LTE-Advanced Carrier Aggregation Optimization

Size: px
Start display at page:

Download "LTE-Advanced Carrier Aggregation Optimization"

Transcription

1 Nokia Networks LTE-Advanced Carrier Aggregation Optimization Nokia Networks white paper LTE-Advanced Carrier Aggregation Optimization

2 Contents Introduction 3 Carrier Aggregation in live networks 4 Multi-band traffic management 5 Coverage benefits 9 FDD and TDD aggregation 10 Carrier aggregation in Heterogeneous Networks 10 Aggregation with supplemental downlink 11 Aggregation with unlicensed frequencies 12 Device power consumption optimization 12 Evolution of Carrier Aggregation 14 Summary 15 Further reading 15 Innovation is happening right now at Nokia Many of the innovations from previous years described in this document are still relevant today and have been developed to support the optimization of mobile broadband networks and services. Looking ahead, Nokia will continue to focus on innovation and we will be updating this document to reflect the latest developments. Page 2

3 Introduction Carrier Aggregation (CA) is the most important technology component in LTE-Advanced. CA was defined in 3GPP Release 10 and commercial network launches followed in Korea in Carrier aggregation has proceeded rapidly in network deployments because of promising performance benefits and because it allows operators to turn their investment in additional LTE carriers into marketable, higher data rates. Carrier aggregation increases peak data rates and practical data rates, improves the downlink coverage and simplifies multi-band traffic management. The evolution of data rates through carrier aggregation is shown in Figure 1. Commercial LTE networks started with Category 3 and 4 devices supporting 100 to 150 Mbps with continuous 20 MHz spectrum. The first version of carrier aggregation, during 2013, enabled 150 Mbps with MHz allocation. The next phase with Category 6 devices has been commercially available since 2014, supporting 300 Mbps with MHz. Category 9 will bring 450 Mbps with 60 MHz during 2015, and the evolution continues, with expected rates of 1 Gbps in the near future. Carrier aggregation also provides competitive data rates on fragmented spectrum. For example, a three component carrier aggregation of MHz allows operators to reach 300 Mbps. This paper discusses the practical performance of carrier aggregation, optimization steps and further evolution Mbps 20 MHz 2x2 MIMO Cat Mbps MHz 2x2 MIMO Cat Mbps MHz 2x2 MIMO Cat Mbps 3CA 2x2 MIMO Cat Mbps 4CA 2x2 MIMO Cat 11/12 1 Gbps+ 100 MHz and/ or 4x4 Fig. 1. Data rate evolution in downlink with carrier aggregation 1 Nokia Solutions and Networks 2014 Page 3

4 Carrier Aggregation in live networks Carrier aggregation performs well in live networks. The explanation is simple: more spectrum is allocated per connection, which results directly in higher peak and practical data rates. Figure 2 illustrates drive test results from a live network with a Cat 4 device and MHz aggregation. The data rate with a single 10 MHz carrier (Primary Pcell or Secondary Scell) is approximately 30 Mbps, while the average data rate with carrier aggregation increases to 60 Mbps. 70 Average throughput ia Solutions and Networks Mbps Pcell Scell CA Fig. 2. Drive test data rate with MHz carrier aggregation A Cat 6 device further increases the data rate. The peak rate measurements are shown in Figure 3. The allocation of MHz gives 225 Mbps, while MHz gives up to 300 Mbps, illustrating Figure 3. the importance of allocating as much spectrum as possible to get the full benefit of the device capabilities. 350 Cat 6 UE peak data rates Mbps MHz MHz Fig. 3. Peak rate measurements with Category 6 device 3 Nokia Solutions and Networks MHz Page 4

5 The drive test data rate with a Cat 6 device in good signal conditions is shown in Figure 4. The results indicate that it is possible to achieve data rates of Mbps in the field if the signal and interference conditions are favorable MHz in the field Figure Mbps Fig. 4. Drive test data rate with Cat 6 device in good signal conditions Multi-band traffic management The majority of operators started LTE networks on a single frequency band at a given area, for example, 1800 MHz or 700 MHz. Most operators have meanwhile added a second and even a third LTE frequency because of capacity requirements and because of carrier aggregation data rates. The evolution continues, leading to ever more frequencies being used for LTE, in turn making the traffic management between the R frequencies 18 R more 104 R challenging. 168 The general target is to balance the loading B between 255 the frequencies and to make best use of the low band to provide better coverage. Carrier aggregation will be the main solution for simplifying multiband traffic management. Without carrier aggregation, traffic management must rely on handovers, which are relatively slow, taking several seconds when taking into account the measurements and procedure. Traffic management also requires proper configuration of idle mode parameters. The process becomes simpler when carrier aggregation is activated, as load balancing happens as part of the packet scheduler, within a few milliseconds. Figure 5 illustrates the typical frequency bands that are and will be available for European mobile operators in the near future. The frequencies between 700 and 2600 MHz are preferably aggregated together to gain the benefit of fast traffic management. Even the frequencies at 3.5 GHz can be aggregated together if the site grid is dense enough to provide for sufficient coverage on 3.5 GHz. 4 Nokia Solutions and Networks 2014 Page 5

6 Figure 6 illustrates the benefit of fast load balancing with carrier aggregation. The dotted line shows the user data rate as a function of system loading with 20 MHz bandwidth. The curve assumes that load balancing is done at the beginning of the packet calls. The continuous line shows the user data rates when carrier aggregation of MHz is activated and all devices support the feature. The user data rate is increased considerably, in the order of 80%, even at high loading. Alternatively, the same average user data rate can be achieved while having higher offered load and more users. In this example even 40% more loading can be supported while providing the same user data rates GHz unlicensed band in small cells GHz in small cells or macro cells with aggregation MHz aggregated into single pool Fig. 5. Aggregation of all low bands in macro cells 5 Nokia Solutions and Networks 2014 UE throughput (Mbps) % higher user data rate +40% more users with the same data rate Offered load (Mbps) Carrier aggregation Load balancing, no CA Fig. 6. Gain from fast load balancing with carrier aggregation 6 Nokia Solutions and Networks 2014 Page 6

