10. Wireless Networks

Size: px
Start display at page:

Download "10. Wireless Networks"

Transcription

1 Computernetzwerke und Sicherheit (CS221) 10. Wireless Networks 1. April 2011 omas Meyer Departement Mathematik und Informatik, Universität Basel Chapter 6 Wireless and Mobile Networks (with changes CS221 UniBasel, 2011) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). ey re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. ey obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. anks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach, International Version, 5 th edition. Jim Kurose, Keith Ross Pearson Addison-Wesley, March

2 Chapter 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! # wireless Internet-connected devices soon to exceed # wireline Internet-connected devices laptops, Internet-enabled phones promise anytime untethered Internet access two important (but different) challenges wireless: communication over wireless link mobility: handling the mobile user who changes point of attachment to network 3 Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE wireless LANs ( Wi-Fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5 Principles: addressing and routing to mobile users 6.6 Mobile IP 6.7 Handling mobility in cellular networks 6.8 Mobility and higher-layer protocols 6.9 Summary 4

3 Elements of a wireless network network infrastructure wireless hosts laptop, PDA, IP phone run applications may be stationary (nonmobile) or mobile wireless does not always mean mobility 5 Elements of a wireless network network infrastructure base station typically connected to wired network relay - responsible for sending packets between wired network and wireless host(s) in its area e.g., cell towers, access points 6

4 Elements of a wireless network network infrastructure wireless link typically used to connect mobile(s) to base station also used as backbone link multiple access protocol coordinates link access various data rates, transmission distance 7 Characteristics of selected wireless link standards n Data rate (Mbps) a,g b a,g point-to-point (WiMAX) UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO UMTS/WCDMA, CDMA2000 3G data 3G cellular enhanced.056 IS-95, CDMA, GSM 2G Indoor 10-30m Outdoor m Mid-range outdoor 200m 4 Km Long-range outdoor 5Km 20 Km 8

5 Elements of a wireless network network infrastructure infrastructure mode base station connects mobiles into wired network handoff: mobile changes base station providing connection into wired network 9 Elements of a wireless network ad hoc mode no base stations nodes can only transmit to other nodes within link coverage nodes organize themselves into a network: route among themselves 10

6 Wireless network taxonomy infrastructure (e.g., APs) no infrastructure single hop host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet no base station, no connection to larger Internet (Bluetooth, ad hoc nets), PAN multiple hops host may have to relay through several wireless nodes to connect to larger Internet: mesh net no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET 11 Wireless Link Characteristics (1) Differences from wired link. decreased signal strength: radio signal attenuates as it propagates through matter (path loss) interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times. make communication across (even a point to point) wireless link much more difficult 12

7 Wireless Link Characteristics (2) SNR: signal-to-noise ratio larger SNR easier to extract signal from noise (a good thing ) SNR versus BER tradeoffs given physical layer: increase power - > increase SNR->decrease BER given SNR: choose physical layer that meets BER requirement, giving highest thruput SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate) BER SNR(dB) QAM256 (8 Mbps) QAM16 (4 Mbps) BPSK (1 Mbps) 13 Wireless network characteristics Multiple wireless senders and receivers create additional problems (beyond multiple access): C A B C A B A s signal strength C s signal strength Hidden terminal problem B, A hear each other B, C hear each other A, C can not hear each other means A, C unaware of their interference at B space Signal attenuation: B, A hear each other B, C hear each other A, C can not hear each other interfering at B 14

8 Code Division Multiple Access (CDMA) used in several wireless broadcast channels (cellular, satellite, etc) standards unique code assigned to each user; i.e., code set partitioning all users share same frequency, but each user has own chipping sequence (i.e., code) to encode data encoded signal = (original data) X (chipping sequence) decoding: inner-product of encoded signal and chipping sequence allows multiple users to coexist and transmit simultaneously with minimal interference (if codes are orthogonal ) 15 CDMA Encode/Decode channel output Z i,m sender data bits code d 1 = d 0 = slot 1 slot 0 Z i,m = d i. cm slot 1 channel output slot 0 channel output received input receiver code slot 1 slot 0 M D i = Σ Z. i,m cm m=1 M d 1 = -1 slot 1 channel output d 0 = 1 slot 0 channel output 16

