How To Make A Multi-User Communication Efficient



Similar documents
CS263: Wireless Communications and Sensor Networks

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

EPL 657 Wireless Networks

How To Understand The Theory Of Time Division Duplexing

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE Wireless Local Area Networks (WLANs)

Lecture 1. Introduction to Wireless Communications 1

Revision of Lecture Eighteen

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III

Lecture 17: Wireless Networking"

Lecture 7 Multiple Access Protocols and Wireless

MAC Algorithms in Wireless Networks

Random Access Protocols

CSE 123A Computer Networks

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Protocolo IEEE Sergio Scaglia SASE Agosto 2012

Multiple Access Techniques

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC

GSM Channels. Physical & Logical Channels. Traffic and Control Mutltiframing. Frame Structure

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving

ECE/CS 372 introduction to computer networks. Lecture 13

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Medium Access Control with Dynamic Frame Length in Wireless Sensor Networks

Hello viewers, welcome to today s lecture on cellular telephone systems.

Chapter 6: Medium Access Control Layer

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse

What is it all about? Some simple solutions. Multiple Access. Contexts for the multiple access problem. Outline. Contexts

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0

Controlled Random Access Methods

Real-Time (Paradigms) (51)

communication over wireless link handling mobile user who changes point of attachment to network

3GPP Wireless Standard

Enhanced Power Saving for IEEE WLAN with Dynamic Slot Allocation

10. Wireless Networks

Mac Protocols for Wireless Sensor Networks

2.0 System Description

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring Mike Freedman

Figure 1: cellular system architecture

ECE 333: Introduction to Communication Networks Fall 2002

TCOM 370 NOTES LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL

EETS 8316 Wireless Networks Fall 2013

... neither PCF nor CA used in practice

Versatile Low Power Media Access for Wireless Sensor Networks

ADV-MAC: Advertisement-based MAC Protocol for Wireless Sensor Networks

PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks

Bluetooth voice and data performance in DS WLAN environment

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

Frequency [MHz] ! " # $ %& &'( " Use top & bottom as additional guard. guard band. Giuseppe Bianchi DOWNLINK BS MS UPLINK MS BS

CSMA/CA. Information Networks p. 1

1 Wireless Media Access Control

CDMA Network Planning

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh

Based on Computer Networking, 4 th Edition by Kurose and Ross

Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii xvii

THE development of media access control (MAC) protocols

Wireless Personal Area Networks (WPANs)

TCP in Wireless Networks

How To Understand The Gsm And Mts Mobile Network Evolution

RTT 60.5 msec receiver window size: 32 KB

COMP 3331/9331: Computer Networks and Applications

Versatile Low Power Media Access for Wireless Sensor Networks

Location management Need Frequency Location updating

GSM Network and Services

Adaptive DCF of MAC for VoIP services using IEEE networks

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5, September

ECE 428 Computer Networks and Security

Selfish MAC Layer Misbehavior in Wireless Networks

Halmstad University Post-Print

LTE Evolution for Cellular IoT Ericsson & NSN

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1

Wireless Cellular Networks: 1G and 2G

Algorithms for Interference Sensing in Optical CDMA Networks

Metrics for Detection of DDoS Attacks

CS Cellular and Mobile Network Security: GSM - In Detail

Protocol Design and Implementation for Wireless Sensor Networks

EXAMPLES AND PROBLEMS. Competence Based Education Internet Protocols

CDMA Performance under Fading Channel

LAN Switching Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, , PPP. Interconnecting LANs

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY

Performance Evaluation of Wired and Wireless Local Area Networks

Medium Access Control Protocols in Mobile Ad Hoc Networks: Problems and Solutions 1

Introductory Concepts

Administrivia. CSMA/CA: Recap. Mobility Management. Mobility Management. Channel Partitioning, Random Access and Scheduling

Wireless LAN Protocol CS 571 Fall Kenneth L. Calvert All rights reserved

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD

a. CSMA/CD is a random-access protocol. b. Polling is a controlled-access protocol. c. TDMA is a channelization protocol.