7 LTE networks will have a mixture of new CA devices and legacy non-ca devices and so fair resource sharing between these devices needs to be considered. We would like to provide enough resources for non- CA devices particularly on the low band, which has better coverage and typically a smaller bandwidth. Nokia Smart Scheduler allows the operator to allocate more resources for non-ca devices cell-by-cell because CA devices can access resources from two cells. An example case is shown in Figure 7, where a non-ca device is allocated double resources compared to a CA device on the Primary cell (Pcell), while the CA device gets resources also on the Secondary cell (Scell). The result is that the end user data rate is distributed more fairly between the different devices. Resource sharing in the advanced scheduler can be configured by the operator Mbps CA UE Non-CA UE 0 Pcell SCell Sum Fig. 7. Advanced resource allocation between CA and non-ca devices 7 Nokia Solutions and Networks 2014 Page 7

8 Figure 8. The Scell s coverage area may be different to that of the Pcell in practical networks if different antennas or antenna locations are used. Such a network configuration requires flexible configuration of Scell. An example case is illustrated in Figure 8, with multiple Scells in the coverage area of a single Pcell. When the device is moving, the Scell is reconfigured dynamically. First, the carrier aggregation is activated according to the data volume in (1). The Scell is reconfigured due to mobility in (2) and again in (3). The carrier aggregation is deactivated due to inactivity in (4). User movement Secondary carrier Primary carrier CA activation based on data volume Channel quality-based reconfiguration SCell swap Deactivation due to inactivity Fig. 8. Flexible configuration of secondary cell 8 Nokia Solutions and Networks 2014 Page 8

9 Coverage benefits LTE coverage in the macro cells is uplink limited because of the lower terminal output power (200 mw) compared to the typical base station power of several tens of watts. The minimum threshold for LTE is typically Reference Signal Received Power (RSRP) of -120 dbm before handing over the connection to the 3G network. The minimum threshold is limited by the uplink coverage, while the coverage could be even wider if we consider only the downlink direction. Carrier aggregation can enhance the coverage by using the low band for the uplink connection while the downlink can still be received by the device, both on the low band and on the high band. The high band connection could not be used without carrier aggregation. The outcome is that carrier aggregation can enhance the downlink coverage of the high band. Field measurements indicate that the high band Scell can contribute to the throughput at lower signal levels down to -130 dbm. Those devices that are closer to the base station can also use LTE1800 as the primary cell and uplink transmission. Figure dbm -130 dbm LTE 1800 Uplink Downlink LTE 800 Uplink Downlink Fig. 9. Coverage benefit of carrier aggregation when using low band Pcell 9 Nokia Solutions and Networks 2014 Page 9

10 FDD and TDD aggregation The first phase of carrier aggregation combines two FDD frequencies or two TDD frequencies. The next phase allows aggregation of the FDD and TDD frequencies together. 3GPP has defined FDD + TDD aggregation in Release 12 which allows either FDD or TDD as the Primary cell. The first practical implementations have FDD as Pcell and TDD as Scell and are expected during FDD and TDD aggregation can provide an attractive combination of low band FDD for good coverage and high band TDD with more spectrum for higher data rates. Carrier aggregation in Heterogeneous Networks Carrier aggregation also makes small cell deployment more attractive. First, carrier aggregation is already available in small cells supporting more than 200 Mbps. Furthermore, carrier aggregation can be obtained between the macro cell and the low power RF head that is connected to the macro cell baseband. Such a configuration is supported by 3GPP Release 10 specifications which assume that Primary and Secondary cells are transmitted from the same baseband unit. 3GPP Release 12 enhances carrier aggregation where the two cells are transmitted from two different base stations. This feature is called intersite carrier aggregation and relies on dual connectivity where the device has two simultaneous radio connections to two base stations. The main use is heterogeneous networks where the device can maintain parallel connections to the large macro cell on some of the low bands and to the small cell at higher band. The macro cell can provide reliable mobility Figure 10. while the small cell can provide higher data rates and more capacity. The connection between macro cell and small cell is a X2 interface, which can also use wireless backhaul. Release 10 carrier aggregation in macro cell Release 10 inter-site carrier aggregation between macro and low power RF head Release 12 inter-site carrier aggregation between macro and small cell Macro cell Macro cell Fiber Low power RRH Macro cell X2 Small cell Low band Low band 3500 Low band 3500 Fig. 10. Inter-site carrier aggregation between macro and small cell Page Nokia Solutions and Networks 2014

11 Aggregation with supplemental downlink Carrier aggregation allows the benefit of downlink only frequencies, called supplemental downlink. 3GPP has defined two supplemental downlink bands, Band 29 and 32. These bands can be used to enhance downlink Figure 11. data rates and capacity with carrier aggregation Figure functionality. 12. The concept is illustrated in Figure 11. The traffic profile in mobile broadband networks is quite asymmetric, with downlink traffic typically ten times higher than uplink traffic, which makes the downlink only frequencies attractive for matching the traffic profiles. Supplemental downlink Downlink + uplink Unlicensed 5 GHz band Licensed downlink + uplink Downlink aggregation Downlink aggregation Fig. 11. Carrier aggregation with supplemental downlink 11 Nokia Solutions and Networks 2014 Page 11

12 Aggregation with unlicensed frequencies LTE can also use the unlicensed 5 GHz band to boost network capacity and data rates. This is under specification in 3GPP Release 13 and is called LTE for Unlicensed (LTE-U) or Licensed Assisted Access (LAA). The solution uses carrier aggregation between the operator s licensed frequencies and the unlicensed band. The concept is an extension of the supplemental downlink solution. The licensed band can provide a reliable connection both in uplink and in downlink while the unlicensed band increases user data rates. The downlink data stream can be split between these two bands based on the Channel Quality Indicator (CQI) reports from the devices and based on the loading on the bands. For the first time, there is a single technology available that can use both licensed Figure and unlicensed 12. bands, and undertake fast load balancing between the bands. The studies show that LTE-U with all the advanced LTE radio features can double spectral efficiency and double cell range compared to Wi-Fi technology on the same band. LTE-U is designed for smooth co-existence with Wi-Fi on the same spectrum. For more information, see the Nokia white paper on LTE-U. Unlicensed 5 GHz band Licensed downlink + uplink Downlink aggregation Fig. 12. Aggregation of licensed and unlicensed frequencies Device power consumption optimization Carrier aggregation affects smartphone battery life because the device has to monitor two frequencies, activate additional RF hardware and increase baseband activity. For large data transfers such as a file download, the power consumption with carrier aggregation increases during the time a file is downloaded. However, the higher throughput makes the download shorter, allowing the device to go back to RRC Idle state sooner, increasing the energy efficiency and saving overall battery life. Page 12