9 CDMA: two-sender interference 17 Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE wireless LANs ( Wi-Fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5 Principles: addressing and routing to mobile users 6.6 Mobile IP 6.7 Handling mobility in cellular networks 6.8 Mobility and higher-layer protocols 6.9 Summary 18

10 IEEE Wireless LAN b GHz unlicensed spectrum up to 11 Mbps direct sequence spread spectrum (DSSS) in physical layer all hosts use same chipping code a 5-6 GHz range up to 54 Mbps g GHz range up to 54 Mbps n: multiple antennae GHz range up to 200 Mbps all use CSMA/CA for multiple access all have base-station and ad-hoc network versions LAN architecture BSS 1 AP Internet AP hub, switch or router wireless host communicates with base station base station = access point (AP) Basic Service Set (BSS) (aka cell ) in infrastructure mode contains: wireless hosts access point (AP): base station ad hoc mode: hosts only BSS 2 20

11 802.11: Channels, association b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies AP admin chooses frequency for AP interference possible: channel can be same as that chosen by neighboring AP! host: must associate with an AP scans channels, listening for beacon frames containing AP s name (SSID) and MAC address selects AP to associate with may perform authentication [Chapter 8] will typically run DHCP to get IP address in AP s subnet : passive/active scanning BBS 1 BBS 2 BBS 1 BBS 2 AP AP 2 AP AP 2 H1 H1 Passive Scanning: (1)beacon frames sent from APs (2)association Request frame sent: H1 to selected AP (3)association Response frame sent: H1 to selected AP Active Scanning: (1)Probe Request frame broadcast from H1 (2)Probes response frame sent from APs (3)Association Request frame sent: H1 to selected AP (4)Association Response frame sent: H1 to selected AP 22

12 IEEE : multiple access avoid collisions: 2 + nodes transmitting at same time : CSMA - sense before transmitting don t collide with ongoing transmission by other node : no collision detection! difficult to receive (sense collisions) when transmitting due to weak received signals (fading) can t sense all collisions in any case: hidden terminal, fading goal: avoid collisions: CSMA/C(ollision)A(voidance) C A B C A B A s signal strength C s signal strength space 23 IEEE MAC Protocol: CSMA/CA sender 1 if sense channel idle for DIFS then sender receiver transmit entire frame (no CD) 2 if sense channel busy then DIFS start random backoff time timer counts down while channel idle data transmit when timer expires if no ACK, increase random backoff interval, repeat receiver ACK SIFS - if frame received OK return ACK after SIFS (ACK needed due to hidden terminal problem) 24

13 Avoiding collisions (more) idea: allow sender to reserve channel rather than random access of data frames: avoid collisions of long data frames sender first transmits small request-to-send (RTS) packets to BS using CSMA RTSs may still collide with each other (but they re short) BS broadcasts clear-to-send CTS in response to RTS CTS heard by all nodes sender transmits data frame other stations defer transmissions avoid data frame collisions completely using small reservation packets! 25 Collision Avoidance: RTS-CTS exchange A AP B RTS(A) RTS(B) reservation collision RTS(A) CTS(A) CTS(A) DATA (A) defer time ACK(A) ACK(A) 26

14 frame: addressing frame control duration address 1 address 2 address 3 seq control address 4 payload CRC Address 1: MAC address of wireless host or AP to receive this frame Address 2: MAC address of wireless host or AP transmitting this frame Address 3: MAC address of router interface to which AP is attached Address 4: used only in ad hoc mode frame: addressing H1 R1 router Internet AP R1 MAC addr dest. address H1 MAC addr source address frame AP MAC addr H1 MAC addr R1 MAC addr address 1 address 2 address frame 28

15 Not covered Advanced WiFi features (power management, WiMax,...) GSM, UMTS (and IP) Mobile IP 29

Data Center Networks, Link Layer Wireless (802.11)

Data Center Networks, Link Layer Wireless (802.11) Internet-Technologien (CS262) Data Center Networks, Link Layer Wireless (802.11) 1.4.2015 Christian Tschudin Departement Mathematik und Informatik, Universität Basel 6 Wiederholung Warum «multiple access»?

