Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas



Similar documents
Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014

arxiv:cond-mat/ v1 [cond-mat.soft] 25 Aug 2003

Conference Booklet. Quantum Technologies Conference II Manipulating photons, atoms, and molecules. August 30 September 4, 2011, Kraków, Poland

Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Three-dimensional parallel vortex rings in Bose-Einstein condensates

Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential

Spatial and temporal coherence of polariton condensates

PETITS SYSTEMES THERMOELECTRIQUES: CONDUCTEURS MESOSCOPIQUES ET GAZ D ATOMES FROIDS

Measurement and Simulation of Electron Thermal Transport in the MST Reversed-Field Pinch

Laboratoire Charles Fabry de l'institut d'optique Palaiseau

Free Electron Fermi Gas (Kittel Ch. 6)

Conference Booklet. Quantum Technologies Conference Manipulating photons, atoms, and molecules. August 29 September 3, 2010, Toruń, Poland

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma

Lecture 14. Introduction to the Sun

Quantum Computing for Beginners: Building Qubits

Heating & Cooling in Molecular Clouds

RICE UNIVERSITY. Tunable Interaction in Quantum Degenerate Lithium. by Kevin Edwin Strecker

Summer College on Plasma Physics August Discoveries in Dusty Plasmas. Padma K. Shukla Ruhr-Universität Bochum Germany

Lattice approach to the BCS-BEC crossover in dilute systems: a MF and DMFT approach

CIRRICULUM VITAE. Degree Department/Program Institution Year Undergraduate Physics (Faculty of Ege University 2002

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

Science Standard Articulated by Grade Level Strand 5: Physical Science

VARIANCE REDUCTION TECHNIQUES FOR IMPLICIT MONTE CARLO SIMULATIONS

Spatially separated excitons in 2D and 1D

N 1. (q k+1 q k ) 2 + α 3. k=0

Searching for Cosmic Strings in New Obervational Windows

Blackbody radiation derivation of Planck s radiation low

Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

The lure of lower temperatures has attracted

Modeling Galaxy Formation

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations

Single Photon Counting Module COUNT -Series

Defects Introduction. Bonding + Structure + Defects. Properties

Revisiting the concept of chemical potential in classical and quantum gases: A perspective from Equilibrium Statistical Mechanics.

Waves - Transverse and Longitudinal Waves

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

d d Φ * Φdx T(B) Barrier (B ) : Vo = 5, a = 2 Well (W ) : Vo= -5, a = ENERGY (E)

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION

CIRRICULUM VITAE. Degree Department/Program Institution Year Undergraduate Physics (Faculty of Ege University 2002

Collapse and Revival of the Matter Wave Field of a Bose-Einstein Condensate

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

NANOFLAM. Projet ANR Blanc 2011 BS Aide allouée: , durée 36+8 mois (fin : Mai 2015) Laboratoire H. Curien

The Role of Electric Polarization in Nonlinear optics

Dynamics of two colliding Bose-Einstein condensates in an elongated magnetostatic trap

Lecture 8. Generating a non-uniform probability distribution

NUMERICAL SIMULATION OF BIOHEAT TRANSFER PROCESS IN THE HUMAN EYE USING FINITE ELEMENT METHOD

- thus, the total number of atoms per second that absorb a photon is

Detecting Atomic Shot Noise On Ultra-cold Atom Clouds


Quantum control of individual electron and nuclear spins in diamond lattice

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

Broadband THz Generation from Photoconductive Antenna

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

6-2. A quantum system has the following energy level diagram. Notice that the temperature is indicated

Particle Soup: Big Bang Nucleosynthesis

Limitations of Equilibrium Or: What if τ LS τ adj?

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DYNAMICS OF MOMENTUM DISTRIBUTIONS OF VACUUM EXCITATION IN FOCAL SPOT OF MODERN SUPER-POWER LASERS COUNTER BEAMS

What is Energy conservation Rate in the Universe?

Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Chemistry 102 Summary June 24 th. Properties of Light

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract

Comb beam for particle-driven plasma-based accelerators

Solidification, Crystallization & Glass Transition

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion

Broadband microwave conductance across the T=0 superconductor-resistive magnetic field tuned transition in InO x!

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

The Crafoord Prize 2005

Simulation of collisional relaxation of trapped ion clouds in the presence of space charge fields

An optical readout configuration for advanced massive GW detectors

of transitions from the upper energy level to the lower one per unit time caused by a spontaneous emission of radiation with the frequency ω = (E E

AS COMPETITION PAPER 2008

Exposure analysis to multiple plane waves

The quantum understanding of pre-university physics students

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

WAVES AND ELECTROMAGNETIC RADIATION

Chapter 15.3 Galaxy Evolution

Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom

REPORT DOCUMENTATION PAGE

Microcavity Quantum Electrodynamics:

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

NDSU Department of Physics. Graduate Student Handbook

From apertureless near-field optical microscopy to infrared near-field night vision

Turbulent mixing in clouds latent heat and cloud microphysics effects

Grid adaptivity for systems of conservation laws

Quantum hydrodynamics

Chapter 23 The Beginning of Time

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

Explosion of a Water Droplet by Pulsed Laser Heating

Transcription:

Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Piotr Deuar Emilia Witkowska, Mariusz Gajda Institute of Physics, Polish Academy of Sciences, Warsaw Kazimierz Rzążewski Center for Theoretical Physics, Polish Academy of Sciences, Warsaw Cover of Phys. Rev. Lett., 1 Apr 2011 E. Witkowska, PD, M. Gajda, K. Rzążewski, PRL 106, 135301 (2011)

Outline The one-dimensional Bose gas Two views on what goes on during cooling Defect creation (Kibble-Zurek mechanism) Thermal phase fluctuations (at long times) Simulation method Simulation results BEC regime Quasicondensate regime How one scenario goes into the other Weak domains, strong defects 2/18

Bose-Einstein condensate most atoms are in a single orbitalof the trap (BCIT MOT) MOT 30 000 000 87 Rb wir M. Davis, Univ.Queensland 3. vortices superfluidity BEC 2. thermal cloud 1. non-uniform density in the trap C. Zimmerman, Tubingen Univ. 3/18

Cooling stage 1-100 µk Coldest known natural object Boomerang nebula 1K (Joule-Thompson effect) (microwave background radiation: 2.7K) NASA/ESA A teraz najzimniejsze znane obiekty w ogóle... 1. Dispenser (500-1000K) Rb Cs Li K Na M. Głódź, IF PAN 2. Laser cooling + MOT(Magneto-optical trap) 100µK A. Murray, Manchester Univ. 4/18

Cooling stage 2 100 nk 3. Evaporative cooling + magneto-optical / optical dipole trap ( 100nK) G. Raithel, Univ. Michigan Typically, 105-107 atoms Max density 1012-1014 cm-3 [c.f. 3X1019 cm-3 in the air] BEC L. Salasnich, Univ. Padova 5/18

One-dimensional Bose gas N ~ 103-104 g > 0 repulsive contact interactions IN THE NARROW DIRECTIONS: ` NOT OCCUPIED s OCCUPIED I. Llorente Garcia et al. New J. Phys. 12, 093017 (2010) Need hωl ong << kbt << hωnarrow 6/18

Quasicondensate In the uniform 1D gas, there is no true condensate for T>0 However: finite coherence length lφ In the trap, BEC occurs when L < lφ D. Petrov, G. Shlyapnikov, J. Walraven, PRL 85, 3745 (2000) 7/18

But what actually goes on during the cooling? Aim: to reconcile two aspects of the cooled state (1): Solitons formed in a quench via Kibble-Zurek mechanism B. Damski, W. Żurek, PRL 104, 160404 (2010) Quench of µ in thermal bath (2): Smooth quasicondensate phase in thermal equilibrium no solitons! What about a realistic quench of temperature? S. Dettmer et al, PRL 87, 160406 (2001)g 8/18