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS

WiseMAC: An Ultra Low Power MAC Protocol for Multi-hop Wireless Sensor Networks

A Slow-sTart Exponential and Linear Algorithm for Energy Saving in Wireless Networks

GSM System. Global System for Mobile Communications

DATA COMMUNICATIONS AND NETWORKING. Solved Examples

GSM: PHYSICAL & LOGICAL CHANNELS

GSM LOGICAL CHANNELS

Mobile Ad Hoc Networks

The Evolution of 3G CDMA Wireless Networks. David W. Paranchych IEEE CVT Luncheon January 21, 2003

How To Understand And Understand The Power Of A Cdma/Ds System

Transcription:

Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8

Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the performance Duplexing: allow one subscriber to send and receive simultaneously

Frequency Division Duplexing & Time Division Duplexing FDD TDD Frequency Division Duplexing (FDD): Two distinct frequency bands for every user Forward band (BS user) & reverse band (user BS) Frequency separation between forward band & reverse band is fixed (regardless of the channel used) Time Division Duplexing (TDD) Separate time into time slots (fixed duration of time) Each user use a particular forward time slot and a reverse time slot

Trade-offs between FDD & TDD FDD Transmitting and receiving signals which can vary by 100 db Need to carefully allocate the frequency bands TDD Avoid interference to both in-band and out-of-band users Not actually full duplex (transmitting and receiving at the same time) slight latency Time slotting needs precise timing Varying propagation delay is harmful Would be good for services with stationary users

Power Narrowband & Wideband Systems Narrowband & Wideband: with respect to coherence bandwidth Narrowband systems: usually uses FDMA or FDD to divide the available spectrum to a large number of narrowband channels. Wideband systems: a large number of transmitters are allowed to transmit on the same channel; usually TDMA or CDMA. Narrowband Channel frequency response (coherence bandwidth) Wideband f

Frequency Division Multiple Access (FDMA) Individual channels are assigned to individual users Channels are assigned on demand to users, no other users can share the same channel Can be used together with (FDD/TDD). (think about how)

Features of FDMA The FDMA channel carries only one phone circuit at a time (one user) If an FDMA is not in use, then it is wasted BS and the user transmit simultaneously ISI is low and no equalization is needed FDMA is a continuous transmission scheme, less overhead Costly bandpass filters are necessary Need tight RF filtering to minimize adjacent channel interference Costly duplexers in the transmitter and receiver (for both the user and the BS)

Example If a US AMPS cellular operator is allocated 12.5 MHz for each simplex band, the guard band at the two edges of the allocated band is 10 KHz, and the channel bandwidth (for each user) is 30 KHz, find the number of channels available in an FDMA systems. Ans: N = 12.5 106 2(10 10 3 ) 30 10 3 = 416 There are 416 channels. Since we need 2 channels for each user (forward and reverse channels), this can support 208 users.

Time Division Multiple Access (TDMA) Divide the spectrum into time slots In each slot only one user is allowed to either transmit or receive Buffer-and-Burst method (transmission is NOT continuous for each user) Can be used together with (FDD/TDD). (think about how)

TDMA Frame Structure Need the following extra overhead in addition to the information bits: Preamble: Synchronization: so that all users & the BS have a common time reference Address: Identify the service provider Guard bits (guard time): To prevent time drift over time Trail bits: Error detection bits (checksum or CRC)

Guard bits (guard time) Oscillators in each transceiver is different; accurate oscillator is expensive Maximum time drift cannot be larger than ± t G 2! When there is no difference between BS and the user s time Sync t G Time for info t G data When the time of the user is going faster/slower: time Sync t G Time for info t G data data data (next) time For example, if it is even slower than this, then it could collide with the transmission in the next time slot!

Features of TDMA TDMA shares a single carrier frequency with several users Data transmission for a user is not continuous low battery consumption: transmitter can be turned off when not in use!) Mobile Assisted Handoff (MAHO): listening to other base station when on an idle slot Different slots for transmission & reception: duplexers are not required (even when FDD is used) Usually transmission rates are very high (equalization is required) Guard time should be minimized. However, this could increase the interference to the adjacent channels High overhead bits (TDMA frame structure) Can allocate different number of slots to different users: adjustable bandwidth to different users

Example GSM is a TDMA/FDD system that uses 25 MHz for the forward link, with channels of 200 KHz. If 8 speech channels are supported on a single radio channel, and if no guard band is assumed, find the number of simultaneous users that can be accommodated in GSM. Ans: N = 25 MHz (200 KHz)/8 = 1000 Thus, GSM can accommodate 1000 simultaneous users.