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications Week 10 Wireless Networks Reading Guide: Chapter 6: 6.1 6.3 Wireless Networks + Security 1 Wireless and Mobile Networks Background: # wireless (mobile)

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs)

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs) CS6956: Wireless and Mobile Networks Lecture Notes: //05 IEEE 80. Wireless Local Area Networks (WLANs) CSMA/CD Carrier Sense Multi Access/Collision Detection detects collision and retransmits, no acknowledgement,

More information

Chapter 6: Wireless and Mobile Networks

Chapter 6: Wireless and Mobile Networks Chapter 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime

More information

Lecture 7 Multiple Access Protocols and Wireless

Lecture 7 Multiple Access Protocols and Wireless Lecture 7 Multiple Access Protocols and Wireless Networks and Security Jacob Aae Mikkelsen IMADA November 11, 2013 November 11, 2013 1 / 57 Lecture 6 Review What is the responsibility of the link layer?

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

ECE/CS 372 introduction to computer networks. Lecture 13

ECE/CS 372 introduction to computer networks. Lecture 13 ECE/CS 372 introduction to computer networks Lecture 13 Announcements: HW #4 hard copy due today Lab #5 posted is due Tuesday June 4 th HW #5 posted is due Thursday June 6 th Pickup midterms Acknowledgement:

More information

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman 1 Wireless Networks Reading: Sec5on 2.8 COS 461: Computer Networks Spring 2011 Mike Freedman hep://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Widespread Deployment Worldwide cellular subscribers

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1 Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer

More information

Mobile and Sensor Systems

Mobile and Sensor Systems Mobile and Sensor Systems Lecture 1: Introduction to Mobile Systems Dr Cecilia Mascolo About Me In this course The course will include aspects related to general understanding of Mobile and ubiquitous

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Reading: Sec7ons 2.8 and 4.2.5 COS 461: Computer Networks Spring 2009 (MW 1:30 2:50 in COS 105) Mike Freedman Teaching Assistants: WyaO Lloyd and Jeff Terrace hop://www.cs.princeton.edu/courses/archive/spring09/cos461/

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

The Wireless Network Road Trip

The Wireless Network Road Trip The Wireless Network Road Trip The Association Process To begin, you need a network. This lecture uses the common logical topology seen in Figure 9-1. As you can see, multiple wireless clients are in

More information

Data Link Protocols. Link Layer Services. Framing, Addressing, link access: Error Detection:

Data Link Protocols. Link Layer Services. Framing, Addressing, link access: Error Detection: Data Link Protocols Link Layer Services Framing, Addressing, link access: encapsulate datagram into frame, adding header, trailer channel access if shared medium MAC addresses used in frame headers to

More information

Administrivia. CSMA/CA: Recap. Mobility Management. Mobility Management. Channel Partitioning, Random Access and Scheduling

Administrivia. CSMA/CA: Recap. Mobility Management. Mobility Management. Channel Partitioning, Random Access and Scheduling Administrivia No lecture on Thurs. Last work will be out this week (not due, covers wireless) Extra office hours for next week and the week after. Channel Partitioning, Random Access and Scheduling Channel

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Chapter 6 CDMA/802.11i

Chapter 6 CDMA/802.11i Chapter 6 CDMA/802.11i IC322 Fall 2014 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Some material copyright 1996-2012 J.F Kurose and K.W. Ross,

More information

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006 CSE331: Introduction to Networks and Security Lecture 6 Fall 2006 Open Systems Interconnection (OSI) End Host Application Reference model not actual implementation. Transmits messages (e.g. FTP or HTTP)

More information

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data-rate applications Ability to

More information

Wiereless LAN 802.11

Wiereless LAN 802.11 Tomasz Kurzawa Wiereless LAN 802.11 Introduction The 802.11 Architecture Channels and Associations The 802.11 MAC Protocol The 802.11 Frame Introduction Wireless LANs are most important access networks

More information

Wireless networking. more wireless (cell) phone users than wired phone users almost all incoming Dartmouth students have wireless laptops

Wireless networking. more wireless (cell) phone users than wired phone users almost all incoming Dartmouth students have wireless laptops Wireless networking Very popular! more wireless (cell) phone users than wired phone users almost all incoming Dartmouth students have wireless laptops Untethered (wireless) Internet access very appealing

More information

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when

More information

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers EECS 122: Introduction to Computer Networks Multiaccess Protocols Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