13 This can be seen in Figure 13 and Figure 14. The carrier aggregation case provides the lowest average power consumption when calculated over the total period of 185 seconds including the active download and idle time. Carrier aggregation increases power consumption if it is configured or activated even if no data is transferred. The higher power consumption is explained by the device monitoring two frequencies. Therefore, for short data transfers, where the RRC connection will spend most of the time waiting for the inactivity timer to expire, the power consumption may increase up to 80% when 10 MHz + 10 MHz carrier aggregation is configured, compared with a 10 MHz single carrier. This result indicates that carrier aggregation should preferably be configured only when the transferred data volume is large but should not be configured for small background data transmissions. Figure 13. ma ure Active transmission Average over 185s Fig. 13. Measured device power consumption with carrier aggregation 2 Nokia Solutions and Networks 2014 Change information classification in footer> Power consumption 10 MHz no CA 20 MHz no CA MHz CA Power (mw) With CA Without CA Large file transfer Time (s) Fig. 14. Power consumption for a large file transfer Nokia Solutions and Networks 2014 Page 13 d background colors:

14 Evolution of Carrier Aggregation Carrier aggregation is evolving further. 3GPP Release 10 supported a maximum of five component carriers while the signaling capability was extended beyond five carriers in Release 12. Many operators have even more than 100 MHz of spectrum available for LTE deployment. At the same time, device baseband and RF processing capability continues to improve, making it feasible to support even higher data rates in the devices. Nokia demonstrated an impressive data rate of 4 Gbps by aggregating ten carriers, combined with Multiple Input Multiple Output (MIMO) technology. Both FDD and TDD frequencies were aggregated. The demonstration was completed with commercial Flexi Multiradio 10 base station hardware. So far, carrier aggregation has focused on the downlink direction. The uplink aggregation with two component carriers is expected to start soon in order to provide a better match with the rapidly increasing downlink data rates. Page 14

15 Summary Carrier aggregation is the most important feature in LTE-Advanced because it improves the practical data rates, enhances the network capacity, simplifies the traffic management and extends the coverage area. Carrier aggregation started commercially in The peak data rate has increased to 300 Mbps during 2014 and will hit 450 Mbps during Carrier aggregation has turned out to be able to provide a very robust performance in live networks. Carrier aggregation can combine both FDD and TDD frequencies together as well as licensed and unlicensed frequencies. Nokia Smart Scheduler can take full benefit of carrier aggregation and provide fair treatment between different device capabilities while minimizing device power consumption. Further reading LTE-Advanced white paper LTE Release 12 white paper Smart Scheduler white paper LTE-U white paper 4 Gbps Carrier Aggregation press release Small Cell Carrier Aggregation press release FDD-TDD Carrier Aggregation press release Three-band Carrier Aggregation press release d LTE-Advanced Carrier Aggregation video Page 15

16 Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners. Nokia Nokia Solutions and Networks Oy P.O. Box 1 FI Finland Visiting address: Karaportti 3, ESPOO, Finland Switchboard Product code C ES EN Nokia Solutions and Networks 2015

What is going on in Mobile Broadband Networks?

What is going on in Mobile Broadband Networks? Nokia Networks What is going on in Mobile Broadband Networks? Smartphone Traffic Analysis and Solutions White Paper Nokia Networks white paper What is going on in Mobile Broadband Networks? Contents Executive

More information

NSN White paper February 2014. Nokia Solutions and Networks Smart Scheduler

NSN White paper February 2014. Nokia Solutions and Networks Smart Scheduler NSN White paper February 2014 Nokia Solutions and Networks Smart Scheduler CONTENTS 1. Introduction 3 2. Smart Scheduler Features and Benefits 4 3. Smart Scheduler wit Explicit Multi-Cell Coordination

More information

White paper. Mobile broadband with HSPA and LTE capacity and cost aspects

White paper. Mobile broadband with HSPA and LTE capacity and cost aspects White paper Mobile broadband with HSPA and LTE capacity and cost aspects Contents 3 Radio capacity of mobile broadband 7 The cost of mobile broadband capacity 10 Summary 11 Abbreviations The latest generation

More information

Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam

Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam Cooperative Techniques in LTE- Advanced Networks Md Shamsul Alam Person-to-person communications Rich voice Video telephony, video conferencing SMS/MMS Content delivery Mobile TV High quality video streaming

More information

Efficient resource utilization improves the customer experience

Efficient resource utilization improves the customer experience White paper Efficient resource utilization improves the customer experience Multiflow, aggregation and multi band load balancing for Long Term HSPA Evolution Executive summary Contents 2. Executive summary

More information

LTE in Unlicensed Spectrum: European Regulation and Co-existence Considerations

LTE in Unlicensed Spectrum: European Regulation and Co-existence Considerations 3GPP workshop on LTE in unlicensed spectrum Sophia Antipolis, France, June 13, 2014 RWS-140002 LTE in Unlicensed Spectrum: European Regulation and Co-existence Considerations Sari Nielsen & Antti Toskala

More information

Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets

Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets White paper Table of contents 1. Overview... 3 2. 1800 MHz spectrum... 3 3. Traffic Migration... 5 4. Deploying LTE-GSM

More information

Nokia Networks. Voice over LTE (VoLTE) Optimization

Nokia Networks. Voice over LTE (VoLTE) Optimization Nokia Networks Voice over LTE (VoLTE) Optimization Contents 1. Introduction 3 2. VoIP Client Options 5 3. Radio Network Optimization 6 4. Voice Quality Optimization 11 5. Handset Power Consumption Optimization

More information

HSPA, LTE and beyond. HSPA going strong. PRESS INFORMATION February 11, 2011

HSPA, LTE and beyond. HSPA going strong. PRESS INFORMATION February 11, 2011 HSPA, LTE and beyond The online multimedia world made possible by mobile broadband has changed people s perceptions of data speeds and network service quality. Regardless of where they are, consumers no