Example If GSM uses a frame structure where each frame consists of 8 time slots, with each time slot of 156.25 bits, and data is transmitted at 270.833 kbps. The time duration of a bit is T b = 1 270.833kbps = 3.692 μs The time duration of a slot is T slot = 156.25 T b = 0.577 ms The time duration of a frame is T f = 8 T slot = 4.615 ms A user has to wait 4.615 ms for its next transmission

Packet Radio Other than video/voice transmissions, most data transmissions are bursty Dedicated channel is wasteful Uncoordinated (or minimally coordinated) is more efficient Data is arranged in packets for transmission Collision is possible Error is detected by error detection code (in footer/trail bits) ACK or NACK to notify the transmitter Can do retransmission if the packet is not correctly received

Poisson Process P N t + τ N t = k = e λτ λτ k, k = 0,1, k! Use to describe events which occur continuously and independently of one another N(t): the number of events that have occurred up to time t (starting from time 0) The number of events between time a and time b has a Poisson distribution

Basic ALOHA Max end-to-end propagation delay Station 1 Station 2 Station 3 Station m Station Interface Typical Scenario: Arrival at typical Station i Bus with data rate R bps Station learns fate of packet Backoff Period Retransmission if necessary t o - P t o t o +P t o +P+2 t o +P+2 +B Vulnerable Period t o +2P+2 +B Time

Basic ALOHA: Performance Analysis Packet lengths are constant and equal to L Packet transmission time is L/R = P Total arrival distribution is Poisson with average rate = G/P, where G is the offered traffic P k arrivals in τ = k λτ k! e λτ (1) P[ a successful transmission] = P[0 arrivals in the vulnerable interval 2P sec] = e -2 P (2) S = Ge 2λP = Ge 2G (3) where S is the normalized network throughput

Slotted-ALOHA: Performance Analysis Packet transmissions must be initiated at the beginning of a slot Arrival in the slot preceding the slot in which station I transmits will result in a collision Vulnerable interval is reduced to 1 slot of length P Therefore S = GP*successful transmission+ S = Ge G Observation: maximum throughput of Pure ALOHA = 1 2e = 0.184 Slotted ALOHA = 1 e = 0.368

Throughput vs. Offered traffic S max = 0.368 Slotted ALOHA Throughput (S) S max = 0.184 ALOHA Offered Traffic (G)

Carrier Sense Multiple Access (CSMA) If the channel is idle, then the user is allowed to transmit a packet. Idle = RSSI is below a certain threshold for a particular user (Clear Channel Assessment (CCA) threshold in nano-rk) Two important parameters: Detection delay: the time required to sense whether a channel is idle (usually small) Propagation delay: how fast it takes for a packet to travel from the transmitter to the receiver (can be large) If propagation delay is large, then The transmitted packet has not yet reached the sensing user The user considers the channel idle transmit its own packet collisions

Variations of CSMA 1-persistent CSMA: Always transmit when the channel is idle P-persistent CSMA: When the channel is idle, the packet is transmitted: in the first available time slot with probability p or delay until later with probability 1-p (continue this process) Non-persistent CSMA: Transmit immediately when the channel is idle. When the channel is busy, wait for a random time and sense again. CSMA/Collision Detection (CD): Abort a transmission when a collision is detected. (Harder for wireless: need to stop the transmission to listen)

Performance Increase of CSMA over ALOHA 1.0 Slotted nonpersistent CSMA/CD Channel Capacity S max 0.8 0.6 Nonpersistent CSMA Slotted 1-persistent CSMA Nonpersistent CSMA/CD Slotted nonpersistent CSMA 0.4 1-persistent CSMA 0.2 SLOTTED ALOHA ALOHA 0 0.01 0.1 1.0 a Normalized Propagation Delay Normalized Propagation Delay a= propagation delay packet length

