracy Classes 2 and 3 (formerly DIN EN 61268 from 11/96) DIN EN 62053-52 08.06 AC electricity meters - Special Requirements - Part 52: Symbols (IEC 62053-52:2005); German Version EN 62053-52:2005 DIN EN 62054-21 VDE 0419-4-21 06.05 AC electricity meters - tariff and load control - Part 21: special requirements for time switches (IEC 62054-21:2004); German Version EN 62054-21:2004 DIN EN 62056-21 01.03 Electricity meters, meter reading transmission, Part 21: data transmission for fixed and mobile connections (3 rd edition of IEC 61107, formerly IEC 1107) IEC 62056-62 DIN EN 62056-62 2002 01/03 Measuring electrical energy - meter reading transmission, tariff and load control - Part 62: Interface Classes (IEC 62056-62:2002) DIN EN 62056-61 01.03 Measuring electrical energy meter reading transmission, Part 61: OBIS Object Identification System CCITT-CRC16 --.-- Standard of CCITT for checksum calculation IEEE 802.3u 2005 100Base-Tx, Category 5 Cables IEEE 802.3af 2005 Power over Ethernet RFC 0768 08.80 UDP in accordance with Standard STD 0006 RFC 0791 09.81 IP in accordance with Standard STD 0005 RFC 0792 09.81 ICMP in accordance with Standard STD 0005 RFC 0793 09.81 TCP in accordance with Standard STD 0007 RFC 0826 11.82 ARP in accordance with Standard STD 0037 RFC 1305 03.92 Network Time Protocol (Version 3) Specification, Implementation and Analysis RFC 2390 09.98 IARP in accordance with Draft Standard, formerly RFC 1293, replaced by RFC 2390 RFC 3174 09.01 US Secure Hash Algorithm 1 (SHA1) RFC 3927 03.05 Dynamic Configuration of IPv4 Link-Local-Address ISO 8859-15 03.99 Information technology - 8-bit-single-byte-coded character sets - Part 15: Latin Alphabet No. 9 ISO 4757 10.94 Cross-recesses for screws (ISO 4757:1983); German Version EN ISO 4757:1994 Tab. 1: Overview of standards adduced 3.2. Documents (20) The recommendations, announcements, requirements and information specified here are valid only in the latest version in each case. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 24/186

(21) The publication times quoted document the status of 2005. The list is to be regarded merely as an introduction; the actual status and scope must be obtained from the approval bodies involved 3.2.1. Literature [1] Directive 2004/22/EC of the European Parliament and of the Council dated 31 March 2004 on metering devices, appearing in the Gazette of the European Union L 135/1, MID [2] SML Smart Message Language, Version 1.03 2008. 3.2.2. Calibration-law requirements, requirements and information [3] PTB Requirements: Requirements for electronic ancillary equipment PTB-A 50.7 2002, Metering devices for electricity PTB-A 20.1 2001. 4] Cross-section guideline Statutory metrology / general provisions 2002 published in Federal Gazette No. 108a dated 15 June 2002. [5] WELMEC 7.2, Issue 1 Software Guide (Measuring Instruments Directive) WELMEC 2005. 3.3. Terms and definitions (22) The alphabetically sorted list below places some terms in relation to their special use in the contest of the general specification for Synchronous Modular Meters (SyM²). 3.3.1. Reference time (23) The reference time is the statutory time at the moment when the ongoing seconds index is read off. (24) The statutory time and the seconds index are brought together either in the central software or in the communication equipment on the spot. (25) This mechanism enables us to dispense with a calendar feature within the SyM² basic device and nonetheless be able to always establish a relationship between measured-value formation and time. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 25/186

3.3.2. Statutory time (26) The time information provided by the PTB shall be used as the statutory time. 3.3.3. Data protocols, useful load (27) The term useful load defines the proportion of information to be transmitted in the context of the goal during data transmission (see Section 5). Usually, however, the data telegrams will require additional elements, such as control characters or framework information, which also have to be transmitted, but do not serve the actual use. 3.3.4. Data protocols, pull mode (28) In the context of the tlz specification, Pull denotes the conventional paradigm for data transmission, in which a client (e.g. control centre, MDE,...) sends a command to the metering device and this responds with a message. (29) This classic mechanism (apart from exceptions) does not provide for any unrequested activities of the metering devices themselves for filing messages in a control centre. Here, the metering device shall always follow the request. 3.3.5. Data protocols, push mode (30) Modelled on E DIN 43863-4: The push mode denotes a unidirectional operating mode in which one of the two communication partners sends a singular and self-contained information unit to its counterpart. (31) For the push mode, stipulations are filed in the SyM² metering device by means of settable variables, on the basis of which a communication device automatically (e.g. once a day) sends a load profile to an addressee using a standard protocol. (32) This form of automatic outputting and filing of messages on a server filed locally in the metering device is designated as push in the context of the tlz specification. 3.3.6. Measured-value tuples (33) The term measured-value tuples is used to denote a group of data elements, consisting of measured values, particulars of metering device identification of the status, of the time (Seconds Index) and with the signatures for protecting the group. (34) Measured-value tuples shall be outputted periodically by SyM² basic devices. 3.3.7. Correcting a period generator (35) The correction of a period generator denotes a one-off change in the duration of the ongoing period, and thus does not signify a change in the setpoint value for the period duration. (36) If the duration of a cycle is changed on a one-off basis, this may signify both a shortening and a lengthening of the duration actually needed. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 26/186