More information

The future of mobile networking. David Kessens <david.kessens@nsn.com>

The future of mobile networking. David Kessens <david.kessens@nsn.com> The future of mobile networking David Kessens Introduction Current technologies Some real world measurements LTE New wireless technologies Conclusion 2 The future of mobile networking

More information

HSPA+ and LTE Test Challenges for Multiformat UE Developers

HSPA+ and LTE Test Challenges for Multiformat UE Developers HSPA+ and LTE Test Challenges for Multiformat UE Developers Presented by: Jodi Zellmer, Agilent Technologies Agenda Introduction FDD Technology Evolution Technology Overview Market Overview The Future

More information

Cloud RAN. ericsson White paper Uen 284 23-3271 September 2015

Cloud RAN. ericsson White paper Uen 284 23-3271 September 2015 ericsson White paper Uen 284 23-3271 September 2015 Cloud RAN the benefits of virtualization, centralization and coordination Mobile networks are evolving quickly in terms of coverage, capacity and new

More information

Evolution in Mobile Radio Networks

Evolution in Mobile Radio Networks Evolution in Mobile Radio Networks Multiple Antenna Systems & Flexible Networks InfoWare 2013, July 24, 2013 1 Nokia Siemens Networks 2013 The thirst for mobile data will continue to grow exponentially

More information

LTE License Assisted Access

LTE License Assisted Access LTE License Assisted Access Mobility Demand 41% mobile users highly satisfied with indoor mobility users will pay more for better service Willingness to pay: Indoor vs. Outdoor 8x Growth in Smartphone

More information

Delivering 4x4 MIMO for LTE Mobile Devices. March 2014. SkyCross Dual imat 4x4 MIMO Technology for LTE. Introduction

Delivering 4x4 MIMO for LTE Mobile Devices. March 2014. SkyCross Dual imat 4x4 MIMO Technology for LTE. Introduction Delivering 4x4 MIMO for LTE Mobile Devices SkyCross Dual imat 4x4 MIMO Technology for LTE March 2014 Introduction With the rise of low-cost smartphones on the horizon, creating differentiation by leveraging

More information

LTE Mobility Enhancements

LTE Mobility Enhancements Qualcomm Incorporated February 2010 Table of Contents [1] Introduction... 1 [2] LTE Release 8 Handover Procedures... 2 2.1 Backward Handover... 2 2.2 RLF Handover... 3 2.3 NAS Recovery... 5 [3] LTE Forward

More information

LTE Evolution for Cellular IoT Ericsson & NSN

LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Overview and introduction White Paper on M2M is geared towards low cost M2M applications Utility (electricity/gas/water) metering

More information

2020: Beyond 4G Radio Evolution for the Gigabit Experience. White paper

2020: Beyond 4G Radio Evolution for the Gigabit Experience. White paper 2020: Beyond 4G Radio Evolution for the Gigabit Experience White paper Executive summary Contents 3 Mobile networks face a decade of change 4 Continued global effort will be vital 5 State of the art LTE-Advanced

More information

Planning for 802.11ac Adoption with Ekahau Site Survey 6.0

Planning for 802.11ac Adoption with Ekahau Site Survey 6.0 Planning for 802.11ac Adoption with Ekahau Site Survey 6.0 1 P a g e w w w. e k a h a u. c o m / e s s Introduction to 802.11ac The emerging next generation Wi-Fi standard IEEE 802.11ac aims to break the

More information

Bringing Mobile Broadband to Rural Areas. Ulrich Rehfuess Head of Spectrum Policy and Regulation Nokia Siemens Networks

Bringing Mobile Broadband to Rural Areas. Ulrich Rehfuess Head of Spectrum Policy and Regulation Nokia Siemens Networks Bringing Mobile Broadband to Rural Areas Ulrich Rehfuess Head of Spectrum Policy and Regulation Nokia Siemens Networks Agenda Drivers in Mobile Broadband Why LTE? Market Status, Networks and Devices Implementation

More information

LTE BACKHAUL REQUIREMENTS: A REALITY CHECK

LTE BACKHAUL REQUIREMENTS: A REALITY CHECK By: Peter Croy, Sr. Network Architect, Aviat Networks INTRODUCTION LTE mobile broadband technology is now being launched across the world with more than 140 service providers committed to implement it

More information

3GPP & unlicensed spectrum

3GPP & unlicensed spectrum IEEE 802 Interim Session Atlanta, USA Jan 11-16, 2015 doc.: IEEE 802.19-15/0008r0 3GPP & unlicensed spectrum Dino Flore Chairman of 3GPP TSG-RAN (Qualcomm Technologies Inc.) 3GPP 2013 3GPP & unlicensed

More information

Dimensioning, configuration and deployment of Radio Access Networks. part 5: HSPA and LTE HSDPA. Shared Channel Transmission

Dimensioning, configuration and deployment of Radio Access Networks. part 5: HSPA and LTE HSDPA. Shared Channel Transmission HSDPA Dimensioning, configuration and deployment of Radio Access Networks. part 5: HSPA and LTE Enhanced Support for Downlink Packet Data Higher Capacity Higher Peak data rates Lower round trip delay Part

More information

WiMAX and the IEEE 802.16m Air Interface Standard - April 2010

WiMAX and the IEEE 802.16m Air Interface Standard - April 2010 WiMAX and the IEEE 802.16m Air Interface Standard - April 2010 Introduction The IEEE 802.16e-2005 amendment to the IEEE Std 802.16-2004 Air Interface Standard which added Scalable-Orthogonal Frequency

More information

Mobile broadband for all

Mobile broadband for all ericsson White paper Uen 284 23-3195 Rev B March 2015 Mobile broadband for all optimizing radio technologies As operators roll out LTE 4G networks, WCDMA/HSPA 3G technology is rapidly shifting from the

More information

App coverage. ericsson White paper Uen 284 23-3212 Rev B August 2015

App coverage. ericsson White paper Uen 284 23-3212 Rev B August 2015 ericsson White paper Uen 284 23-3212 Rev B August 2015 App coverage effectively relating network performance to user experience Mobile broadband networks, smart devices and apps bring significant benefits

