Vad betyder 4G-utvecklingen för Stadsnäten? Niclas Välme Senior Solution Manager - Mobile Networks Ericsson AB niclas.valme@ericsson.com Ericsson AB 2009 1
LTE Marknadskampanj Att erbjuda 80 megabit/s med 99 procents mobil- och inomhustäckning med "ett mindre antal" extra basstationer är fullständigt orealistiskt. Det skulle behövas 100 000-tals Citat: Jens Zander, Professor I Radiosystemteknik och chef för forskningscentrumet Wireless@KTH. Ericsson AB 2009 2
Agenda Introduktion Vadär4G ellerlte/sae? Operatörernas krav och behov Nya affärsmöjligheter för stadsnät? Ericsson AB 2009 3
LTE driven by Mobile broadband Subscriptions (million) Global Mobile broadband growth 3500 3000 2500 2000 1500 1000 500 ~80% will be of Mobile Broadband enabled by HSPA/LTE Swedish Internet Growth (PTS figures) Mobile broadband Swedish subscribers Jun 07: 184 Jun 08: 604 Jun 09 1176 0 2007 2008 2009 2010 2011 2012 2013 2014 Fixed Mobile One track giving economical of sales Planning window GSM Track (3GPP) GSM WCDMA HSPA Site capacity? tomorrow CDMA Track (3GPP2) TD-SCDMA LTE FDD and TDD CDMA One EVDO Rev A 2001 2005 2008 2010 today time Handle the capacity growth during the planning window, cost effectively Ericsson AB 2009 4
Global LTE Commitments 35+ Operators in over 19 countries Vodafone Source: Press releases and GSA (26 August, 2009) and more to come Up to 14 LTE networks are expected to launch commercial services in 2010 Ericsson AB 2009 5
Agenda Introduktion Vadär4G ellerlte/sae? Operatörernas krav och behov Nya affärsmöjligheter för stadsnät? Ericsson AB 2009 6
Technology Mobile Broadband speed evolution LTE LTE HSPA+ Market impact 2009 2010 ~2014 Peak rate 42 Mbps ~150 Mbps ~1000 Mbps Typical user rate downlink 1-10 Mbps 10-100 Mbps Operator dependent Typical user rate uplink 0.5-4.5 Mbps 5-50 Mbps Operator dependent Excellent user and network experience Ericsson AB 2009 7
Key LTE features OFDM Radio Technology OFDM SC-FDMA Multi-antenna transmission TX TX Spectrum flexibility 1.4 MHz FDD 20 MHz TDD Simplicity IP transport Ericsson AB 2009 8
LTE/SAE Architecture Terminology EPC eutran EPC - Evolved Packet Core SAE - System Architecture Evolution eutran - Evolved UTRAN LTE - Long Term Evolution EPS EPS Evolved Packet System Ericsson AB 2009 9
LTE Architecture All-IP transport No RNC/BSC node equivalent New inter-nodeb connection, X2 No meashed network required between enb Pooled CN nodes enb connected to each node in pool 3G GGSN SGSN SAE/LTE MME SAE-GW Core Iub Iub Core RAN RNC Iur RNC RAN S1 S1 Iub Iub NodeB NodeB enb X2 enb Simplified architecture, Simpler Delay Demands Ericsson AB 2009 10
LTE Deployment Early LTE adopters have showcase networks not the case for most LTE deployments Usually, LTE will co-exist with several technologies GSM, WCDMA, CDMA Fiber and Microwave main media Increasingly important to use a common infrastructure Radio network planning is about balancing: Speed & coverage vs. network load performance vs. utilization GSM HSPA LTE TDM Ethernet Co-existance with 2G/3G technologies important Ericsson AB 2009 11
LTE Downlink Capacity, 20 MHz Cell For 20 MHz cell, DL peak rate=150 Mbps under ideal conditions, using 2x2MIMO UL cell peak rate ~50% of DL cell peak rate Capacity scales linearly with radio bandwidth Mbit/s 350 300 250 200 150 100 50 0 173 326 Cell Peak Rate 2 2 MIMO 4 4 MIMO 34 54 Cell Throughput In L10A release In later release For a single user In a loaded network Ericsson AB 2009 12
Agenda Introduktion Vadär4G ellerlte/sae? Operatörernas krav och behov Nya affärsmöjligheter för stadsnät? Ericsson AB 2009 13
Important considerations for IP RAN IP Aggregation gains Synchronization L2 /L3 Network Architecture Transport Network Characteristics LTE impact GSM BTS WCDMA NodeB Ethernet, TDM LTE NodeB Ericsson AB 2009 14
