Hydraulic Hydro Storage, an ecological solution for grid scale storage Prof. Dr. rer. nat. Eduard Heindl
Solar power Power demand Conventional sources
existing storage capacity (Germany)
PHS Schluchsee, Black Forest, Germany Granit Steel Concrete Hydro Storage
operate
r l=2r h=r
mass ~ r³ height ~ r r storage capacity: E = ~ 2 g * π m g ρ * hr 4 building costs: b ~ r² l=2r h=r costs per kwh~1/r²
mass ~ r³ height ~ r r storage capacity: E = ~ 2 g π * m g ρ * hr 4 building costs: b ~ r² l=2r h=r costs per kwh~1/r²
double the radius the price goes down to a quarter
Energy storage capacity depends on the radius r 1.600GWh Daily electrical power production in Germany Largest German pumped hydro plant Goldisthal break even price? 50 125 500
Cliffs 300m 1000m 80m Risin og Kellingin, Färöern (Heindl/Pustlauck) Salto Ángel, Venezuela (Wikipedia)
Wanted: undisturbed granit! The system needs a proper geological formation granit
Construction construction road deep well drilling plant blast hole 1. tunnel mine shaft Prof. Dr. Eduard Heindl base tunnel, water intake
Baseplate seperation I Mined space waterprofing base-tunnel excavated material excavator 2. tunnel waterprofing side view
Baseplate seperation II top view excavated material base-tunnel cutted rock rock excavator top view! 2. tunnel
Baseplate seperation II Mined space excavated material waterprofing base-tunnel excavated material 2. tunnel waterprofing side view
Diamond wire sawing Surface traction drilling holes rock cut surface r Diamond wire saw 1. Tunnel
Diamond wire sawing surface traction drilling holes rock cut surface r Diamond wire saw 1. tunnel
V Shape Due to rock mechanics, it may be neccessary to open a V shaped trench What are the limits of the tunnel size Drilling technik String length rock mass utility tunnel sawing string utility tunnel traction boulder side view
V Shape trench will get smaler due to rock pressure utility tunnel trench rock mass utility tunnel side view
V Shape Sealing Sealing of the surface utility tunnel rock mass waterprofing utility tunnel side view
Conventional construction Open pit mining 120m 400MWh excavation material seal stabilization of the slope excavation or heavy slag surrounding soil water in cavity Zuerst wird ein rundes Loch freigelegt und stabilisiert. Darinnen wird eine Betonwanne mit verstärktem Boden gefertigt, diese nimmt Schlacke als schwere Füllung auf. Der Aushub dient als Sichtschutz und zur Stabilisierung des Systems.
construction equipment Cut down to 120m Place: Saudi Arabian
Example: Water supply in Riad diameter: 80m; depth: 120m
Sealing sealing ring metal Sealing to keep rock dry floating piston cylinder capacity filled with water
Sealing Detail metal detail sealing ring 10 bar per O ring
Variant: sealing on top metal sealing ring Sealing to keep rock dry pressure floating piston cylinder capacity filled with water advantages: good access less pressure change disadvantages: pressure near surface metal visible
Variant: seal at button rail wheel advantage: Good pressure containment disadvantage: track necessary metal floating piston sealing ring cylinder capacity filled with water pressure
Balance pump ballast tank rail wheel floating piston
Security The system has a physical inherent secure sealing floating piston primary sealing oversized if there is no pressure additional sealing
Security The system has a physical inherent secure sealing leakage blocked due to missing pressure expansion additional sealing
Security The system has a physical inherent secure sealing blähend unter Wasserberührung Blockade aufgrund hohen Durchflusses floating piston Wasser im Zylinder- Hohlraum Weitere passive Dichtung 2. Zusatz Dichtungsring