More information

Business aware traffic steering

Business aware traffic steering Nokia Networks Business aware traffic steering Nokia Networks white paper Business aware traffic steering Contents 1. Executive Summary 3 2. Static load or QoS-based traffic steering alone is no longer

More information

Simplified network architecture delivers superior mobile broadband

Simplified network architecture delivers superior mobile broadband White paper Simplified network architecture delivers superior mobile broadband Profitable wireless broadband with Internet-HSPA Contents 3 Executive Summary 4 Mobile data traffic is growing strongly 5

More information

Wireless Technologies for the 450 MHz band

Wireless Technologies for the 450 MHz band Wireless Technologies for the 450 MHz band By CDG 450 Connectivity Special Interest Group (450 SIG) September 2013 1. Introduction Fast uptake of Machine- to Machine (M2M) applications and an installed

More information

MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction

MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction Wireless communications have evolved rapidly since the emergence of 2G networks. 4G technology (also called LTE), enables to answer the new data market

More information

LTE-Advanced in White Space A Complementary Technology

LTE-Advanced in White Space A Complementary Technology White Paper December 2011 LTE-Advanced in White Space A Complementary Technology By: Purnima Surampudi, Lead Engineer and Sony Mohanty, Engineer Overview Long Term Evolution (LTE), the leading candidate

More information

LTE-Advanced UE Capabilities - 450 Mbps and Beyond!

LTE-Advanced UE Capabilities - 450 Mbps and Beyond! LTE-Advanced UE Capabilities - 450 Mbps and Beyond! Eiko Seidel, Chief Technical Officer NoMoR Research GmbH, Munich, Germany March, 2014 Summary LTE networks get more mature and new terminals of different

More information

Technical and economical assessment of selected LTE-A schemes.

Technical and economical assessment of selected LTE-A schemes. Technical and economical assessment of selected LTE-A schemes. Heinz Droste,, Darmstadt Project Field Intelligent Wireless Technologies & Networks 1 Mobile Networks enabler for connected life & work. Textbox

More information

FutureWorks 5G use cases and requirements

FutureWorks 5G use cases and requirements Nokia Networks FutureWorks 5G use cases and requirements White paper - 5G Use Cases and Requirements CONTENTS 1. What 5G will be and why it will come 3 2. Use cases 6 2.1 Mobile broadband 6 2.2 Automotive

More information

Nokia Networks. FutureWorks. LTE-M Optimizing LTE for the Internet of Things. White Paper. Nokia Networks white paper

Nokia Networks. FutureWorks. LTE-M Optimizing LTE for the Internet of Things. White Paper. Nokia Networks white paper Nokia Networks FutureWorks LTE-M Optimizing LTE for the Internet of Things White Paper Nokia Networks white paper LTE-M Optimizing LTE for the Internet of Things Contents Executive Summary 3 IoT Market

More information

Telefonica s Journey to 5G_ Enrique Blanco - Global CTO You choose. We connect_

Telefonica s Journey to 5G_ Enrique Blanco - Global CTO You choose. We connect_ Telefonica s Journey to 5G_ Enrique Blanco - Global CTO You choose. We connect_ We want our Clients to enjoy all the Benefits of the Digital World New Services Demand Higher Speeds and Quality Assurance

More information

Wireless Broadband Access

Wireless Broadband Access Wireless Broadband Access (Brought to you by RMRoberts.com) Mobile wireless broadband is a term used to describe wireless connections based on mobile phone technology. Broadband is an electronics term

More information

www.ovum.com LTE450 Julian Bright, Senior Analyst Julian.bright@ovum.com LTE450 Global Seminar 2014 Copyright Ovum 2014. All rights reserved.

www.ovum.com LTE450 Julian Bright, Senior Analyst Julian.bright@ovum.com LTE450 Global Seminar 2014 Copyright Ovum 2014. All rights reserved. www.ovum.com LTE450 Julian Bright, Senior Analyst Julian.bright@ovum.com LTE450 Global Seminar 2014 We are integrating 2 complementary ITM businesses Telecoms & IT Research Telecoms & Media Research 60+

More information

LTE, WLAN, BLUETOOTHB

LTE, WLAN, BLUETOOTHB LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed

More information

FPGAs in Next Generation Wireless Networks

FPGAs in Next Generation Wireless Networks FPGAs in Next Generation Wireless Networks March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 FPGAs in Next Generation

More information

The Evolution of Wireless Networks for the Internet of Things

The Evolution of Wireless Networks for the Internet of Things The Evolution of Wireless Networks for the Internet of Things NSF Wireless Cities Workshop Presenter: Phil Fleming Mobile Networks Senior Technology Advisor Nokia Networks Arlington Hts., IL 1 Nokia Networks

More information

SURVEY OF LTE AND LTE ADVANCED SYSTEM

SURVEY OF LTE AND LTE ADVANCED SYSTEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 5, May 2014, 1-6 Impact Journals SURVEY OF LTE AND LTE ADVANCED

More information

SmartDiagnostics Application Note Wireless Interference

SmartDiagnostics Application Note Wireless Interference SmartDiagnostics Application Note Wireless Interference Publication Date: May 27, 2015 KCF Technologies, Inc. Background The SmartDiagnostics wireless network is an easy to install, end-to-end machine

More information

AirHarmony 4000. Outdoor LTE-Advanced Mini-Macro Base Station

AirHarmony 4000. Outdoor LTE-Advanced Mini-Macro Base Station AirHarmony 4000 Outdoor LTE-Advanced Mini-Macro Base Station Multi-Function, Compact and Versatile Redefining the economics of LTE-Advanced Heterogeneous Deployment a leading LTE Small and Compact RAN

More information

How To Steer A Cell Phone On A Network On A Cell Network On An Lteo Cell Phone (Lteo) On A 4G Network On Ltea (Cell Phone) On An Ipad Or Ipad (Cellphone)

How To Steer A Cell Phone On A Network On A Cell Network On An Lteo Cell Phone (Lteo) On A 4G Network On Ltea (Cell Phone) On An Ipad Or Ipad (Cellphone) Nokia Siemens Networks Load balancing mobile broadband traffic in LTE HetNets The application of traffic steering methods 2/24 Table of contents 1. Executive summary... 3 2. Introduction... 4 2.1 Traffic