LTE backhaul No revolution - just evolution of existing infrastructure RBS Site 2G Microwave Mobile Backhaul All-IP, 3..4 CoS classes Switch Site BSC 3G Copper IP/MPLS (metro ethernet) RNC Fibre LTE LTE Access, LRAN Metro, HRAN SGW enodeb Peak rates: 150..300 Mpbs Fibre/microwave to site Typically E-LAN connected LRAN L2 or L3. L2 preferred Router/GW: SON, IPsec - Access/Aggregation NW Edge HRAN Likely L3, IP/MPLS Redundancy SGw CN node Located at Sw Site Ericsson AB 2009 15
LTE Transport dimensioning aspects Dimension for: ΣA2 0.8 Dimension for Average enodeb throughput during Busy Hour = 50 Mbit/s per enb Dimension for enodeb throughput in a loaded network for a 3x1 configuration = 100 Mbit/s per enb S-GW/ PDN GW S-GW/ PDN GW A3 A2 A1 A2 18.9 7.6 12.6 6.3 Gbit/s Gbit/s Gbit/s Gbit/s 1.3 Gbit/s A3 (1) A2 (2) A1 (20) enb (200) Aggregates 2 A2 10 A1 10 RBS X users Transmission examples (2 ) 10GE (2 ) 10GE (2 ) GE FE or GE Dimension for peak rate to 1 cell= 150 Mbit/s enb A1 enb en B enb enb enb enb A1 enb 189 Mbit/s 50% 3 50% 3 enb Figures for no aggregation gains in Red Transport overhead factor used is 1.26 Ericsson AB 2009 16
LTE Transport Requirements Application Related Delay Packet loss LTE Technology Related Delay Delay variation Consequences of latency and packet loss excessive retransmissions lower end-user throughput slower rate increases, lower utilization on LTE RAN Ericsson AB 2009 17
Application Related Delay & Packet Loss: Extract from 3GPP TS 23.203, Table 6.1.7 QCI Resource Type Priority Packet Delay Budget Packet Error Loss Example Services 1 GBR 2 100 ms 10-2 Conversational Voice 2 4 150 ms 10-3 Conversational Video (Live Streaming) 4 3 50 ms 10-3 Real Time Gaming 5 Non-GBR 1 100 ms 10-6 IMS Signalling 7 6 300 ms 10-6 Video (Buffered Streaming) 9 9 TCP-based (e.g.www, e- mail, chat, ftp, p2p file sharing, progressive video, etc) Delay Backhaul part is 10..50ms, depending on delays in other parts e2e Packet Loss: TCP handles packet loss by reducing and increasing send rate as needed Ericsson AB 2009 18
LTE Technology Related S1 User Plane delay between enb and SAE GW 3GPP recommends 10..50ms - flexible X2 backhaul delay of less than 100ms 50ms one way delay between enb-cn, if routing through CN) Radio network synchronization based upon NTP or PTP requires low Delay Variation Gaussian PDV 99 % of packets should be less than 3 ms The backhaul needs to be QoS enabled! The shorter the backhaul delay the better for peak rates Ericsson AB 2009 19
Synchronization Options for LTE LTE FDD (frequency sync) Packet-based NTP 1588v2, without backhaul support GPS LTE TDD (phase sync) GPS 1588v2 with backhaul support Advanced LTE features (CoMP, OTDOA based positioning, ) Phase sync accuracy most likely required => GPS or 1588v2 with backhaul support Sync requirements differ between LTE FDD and LTE TDD Ericsson AB 2009 20
Transport Service Offerings to support LTE Provide MEF services MEF 6.1 Defines the Ethernet Service Types (EPL, EVPL, E-Line, E- LAN, E-Tree, etc). MEF 10.1 Defines the service attributes and parameters required to offer the services defined in MEF 6.1 MEF 22 Mobile Backhaul Implementation Agreement defines a common approach for all Service providers Legacy Mobile Backhaul Migration Traffic separation Ethernet OAM Synchronization Ericsson AB 2009 21
Managed Backhaul for IP RAN A shared opportunity? GSM BTS WCDMA NodeB Ethernet, TDM LTE NodeB Ericsson AB 2009 22
Conclusion LTE is the path forward for meeting the Mobile Broadband challenges LTE requires a technology shift from TDM to All IP with high bandwidth demands. Stadsnäten together with Ericsson has the knowledge, products and relations to make this happen! Ericsson AB 2009 23
Frågor? Ericsson AB 2009 24