More information

CSMA/CA. Information Networks p. 1

CSMA/CA. Information Networks p. 1 Information Networks p. 1 CSMA/CA IEEE 802.11 standard for WLAN defines a distributed coordination function (DCF) for sharing access to the medium based on the CSMA/CA protocol Collision detection is not

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 5: Data-Link II: Media Access Some portions courtesy Srini Seshan or David Wetherall Last Time Framing: How to translate a bitstream into separate packets

More information

... neither PCF nor CA used in practice

... neither PCF nor CA used in practice IEEE 802.11 MAC CSMA/CA with exponential backoff almost like CSMA/CD drop CD CSMA with explicit ACK frame added optional feature: CA (collision avoidance) Two modes for MAC operation: Distributed coordination

More information

802.11. Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak

802.11. Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak 802.11 Markku Renfors Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak Contents 802.11 Overview & Architecture 802.11 MAC 802.11 Overview and Architecture

More information

Hello viewers, welcome to today s lecture on cellular telephone systems.

Hello viewers, welcome to today s lecture on cellular telephone systems. Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture minus 31 Cellular Telephone Systems Hello viewers, welcome to today s lecture

More information

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh, Ph.D. benveniste@ieee.org Mesh 2008, Cap Esterel, France 1 Abstract Abundant hidden node collisions and correlated channel access

More information

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012 Protocolo IEEE 802.15.4 SASE 2012 - Agosto 2012 IEEE 802.15.4 standard Agenda Physical Layer for Wireless Overview MAC Layer for Wireless - Overview IEEE 802.15.4 Protocol Overview Hardware implementation

More information

CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface

CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface Hank Carter Professor Patrick Traynor 10/4/2012 UMTS and CDMA 3G technology - major change from GSM (TDMA) Based on techniques originally

More information

802.11 Wireless LAN Protocol CS 571 Fall 2006. 2006 Kenneth L. Calvert All rights reserved

802.11 Wireless LAN Protocol CS 571 Fall 2006. 2006 Kenneth L. Calvert All rights reserved 802.11 Wireless LAN Protocol CS 571 Fall 2006 2006 Kenneth L. Calvert All rights reserved Wireless Channel Considerations Stations may move Changing propagation delays, signal strengths, etc. "Non-transitive"

More information

How To Make A Multi-User Communication Efficient

How To Make A Multi-User Communication Efficient Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

MAC Algorithms in Wireless Networks

MAC Algorithms in Wireless Networks Department of Computing Science Master Thesis MAC Algorithms in Wireless Networks Applications, Issues and Comparisons Shoaib Tariq Supervisor: Dr. Jerry Eriksson Examiner: Dr. Per Lindström Dedicated

More information

Chapter 7 Low-Speed Wireless Local Area Networks

Chapter 7 Low-Speed Wireless Local Area Networks Wireless# Guide to Wireless Communications 7-1 Chapter 7 Low-Speed Wireless Local Area Networks At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion Topics

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins

More information

Mobile Communications Exercise: Satellite Systems and Wireless LANs. Georg von Zengen, IBR, TU Braunschweig, www.ibr.cs.tu-bs.de

Mobile Communications Exercise: Satellite Systems and Wireless LANs. Georg von Zengen, IBR, TU Braunschweig, www.ibr.cs.tu-bs.de Mobile Communications Exercise: Satellite Systems and Wireless LANs N 1 Please define the terms inclination and elevation using the following two figures. How do these parameters influence the usefulness

More information

Introduction to Ad hoc Networks

Introduction to Ad hoc Networks Introduction to Ad hoc Networks CS-647: Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University Amitabh Mishra & Baruch Awerbuch

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

ECE 428 Computer Networks and Security

ECE 428 Computer Networks and Security ECE 428 Computer Networks and Security 1 Instructor: Sagar Naik About the Instructor Office: EIT 4174, ECE Dept. Other courses that I teach ECE 355: Software Engineering ECE 453/CS 447/ SE 465: Software

More information

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997

More information

IEEE802.11 Wireless LAN

IEEE802.11 Wireless LAN IEEE802.11 The broadband wireless Internet Maximilian Riegel wlan-tutorial.ppt-1 (28.11.2000) WLAN Dream Finally Seems to Happen... Recently lots of serious WLAN activities have been announced Big players

More information

CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012

CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 Important: The solutions to the homework problems from the course book have been provided by the authors.