More information

Carrier Aggregation: Fundamentals and Deployments

Carrier Aggregation: Fundamentals and Deployments Carrier Aggregation: Fundamentals and Deployments Presented by: Manuel Blanco Agilent Technologies Agenda LTE-Advanced Carrier Aggregation Design and test challenges 2 Industry background 263 LTE networks

More information

Interference in LTE Small Cells:

Interference in LTE Small Cells: Interference in LTE Small Cells: Status, Solutions, Perspectives. Forum on small cells, 2012, December. IEEE Globecom 2012 Presenter: Dr Guillaume de la Roche Mindspeed France 1 Mindspeed: Short history

More information

A Comparison of LTE Advanced HetNets and Wi-Fi

A Comparison of LTE Advanced HetNets and Wi-Fi Qualcomm Incorporated October 2011 QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks

More information

Evolution of the Air Interface From 2G Through 4G and Beyond

Evolution of the Air Interface From 2G Through 4G and Beyond Evolution of the Air Interface From 2G Through 4G and Beyond Presentation to IEEE Ottawa Section / Alliance of IEEE Consultants Network (AICN) - 2nd May 2012 Frank Rayal BLiNQ Networks/ Telesystem Innovations

More information

Deployment Trends That Impact Your Business

Deployment Trends That Impact Your Business DAS and Small Cell Solutions Deployment Trends That Impact Your Business HetNet Forum The HetNet Forum, formerly The DAS Forum, is dedicated to the advancement of heterogeneous networks. HetNets provide

More information

3G smartphones. ericsson White paper Uen 284 23-3250 February 2015

3G smartphones. ericsson White paper Uen 284 23-3250 February 2015 ericsson White paper Uen 284 23-3250 February 2015 3G smartphones optimizing user experience and network efficiency Rapid global smartphone uptake is creating new mobile data traffic patterns. There is

More information

Solution for cell edge performance improvement and dynamic load balancing. Qualcomm Technologies, Inc.

Solution for cell edge performance improvement and dynamic load balancing. Qualcomm Technologies, Inc. HSPA+ Multiflow Solution for cell edge performance improvement and dynamic load balancing Feburary 1, 2014 Qualcomm Technologies, Inc. Not to be used, copied, reproduced, or modified in whole or in part,

More information

Air4Gs. Small Package, Big Performance. Extremely compact, cost-optimized wireless base station solution

Air4Gs. Small Package, Big Performance. Extremely compact, cost-optimized wireless base station solution Air4Gs Small Package, Big Performance Extremely compact, cost-optimized wireless base station solution Air4Gs All-in-one, all-outdoor, compact, cost-optimized solution. High Performance Micro Base Station

More information

Mobile broadband. Trends and future evolution. LUIS MUCHACHO MBB Customer Solutions

Mobile broadband. Trends and future evolution. LUIS MUCHACHO MBB Customer Solutions Mobile broadband Trends and future evolution LUIS MUCHACHO MBB Customer Solutions Mobile Broadband - Trends and Future Evolution Commercial in confidence 2014-05-29 Page 1 Working with customers in >180

More information

LTE Performance and Analysis using Atoll Simulation

LTE Performance and Analysis using Atoll Simulation IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 6 Ver. III (Nov Dec. 2014), PP 68-72 LTE Performance and Analysis using Atoll Simulation

More information

Smart Mobility Management for D2D Communications in 5G Networks

Smart Mobility Management for D2D Communications in 5G Networks Smart Mobility Management for D2D Communications in 5G Networks Osman N. C. Yilmaz, Zexian Li, Kimmo Valkealahti, Mikko A. Uusitalo, Martti Moisio, Petteri Lundén, Carl Wijting Nokia Research Center Nokia

More information

RADWIN 5000 HPMP HIGH CAPACITY POINT-TO-MULTIPOINT. RADWIN 5000 HPMP product brochure RIDE THE RADWIN 5000 HPMP WIRELESS HIGHWAY

RADWIN 5000 HPMP HIGH CAPACITY POINT-TO-MULTIPOINT. RADWIN 5000 HPMP product brochure RIDE THE RADWIN 5000 HPMP WIRELESS HIGHWAY RADWIN 5000 HPMP product brochure RADWIN 5000 HPMP HIGH CAPACITY POINT-TO-MULTIPOINT RIDE THE RADWIN 5000 HPMP WIRELESS HIGHWAY The RADWIN 5000 high-capacity Point-to-Multipoint (HPMP) solution delivers

More information

Rethinking energy performance. Increase App Coverage, lower energy

Rethinking energy performance. Increase App Coverage, lower energy Rethinking energy performance Increase App Coverage, lower energy February 2015 RETHINKING ENERGY PERFORMANCE Technology is developing faster than ever, and with demands pulling at operators from all directions,

More information

Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training

Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training Customer Training Catalog Training Programs Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training HUAWEI Learning Service 2015 COMMERCIAL IN CONFIDENCE 1 Customer Training Catalog

More information

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY (Study Paper by FLA Division) Ram Krishna Dy. Director General (FLA) TEC New Delhi, DoT, Govt. of India. E-mail: ddgfla.tec@gov.in Mrs.

More information

The cost and performance benefits of 80 GHz links compared to short-haul 18-38 GHz licensed frequency band products

The cost and performance benefits of 80 GHz links compared to short-haul 18-38 GHz licensed frequency band products The cost and performance benefits of 80 GHz links compared to short-haul 18-38 GHz licensed frequency band products Page 1 of 9 Introduction As service providers and private network operators seek cost

More information

IEEE802.11ac: The Next Evolution of Wi-Fi TM Standards

IEEE802.11ac: The Next Evolution of Wi-Fi TM Standards QUALCOMM, Incorporated May 2012 QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other Countries. Other product and brand names may be trademarks

More information

FutureWorks optimising spectrum utilisation towards 2020

FutureWorks optimising spectrum utilisation towards 2020 Nokia Networks FutureWorks optimising spectrum utilisation towards 2020 White Paper - Optimising Spectrum Utilisation Towards 2020 CONTENTS Executive Summary 3 Introduction 6 Exclusive access remains top