3.3.8. Period generator / Clock generator (37) Period generator or clock generator are designations for functional units of the metering device that, depending on the application involved, are able to generate different time intervals. (38) Clock generators used in the context of this document always generate a (theoretically infinite) chain of intervals of the same duration. (39) The term period generator is used in the sense of the classical registration period (see Section 3.3.9), while the term clock generator is utilised for the concept of the seconds index (see Section 4.5). 3.3.9. Registration period (40) The registration period denotes the time needed for forming an element of (load) profile recording. It typically used intervals of 1, 3, 5, 10, 15, 30 or 60 minutes. When examples in the context of this document refer to the registration period, a period of 15 minutes is always assumed. In the SyM² basic device, only one registration period is managed. 3.3.10. Seconds index (41) The term seconds index ( S-I ) is used to denote a natural number growing strictly monotonously in a mathematical sense over the entire lifetime of the SyM² basic device whose aim is to ensure unambiguous assignment of the moment of a measured-value acquisition to the statutory time assumed as the reference system. (42) The time basis for generating the seconds index follows the normative framework stipulations for accuracy (see Section 4.5.4). 3.3.11. Operating seconds counter (43) The term operating seconds counter is used to denote a natural number growing strictly monotonously in a mathematical sense over the entire lifetime of the SyM² additional module, whose aim is to ensure an unambiguous assignment of the moment of an event to the statutory time assumed as a reference system. (44) The time basis for generating the operating seconds counter shall follow the stipulations for accuracy laid down in this general specification (see Section 4.5.4). 3.3.12. Signature (45) The term signature or signature element, in the context of this general specification, denotes an initially colloquial protection, whose actual form (hash code, public key procedure,...) is specified in more detail in Section 4.14. (46) The tasks of the signatures in the context of this general specification are to assure the authenticity and integrity of the contents for the measured-value tuple of the SyM² basic device and to protect the firmware to be transported in remote firmware downloading. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 27/186

3.3.13. Synchronising a period generator (47) The term synchronisation of a period generator describes the adaptation of the period generator to an external time raster. 3.3.14. SyM² metering device (48) The term SyM² metering device denotes a group of SyM² basic device(s) and optional SyM² additional module. (49) The components of a SyM² metering device shall always be connected to each other via a jointly used local bus. 3.3.15. Reference-arrow system and identification of the measured variables (50) Regarding identification of measured values and other data, the specification laid down for OBIS shall apply within the framework of this. For the definition of the transmission direction of active energy, the specification of the consumer reference arrow system VZS shall apply. (51) The VZS assumes that the customer imports energy from the distribution network (+A). Kunde Netzbetreiber Bezug: Kunde bezieht aus dem Verteilnetz, der Zähler 'sieht': +A Verteilnetz Zählpunkt Lieferung: Kunde liefert in das Verteilnetz, der Zähler 'sieht': -A Verteilnetz Zählpunkt Fig. 3: Definition of the terms import and delivery (see also DIN EN 62053-52). Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 28/186

4 Requirements 4.1. Overview (52) The SyM² is a three-phase-current meter for direct, semi-indirect or indirect connection with the following performance features: 4.1.1. SyM² basic device, general requirements Task / Size Specification Housing Insulating material, flame-retardant in accordance with DIN EN 62053-21. Protection Class Stackability Meter type Function of the register for active-power consumption How the register works for reactive-power consumption Metering Type of connection IP 51 with terminal shroud fitted Devices shall be stackable, regardless of the manufacturer involved, with the terminal shroud fitted, see Section 4.10.2.1. 4Q meter. In accordance with DIN EN 62053-21. The test for accuracy in the presence of harmonics shall be defined in broad conformity with the stipulations laid down in the standard for activepower metering. Special requirement: As an additional error for fundamental components and harmonics. the limits specified in Section 4.2 must be complied with. Measurement shall always be made as a total over all phase conductors. Direct connection for voltage and current or direct connection for voltage and indirect connection via current transformer, or indirect connection via current and voltage transformer. The SyM² can be operated without damage to the meter in a 4-wire network with zero removed. In this operating mode, too, metrological accuracy must be retained for operation symmetrically in regard to the voltage. The SyM² must be executed as a four-wire meter for three- and four-wire operation. When operated in a 3-wire network, an external auxiliary circuit in accordance with DIN 43856 (metering set types M3 and M6) must be used, without any necessity to perform configuration at the SyM². 1 1 Measurement of the phase angle cannot be guaranteed with this type of connection. Im Auftrag für die tlz-projektgruppe, EMSYCON GmbH, Dr. M. Wisy, Seite 29/186