More information

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,

More information

Real-Time Communication in IEEE 802.11 Wireless Mesh Networks: A Prospective Study

Real-Time Communication in IEEE 802.11 Wireless Mesh Networks: A Prospective Study in IEEE 802.11 : A Prospective Study January 2011 Faculty of Engineering of the University of Porto Outline 1 Introduction 2 3 4 5 in IEEE 802.11 : A Prospective Study 2 / 28 Initial Considerations Introduction

More information

An Investigation of the Impact of Signal Strength on Wi-Fi Link Throughput through Propagation Measurement. Eric Cheng-Chung LO

An Investigation of the Impact of Signal Strength on Wi-Fi Link Throughput through Propagation Measurement. Eric Cheng-Chung LO An Investigation of the Impact of Signal Strength on Wi-Fi Link Throughput through Propagation Measurement Eric Cheng-Chung LO A dissertation submitted to Auckland University of Technology in partial fulfillment

More information

Wireless LAN Concepts

Wireless LAN Concepts Wireless LAN Concepts Wireless LAN technology is becoming increasingly popular for a wide variety of applications. After evaluating the technology, most users are convinced of its reliability, satisfied

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY 4.1. INTRODUCTION In recent years, the rapid growth of wireless communication technology has improved the transmission data rate and communication distance.

More information

Basic processes in IEEE802.11 networks

Basic processes in IEEE802.11 networks Module contents IEEE 802.11 Terminology IEEE 802.11 MAC Frames Basic processes in IEEE802.11 networks Configuration parameters.11 Architect. 1 IEEE 802.11 Terminology Station (STA) Architecture: Device

More information

IEEE 802.11 WLAN (802.11) ...Copyright. Renato Lo Cigno www.disi.unitn.it/locigno/didattica/nc/

IEEE 802.11 WLAN (802.11) ...Copyright. Renato Lo Cigno www.disi.unitn.it/locigno/didattica/nc/ WLAN (802.11) Renato Lo Cigno www.disi.unitn.it/locigno/didattica/nc/...copyright Quest opera è protetta dalla licenza Creative Commons NoDerivs-NonCommercial. Per vedere una copia di questa licenza, consultare:

More information

Medium Access Control (MAC) and Wireless LANs

Medium Access Control (MAC) and Wireless LANs Medium Access Control (MAC) and Wireless LANs Outline Wireless LAN Technology Medium Access Control for Wireless IEEE 802.11 Wireless LAN Applications LAN Extension Cross-building interconnect Nomadic

More information

Introduction to Wide-Area WiFi. AfNOG 2009 Wireless Tutorials Cairo

Introduction to Wide-Area WiFi. AfNOG 2009 Wireless Tutorials Cairo Introduction to Wide-Area WiFi AfNOG 2009 Wireless Tutorials Cairo Wireless networking protocols The 802.11 family of radio protocols are commonly referred to as WiFi. 802.11a supports up to 54 Mbps using

More information

Efficient MAC Protocol for Heterogeneous Cellular Networks (HC-MAC)

Efficient MAC Protocol for Heterogeneous Cellular Networks (HC-MAC) Vol.2, Issue.2, Mar-Apr 2012 pp-078-083 ISSN: 2249-6645 Efficient MAC Protocol for Heterogeneous Cellular Networks (HC-MAC) 1 Y V Adi Satyanarayana, 2 Dr. K Padma Raju 1 Y V Adi Satyanarayana, Assoc. Professor,

More information

IEEE 802.11 Wireless LAN Standard. Updated: 5/10/2011

IEEE 802.11 Wireless LAN Standard. Updated: 5/10/2011 IEEE 802.11 Wireless LAN Standard Updated: 5/10/2011 IEEE 802.11 History and Enhancements o 802.11 is dedicated to WLAN o The group started in 1990 o First standard that received industry support was 802.11b

More information

IEEE 802.11 Ad Hoc Networks: Performance Measurements

IEEE 802.11 Ad Hoc Networks: Performance Measurements IEEE 8. Ad Hoc Networks: Performance Measurements G. Anastasi Dept. of Information Engineering University of Pisa Via Diotisalvi - 56 Pisa, Italy Email: g.anastasi@iet.unipi.it E. Borgia, M. Conti, E.