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

THE IMPORTANCE OF LEADING-EDGE MODEM TECHNOLOGY

THE IMPORTANCE OF LEADING-EDGE MODEM TECHNOLOGY THE IMPORTANCE OF LEADING-EDGE MODEM TECHNOLOGY EXECUTIVE SUMMARY As power consumption of smartphone processors and displays continues to decrease, modems become a focal point of the power consumption

More information

Comparing WiMAX and HSPA+ White Paper

Comparing WiMAX and HSPA+ White Paper Comparing WiMAX and HSPA+ White Paper Introduction HSPA+ or HSPA Evolved is the next step in the 3GPP evolution. With 3GPP Rel-7 and Rel-8, several new features are added to this 3G WCDMA technology,

More information

LTE and Network Evolution

LTE and Network Evolution ITU-T Workshop on Bridging the Standardization Gap and Interactive Training Session (Nadi, Fiji, 4 6 July 2011 ) LTE and Network Evolution JO, Sungho Deputy Senior Manager, SKTelecom Nadi, Fiji, 4 6 July

More information

Security Executive Summary. Securing LTE Radio Access Networks Effectively

Security Executive Summary. Securing LTE Radio Access Networks Effectively Security Executive Summary Securing LTE Radio Access Networks Effectively LTE networks require a dedicated security solution As an all-ip technology, LTE brings new capabilities to improve the customer

More information

World LTE Trends LTE INDONESIA: TECHNOLOGY, REGULATION, ECOSYSTEM & APPLICATION MASTEL Event, July 16 th Guillaume Mascot

World LTE Trends LTE INDONESIA: TECHNOLOGY, REGULATION, ECOSYSTEM & APPLICATION MASTEL Event, July 16 th Guillaume Mascot World LTE Trends LTE INDONESIA: TECHNOLOGY, REGULATION, ECOSYSTEM & APPLICATION MASTEL Event, July 16 th Guillaume Mascot 1 AGENDA 1 Worldwide and regional Trends 2 enodeb Spectrum & & eutran Eco-system

More information

Introduction to Clean-Slate Cellular IoT radio access solution. Robert Young (Neul) David Zhang (Huawei)

Introduction to Clean-Slate Cellular IoT radio access solution. Robert Young (Neul) David Zhang (Huawei) Introduction to Clean-Slate Cellular IoT radio access solution Robert Young (Neul) David Zhang (Huawei) Page 11 Introduction and motivation There is a huge opportunity for Mobile Network Operators to exploit

More information

3GPP Wireless Standard

3GPP Wireless Standard 3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation

More information

CDMA Network Planning

CDMA Network Planning CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications

More information

Data Transfer Rate Comparison

Data Transfer Rate Comparison LTE Broadband and Public Safety David Fein, Project Manager November 2011 Executive Overview Long Term Evolution (LTE) is a relatively new standard for wireless communications, adopted by commercial and

More information

Fixed, nomadic, portable and mobile applications for 802.16-2004 and 802.16e WiMAX networks

Fixed, nomadic, portable and mobile applications for 802.16-2004 and 802.16e WiMAX networks Fixed, nomadic, portable and mobile applications for 802.16-2004 and 802.16e WiMAX networks November 2005 Prepared by Senza Fili Consulting on behalf of the WIMAX Forum Executive Summary The WiMAX Forum

More information

Inter-Cell Interference Coordination (ICIC) Technology

Inter-Cell Interference Coordination (ICIC) Technology Inter-Cell Interference Coordination (ICIC) Technology Dai Kimura Hiroyuki Seki Long Term Evolution (LTE) is a promising standard for next-generation cellular systems targeted to have a peak downlink bit

More information

Proposal for Candidate Radio Interface Technologies for IMT-Advanced Based on LTE Release 10 and Beyond (LTE-Advanced)

Proposal for Candidate Radio Interface Technologies for IMT-Advanced Based on LTE Release 10 and Beyond (LTE-Advanced) 3GPP IMT-Advanced Evaluation Workshop Beijing, China, 17-18 December, 2009 Proposal for Candidate Radio Interface Technologies for IMT-Advanced Based on LTE Release 10 and Beyond (LTE-Advanced) Takehiro

More information

Nokia Networks. FutureWorks looking ahead to 5G. Building a virtual zero latency gigabit experience. White paper - Looking Ahead to 5G

Nokia Networks. FutureWorks looking ahead to 5G. Building a virtual zero latency gigabit experience. White paper - Looking Ahead to 5G Nokia Networks FutureWorks looking ahead to 5G Building a virtual zero latency gigabit experience White paper - Looking Ahead to 5G CONTENTS 1. Three key development areas in 5G 3 2. Bridging the spectrum

More information

Whitepaper. Next Generation Gigabit WiFi - 802.11ac

Whitepaper. Next Generation Gigabit WiFi - 802.11ac Whitepaper Next Generation Gigabit WiFi - 802.11ac Next Generation Gigabit WiFi - 802. 11ac The first WiFi-enabled devices were introduced in 1997. For the first time, we were liberated from a physical

More information

4G Mobile Broadband Evolution: Release 10, Release 11 and Beyond HSPA+, SAE/LTE and LTE-Advanced

4G Mobile Broadband Evolution: Release 10, Release 11 and Beyond HSPA+, SAE/LTE and LTE-Advanced 4G Mobile Broadband Evolution: Release 10, Release 11 and Beyond HSP+, SE/LTE and LTE-dvanced October 2012 3GPP Based Subscriber Growth More than 1 Billion HSP/LTE Subscribers today Projection for nearly

More information

app coverage applied EXTRACT FROM THE ERICSSON MOBILITY REPORT

app coverage applied EXTRACT FROM THE ERICSSON MOBILITY REPORT app applied EXTRACT FROM THE ERICSSON MOBILITY REPORT NOVEMBER 2013 App COVERAGE applied The use of smartphones and tablets has caused a surge in mobile data around the world. Today, users want reliable

More information

Sharing experiences from small cell backhaul trials. Andy Sutton Principal Network Architect Network Strategy, Architecture & Design 31/01/13