Hidden Terminal Problem A s transmission range B s transmission range A C B A and B both want to transmit to C A collision at C is possible since A & B cannot sense each other s transmission

Exposed Terminal Problem A s transmission range B s transmission range C A B D A and B can hear each other s transmission Although collisions at C and D are both not possible, A & B do not transmit at the same time due to carrier sense

CSMA/Collision Avoidance (CA) A C B In IEEE 802.11 (WiFi) Use a four-way handshake RTS (Request to send) CTS (Clear to send) Data ACK (Acknowledgement) C CTS is received by both A&B, So that they are aware of each other A B D Need NAV RTS of C A is not received by B RTS of D B is not received by A They can transmit at the same time

Network Allocation Vector (NAV) in CSMA/CA NAV is an indicator Transmission will not be initiated even though the channel is sensed to be idle Why is RTS/CTS not enabled in most systems? Additional overhead: packet length threshold for using it Cannot resolve all collision problems Alternative solution? Busy tone channel

Example: Wireless Sensor Network MAC MAC=Media Access Control Energy constrained scenario Limited energy supply Need years of operation time Communications spend lots of energy Compared to computation: an order of 10 6 per bit Today we will talk about two examples B-MAC WiDOM

Energy Supply for Sensor Nodes Passive Active Energy harvester Energy from a base station (transmitted wirelessly) Batteries Convert heat, vibration, pressure to electricity RFIDs

Minimize Energy Consumption 1. E rx E tx E idle Sleep Sleep TX TX RX Operation Radio Transmitting Radio Receiving (or waiting for incoming pkts) Microprocessor Radio Idle + Microprocessor Idle Current consumption at 3V 17.4 ma 18.8 ma 6 ma 0.0002 ma 2. E E... tx, 0 tx, 5 tx, 25 Lower transmission power E Transmission Power Current consumption at 3V 0 dbm 17.4 ma -5 dbm 13.9 ma -10 dbm 11.2 ma -15 dbm 9.9 ma -25 dbm 8.5 ma

Sensor Node Lifetime (Hrs) Sensor Node Lifetime 10 7 2 AA Batteries 10 6 31 10 5 0 dbm -5 dbm 10 4-10 dbm -15 dbm -25 dbm Lower TX 10 3 10 Years Power!! 5 Years (Max: 2 times 1 Year 6 Months 10 2 lifetime) 10-3 10-2 10-1 10 0 10 1 10 2 Sensor Packet Sending Interval TX Sleep TX Sleep

Low Power Listening (B-MAC) Nodes wake up for a short period and check for channel activity. Return to sleep if no activity detected. If a sender wants to transmit a message, it sends a long preamble to make sure that the receiver is listening for the packet. preamble has the size of a sleep interval preamble data listen Carrier sensing Very robust No synchronization required Instant recovery after channel disruption Save energy for receivers (transfer to transmitters) Good since there is only 1 transmitter, but many receivers

Low Power Listening (B-MAC) overhearing problem Problem: All nodes in the vicinity of a sender wake-up and wait for the packet. Solution 1: Send wake-up packets instead of preamble, wake-up packets tell when data is starting so that receiver can go back to sleep as soon as it received one wake-up packet. Solution 2: Just send data several times such that receiver can tune in at any time and get tail of data first, then head. Communication costs are mostly paid by the sender. The preamble length can be much longer than the actual data length. Idea: Learn wake-up schedules from neighboring nodes. Start sending preamble just before intended receiver wakes up. WiseMAC encode wake-up pattern in ACK message

WiDOM Wireless Dominance Protocol Idea: Packets have different importance How to let the ones with higher priority to use the channel first? Provide upper bounds to the delay Distributed protocol no central authority (BS) to assign time slots Requirements: Everyone can hear each other (for the basic version) Need time synchronization

WiDOM Each node which has a packet to transmit goes through a tournament phase to determine the winner: The winner gets the channel (to transmit) The losers wait for the next chance Tournament: in each small slot for that priority bit Transmit if you have a 1 bit in the priority Listen if you have a 0 bit in the priority If you hear something, that means someone else has a higher priority, you lose (go back to sleep) If you hear nothing, continue.