Evaporative cooling of 1D Bose gas THE MODEL t=0 t = tr LOSS LOSS Cooling ramp t >> tr Thermalization Initial condition: gas at thermal equilibrium, above Tc E. Witkowska, M. Gajda, K. Rzążewski Opt. Commun. 283, 671 (2010) Simulation: c-field method Quantum field theory, without discretized particles Developed by many authors: A. Sinatra, M. Brewczyk, M. Gajda, M. Davis, K. Rzazewski, K. Burnett, E. Witkowska, (no particular order) Useful papers: M. Brewczyk et al, J. Phys B 40, R1 (2007); P. Blakie et al. Adv. Phys. 57, 363 (2008) 9/18

In more detail e.g. free space : plane wave basis Full quantum field c-fields Replace mode amplitude operators with complex number amplitudes Thermal initial state: Distributed according to Bose-Einstein distribution Evolution: nonlinear Schrodinger equation Phase of is random Use many realizations to get thermal ensemble 10/18

Validity it will be fine,...... as long as there are always many atoms involved in whatever it is we are studying T>>Tc T>Tc T~Tc T<Tc T 0 http://www-matterwave.physics.ox.ac.uk/node/1 Mode occupation getting small OK: All relevant modes highly occupied Occupation in excited modes getting small 11/18

Simulation - slow ramp BEC DENSITY Slow ramp ω tr=400 F End of ramp PHASE b Solitons appear Beginning of ramp z 12/18

Ramp time Slow ramp BEC Fast ramp quasicondensate Very fast ramp thermal gas CONDENSATE FRACTION CLOUD SIZE COHERENCE LENGTH czas rampy E. Witkowska, PD, M. Gajda, K. Rzążewski PRL 106, 135301 (2011) 13/18

Fast ramp quasicondensate precursor DENSITY Fast ramp ω tr=75 F Thermalization continues t PHASE End of ramp Solitons appear Beginning of ramp z E. Witkowska, PD, M. Gajda, K. Rzążewski PRL 106, 135301 (2011) 14/18

Thermalization to a quasicondensate DENSITY AFTER COOLING RAMP z PHASE z F COHERENCE z THERMALIZED 15/18

Solitons as the larval stage of equilibrium fluctuations Coherence length after thermalization Mean inter-soliton distance at the end of cooling at tr 16/18

Domain formation not like the standard story We did NOT see the usual scenario, where: domain seeds grow with time and defects form where they meet DENSITY Instead: - domains are fleeting - solitons are the stable entities - coherence length conserved Not yet fully understood we're building a new trap PHASE F 17/18

Summary 1D evaporative cooling is quite different to the usual scenario Coherence length conserved during thermalization of solitons Solitons NOT phase domains are the long-lived objects Details: E. Witkowska, PD, M. Gajda, K. Rzążewski PRL 106, 135301(2011) Movies: www.ifpan.edu.pl/~deuar/ 18/18

Solitony Mechanizm Kibble-Żurka Temperatura się obniża w czasie Blisko Tc, czas reakcji jest za długi aby nadążyć za stanem termicznym Faza zostaje lokalnie zamrożona bez komunikacji między odległymi obszarami domeny fazy Pomiędzy domenami tworzą się defekty (solitony w 1D) Im szybsza rampa, tym mniejsze domeny Skalowanie ilośći solitonów z prędkośćią przekraczania Tc było przewidziane. Ns o l i t o n /L ~ (1/[czas rampy]) [ s t a ł a O ( 1 ) ] W. Zurek, PRL 102, 105702 (2009) 19/18

Mechanizm Kibble-Żurka Skalowanie liczby solitonów obecnych po końcu rampy E. Witkowska, PD, M. Gajda, K. Rzążewski PRL 106, 135301 (2011) przewidziane: Quench time ~ czas rampy tr? ~1 W. Zurek, PRL 102, 105702 (2009) 20/18