Sharing experiences from small cell backhaul trials. Andy Sutton Principal Network Architect Network Strategy, Architecture & Design 31/01/13 Sharing experiences from small cell backhaul trials Andy Sutton Principal Network Architect Network Strategy, Architecture & Design 31/01/13 Contents 1. Overview of EE 2G/3G/4G/WiFi Network 2. Understanding

More information

LTE: Technology and Health. 4G and Mobile Broadband

LTE: Technology and Health. 4G and Mobile Broadband LTE: Technology and Health 4G and Mobile Broadband LTE Technology and Health Mobile Broadband typically refers to providing customers with high speed data while on the move. There are several technologies

More information

LTE Solution and Requirements for Smart Grids

LTE Solution and Requirements for Smart Grids 2014 年 11 月 10 日 星 期 一 LTE Solution and Requirements for Smart Grids 11 th November 2014 Markus Dillinger Head of Wireless Internet Technologies Huawei European Research Centre Munich, Germany Outline

More information

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0 LoRaWAN What is it? A technical overview of LoRa and LoRaWAN Technical Marketing Workgroup 1.0 November 2015 TABLE OF CONTENTS 1. INTRODUCTION... 3 What is LoRa?... 3 Long Range (LoRa )... 3 2. Where does

More information

www.wipro.com ACCOMMODATING IOT / M2M REQUIREMENTS IN THE CELLULAR ECOSYSTEM Mahendra Agarwal Architect, Wipro Tecnologies

www.wipro.com ACCOMMODATING IOT / M2M REQUIREMENTS IN THE CELLULAR ECOSYSTEM Mahendra Agarwal Architect, Wipro Tecnologies www.wipro.com ACCOMMODATING IOT / M2M REQUIREMENTS IN THE CELLULAR ECOSYSTEM Mahendra Agarwal Architect, Wipro Tecnologies Table of Contents Abstract... 03 What s new in Cellular Technology?... 03 Device

More information

Timing over Packet. Technical Brief

Timing over Packet. Technical Brief Technical Brief 02/08 1. Abstract This paper is designed to help operators understand how to deploy Precision Time Protocol (PTP, or IEEE 1588v2) in mobile networks for the purpose of synchronizing base

More information

5G radio access. ericsson White paper Uen 284 23-3204 Rev B February 2015

5G radio access. ericsson White paper Uen 284 23-3204 Rev B February 2015 ericsson White paper Uen 284 23-3204 Rev B February 2015 5G radio access TECHNOLOGY AND CAPABILITIES To enable connectivity for a wide range of new applications and use cases, the capabilities of 5G wireless

More information

REPORT ITU-R M.2134. Requirements related to technical performance for IMT-Advanced radio interface(s)

REPORT ITU-R M.2134. Requirements related to technical performance for IMT-Advanced radio interface(s) Rep. ITU-R M.2134 1 REPORT ITU-R M.2134 Requirements related to technical performance for IMT-Advanced radio interface(s) (2008) TABLE OF CONTENTS... Page 1 Introduction... 2 2 Scope and purpose... 2 3

More information

Cloud-based Wireless LAN for Enterprise, SMB, IT Service Providers and Carriers. Product Highlights. Relay2 Enterprise Access Point RA100 Datasheet

Cloud-based Wireless LAN for Enterprise, SMB, IT Service Providers and Carriers. Product Highlights. Relay2 Enterprise Access Point RA100 Datasheet Cloud-based Wireless LAN for Enterprise, SMB, IT Service Providers and Carriers The Relay2 Smart Access Point (RA100) is an enterprise-class access point designed for deployment in high-density environments

More information

Best Practices for High Density Wireless Network Design In Education and Small/Medium Businesses

Best Practices for High Density Wireless Network Design In Education and Small/Medium Businesses Best Practices for High Density Wireless Network Design In Education and Small/Medium Businesses White Paper Table of Contents Executive Summary 3 Introduction 3 Determining Access Point Throughput 4 Establishing

More information

Small Cell Technology Overview ( and 3.5GHz Small Cell CBS Band)

Small Cell Technology Overview ( and 3.5GHz Small Cell CBS Band) Small Cell Technology Overview ( and 3.5GHz Small Cell CBS Band) Milind Buddhikot, Rob Soni March 13, 2013 1 FCC 3.5 GHz NPRM Workshop MMB Bandwidth Hungry Applications will Continue the Wireless Data

More information

FutureWorks Nokia technology vision 2020: personalize the network experience. Executive Summary. Nokia Networks

FutureWorks Nokia technology vision 2020: personalize the network experience. Executive Summary. Nokia Networks Nokia Networks FutureWorks Nokia technology vision 2020: personalize the network experience Executive Summary White paper - Nokia Technology Vision 2020: Personalize the Network Experience CONTENTS Aligning

More information

Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses

Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses Report ITU-R M.2292-0 (12/2013) Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses M Series Mobile, radiodetermination, amateur and related satellite services

More information

Upcoming Enhancements to LTE: R9 R10 R11!

Upcoming Enhancements to LTE: R9 R10 R11! Upcoming Enhancements to LTE: R9 R10 R11! Jayant Kulkarni Award Solutions jayant@awardsolutions.com Award Solutions Dallas-based wireless training and consulting company Privately held company founded

More information

HUAWEI Enterprise AP Series 802.11ac Brochure

HUAWEI Enterprise AP Series 802.11ac Brochure Enterprise AP Series 802.11ac Brochure 01 Enterprise AP Series 802.11ac Brochure 1 Overview Release of 802.11ac standards has driven wireless technologies to the era of GE Wi-Fi. Enterprise Wi-Fi networks

More information

A Network Simulation Tool to Generate User Traffic and Analyze Quality of Experience for Hybrid Access Architecture

A Network Simulation Tool to Generate User Traffic and Analyze Quality of Experience for Hybrid Access Architecture A Network Simulation Tool to Generate User Traffic and Analyze Quality of Experience for Hybrid Access Architecture Oscar D. Ramos-Cantor, Technische Universität Darmstadt, oscar.ramos@nt.tu-darmstadt.de,

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Chapter 3 Cellular Networks. Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna

Chapter 3 Cellular Networks. Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna Chapter 3 Cellular Networks Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna Objectives! Understand Cellular Phone Technology! Know the evolution of evolution network! Distinguish

More information