More information

WI-FI TECHNOLOGY: SECURITY ISSUES

WI-FI TECHNOLOGY: SECURITY ISSUES RIVIER ACADEMIC JOURNAL, VOLUME 2, NUMBER 2, FALL 2006 WI-FI TECHNOLOGY: SECURITY ISSUES Vandana Wekhande* Graduate student, M.S. in Computer Science Program, Rivier College Keywords: Wireless Internet,802.11b,

More information

Lab Exercise 802.11. Objective. Requirements. Step 1: Fetch a Trace

Lab Exercise 802.11. Objective. Requirements. Step 1: Fetch a Trace Lab Exercise 802.11 Objective To explore the physical layer, link layer, and management functions of 802.11. It is widely used to wireless connect mobile devices to the Internet, and covered in 4.4 of

More information

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Recent Advances in Electrical Engineering and Electronic Devices Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Ahmed El-Mahdy and Ahmed Walid Faculty of Information Engineering

More information

Introduction to Wireless Communications and Networks

Introduction to Wireless Communications and Networks Introduction to Wireless Communications and Networks Tongtong Li Dept. Electrical and Computer Engineering East Lansing, MI 48824 tongli@egr.msu.edu 1 Outline Overview of a Communication System Digital

More information

WiFi. Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman. WiFi 1

WiFi. Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman. WiFi 1 WiFi Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman WiFi 1 What is the goal of 802.11 standard? To develop a Medium Access Control (MAC) and Physical Layer (PHY) specification for wireless

More information

LP-348. LP-Yagy2415. LP-510G/550G 54M Wireless Adapter PCMCIA/PCI. User Guide Ver:2.0 LP-5420G WWW.LANPRO.COM

LP-348. LP-Yagy2415. LP-510G/550G 54M Wireless Adapter PCMCIA/PCI. User Guide Ver:2.0 LP-5420G WWW.LANPRO.COM LP-348 LP-Yagy2415 LP-1518 LP-5P LP-510G/550G 54M Wireless Adapter PCMCIA/PCI User Guide Ver:2.0 LP-5420G WWW.LANPRO.COM COPYRIGHT & TRADEMARKS Specifications are subject to change without notice. is a

More information

Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice

Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice By Timo Vanhatupa, Ph.D. Senior Research Scientist at Ekahau Contents Introduction Why capacity matters with Wi-Fi... 3 Part 1: Modeling

More information

THE BCS PROFESSIONAL EXAMINATIONS BCS Level 5 Diploma in IT. October 2009 EXAMINERS' REPORT. Computer Networks

THE BCS PROFESSIONAL EXAMINATIONS BCS Level 5 Diploma in IT. October 2009 EXAMINERS' REPORT. Computer Networks THE BCS PROFESSIONAL EXAMINATIONS BCS Level 5 Diploma in IT October 2009 EXAMINERS' REPORT Computer Networks General Comments The responses to questions were of marginally better quality than April 2009

More information

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2015 1 Lecture Notes 1 Interference Limited System, Cellular Systems Introduction, Power and Path Loss Reading: Mol 1, 2, 3.3, Patwari

More information

SELECTIVE ACTIVE SCANNING FOR FAST HANDOFF IN WLAN USING SENSOR NETWORKS

SELECTIVE ACTIVE SCANNING FOR FAST HANDOFF IN WLAN USING SENSOR NETWORKS SELECTIVE ACTIVE SCANNING FOR FAST HANDOFF IN WLAN USING SENSOR NETWORKS Sonia Waharte, Kevin Ritzenthaler and Raouf Boutaba University of Waterloo, School of Computer Science 00, University Avenue West,

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Acknowledgements These Slides have been adapted from the originals made available by J. Kurose and K. Ross All material copyright 1992009 J.F Kurose and K.W. Ross, All Rights

More information

Networks. Master of Science (Computer Science and Engineering), December 2004, 45 pp.,

Networks. Master of Science (Computer Science and Engineering), December 2004, 45 pp., Park, Sangtae, Optimal Access Point Selection and Channel Assignment in IEEE 802.11 Networks. Master of Science (Computer Science and Engineering), December 2004, 45 pp., 9 tables, 17 figures, 29 titles.