Offshore Wind Power Source http://www.nrel.gov/news/features/images/20120920_wind_pix00000a_large.jpg
Offshore HHS System Dike offshore 500m 125GWh pumping and generation Buffer storage: Reduction of power line demand 35
Piston position fine tuning using a four sector pressure control low pressure sealing about 1 bar sealing high pressure sealing low pressure sealing low pressure x exchange pump piston x
Maintenance empty system with pumps open supply tunnel audit sealing replace sealing if necessary audit wall surface replace wall surface if necessary
Cost calculation Invest Task Specific price per unit Unit Comment I Tunnel tunnel system 10,000 /m utility tunnel price 1 I D drilling 500 /m depending on depth 2 I AS wire saw cutting 10 /m² price in quarry 3 I R rock removal 20 /m³ depends on deposit cost 4 I F floor separation 1,000 /m² calculated from tunnel cost I T I O steel coverage 200 /m² stainless steel 5 I W waterproof cover 100 /m² geomembrane 6 I lo O ring for sealing 10,000 /m depends on security requests [1] Alber (2000) [4] estimates 2200$/m tunnel with a 15.5 ft disc ($ price year 2000), other estimates are higher. [2] Wijk (1991) [5] calculates minimum cost of 7.6$/m ($ price year 1990), other estimates are higher. [3] Graniteland (2011) reports total net cost 9$/m² http://www.graniteland.com/infos/production/quarry-equipment [4] Calculated, using http://www.rmmlf.org/scitech/lacy/lacy.htm (2011) [5] Calculated from 4000 /t X2CrNiMo17-12-2 price, source: http://stahlbroker.de (2011) [6] Calculated, using http://german.alibaba.com/product-gs/hdpe-waterproof-geomembrane-452569482.html (2011)
Size matters HHS parameter radius r 30 40 50 60 70 80 m height h 30 40 50 60 70 80 m length l 60 80 100 120 140 160 m energy E 26 81 198 411 761 1.297 MWh pump C P 3,6 11,5 28 58 108 184 MW turbine C T 1,4 4,6 11 23 43 73 MW water stream V/t 3 7 14 24 37 56 m³/s cost 13 20 30 40 52 66 Mio. storage price 512 254 149 98 69 51 /kwh energy density e HHS 6 11 18 27 37 48 kwh/m² Unit
Storage capacity Energie im Fels: E r = 2* π *g* ρ R *r4 Energie im Wasser: E W = -3/2*π *g* ρ W * r4 capacity: E HHS = (2*ρ R -3/2*ρ W )* π*g*r4 r density rock: ρ R (2.600kg/m³) density water: ρ W (1.000kg/m³) gravitation: g (9,81N/kg) system radius: r (m) V Heindl 2013
Leistungsdaten Radius [m] 62,5 125 250 500 Energie [GWh] 0,5 8 124 1.980 Wasservolumen [m³] 767.000 6.136.000 49.087.000 392.699.000* Energiedichte [kwh/m³] 0,63 1,26 2,52 5,04 8 Stunden Leistungsentnahme [MW] 60 967** 15.466 247.462 Abhängigkeit vom Radius: Energiedichte im Wasser wächst linear theoretische Leistungsentnahme wächst mit der 4. Potenz r *Entspricht einer Absenkung des Bodensee um einen Meter ** Heindl 2012 Prof. Typisches Dr. Eduard Pumpspeicherkraftwerk Heindl in Deutschland V
Water supply r coast V less water demand as in conventional pumped hydro storage plant saltwater is applicable there is no evaporation long storage intervals low in and outflow no dependence on elevation lake river pond underground
24h power demand of Cities Paris 120GWh 4 /kwh Nürnberg 8GWh 20 /kwh Moderate space requirements Starnberg 0,5 100 /kwh served by HHS systems of this size
Advantages Storage capacity beyond 1000 GWh visible Efficient: 80% well known from pumped hydro power plants Price decay with 1/r² (<2$/kWh visible) small footprint (up to 2 MWh/m²) well known technologies no limited resources no mountain terrain required simple disposal Less water than pumped hydro (~1/4)
Thank You! Visit our scale model in the trade show! Don t miss our website