More information

Based on Computer Networking, 4 th Edition by Kurose and Ross

Based on Computer Networking, 4 th Edition by Kurose and Ross Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,

More information

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN:

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN: WLAN: Wireless LAN Make use of a wireless transmission medium Tipically restricted in their diameter: buildings, campus, single room etc.. The global goal is to replace office cabling and to introduce

More information

EETS 8316 Wireless Networks Fall 2013

EETS 8316 Wireless Networks Fall 2013 EETS 8316 Wireless Networks Fall 2013 Lecture: WiFi Discovery, Powersave, and Beaconing http://lyle.smu.edu/~skangude/eets8316.html Shantanu Kangude skangude@lyle.smu.edu Discovery and Beaconing Discovery?

More information

Mobile Ad Hoc Networks

Mobile Ad Hoc Networks Mobile Ad Hoc Networks 1 Asis Nasipuri Department of Electrical & Computer Engineering The University of North Carolina at Charlotte Charlotte, NC 28223-0001 I. INTRODUCTION A mobile ad hoc network is

More information

Wireless Personal Area Networks (WPANs)

Wireless Personal Area Networks (WPANs) Wireless Personal Area Networks (WPANs) Bluetooth, ZigBee Contents Introduction to the IEEE 802 specification family Concept of ISM frequency band Comparison between different wireless technologies ( and

More information

Overview of Network Hardware and Software. CS158a Chris Pollett Jan 29, 2007.

Overview of Network Hardware and Software. CS158a Chris Pollett Jan 29, 2007. Overview of Network Hardware and Software CS158a Chris Pollett Jan 29, 2007. Outline Scales of Networks Protocol Hierarchies Scales of Networks Last day, we talked about broadcast versus point-to-point

More information

LTE, WLAN, BLUETOOTHB

LTE, WLAN, BLUETOOTHB LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed

More information

IEEE 802 Protocol Layers. IEEE 802.11 Wireless LAN Standard. Protocol Architecture. Protocol Architecture. Separation of LLC and MAC.

IEEE 802 Protocol Layers. IEEE 802.11 Wireless LAN Standard. Protocol Architecture. Protocol Architecture. Separation of LLC and MAC. IEEE 802.11 Wireless LAN Standard IEEE 802 Protocol Layers Chapter 14 Protocol Architecture Functions of physical layer: Encoding/decoding of signals Preamble generation/removal (for synchronization) Bit

More information

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5, September

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5, September Analysis and Implementation of IEEE 802.11 MAC Protocol for Wireless Sensor Networks Urmila A. Patil, Smita V. Modi, Suma B.J. Associate Professor, Student, Student Abstract: Energy Consumption in Wireless

More information

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii TABLE OF CONTENTS Dedication Table of Contents Preface v vii xvii Chapter 1 Overview of Wireless Networks 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Signal Coverage Propagation Mechanisms 1.2.1 Multipath 1.2.2 Delay

More information

How To Determine The Capacity Of An 802.11B Network

How To Determine The Capacity Of An 802.11B Network Capacity of an IEEE 802.11b Wireless LAN supporting VoIP To appear in Proc. IEEE Int. Conference on Communications (ICC) 2004 David P. Hole and Fouad A. Tobagi Dept. of Electrical Engineering, Stanford

More information

802.16 - Usage. Wireless Broadband Networks. Need for Speed WMAN

802.16 - Usage. Wireless Broadband Networks. Need for Speed WMAN Wireless Broadband Networks - Usage WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile

More information

IEEE 802.11 Technical Tutorial. Introduction. IEEE 802.11 Architecture

IEEE 802.11 Technical Tutorial. Introduction. IEEE 802.11 Architecture IEEE 802.11 Technical Tutorial Introduction The purpose of this document is to give technical readers a basic overview of the new 802.11 Standard, enabling them to understand the basic concepts, principle

More information

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set

More information

Introduction Chapter 1. Uses of Computer Networks

Introduction Chapter 1. Uses of Computer Networks Introduction Chapter 1 Uses of Computer Networks Network Hardware Network Software Reference Models Example Networks Network Standardization Metric Units Revised: August 2011 Uses of Computer Networks

More information

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

Figure 1: cellular system architecture

Figure 1: cellular system architecture Question 1: (30 marks) Consider a FDM cellular system with 120 cites, a frequency reuse factor of N=12, and 900 overall two-way channels. Omni-directional antennas are used: Figure 1 shows some of the

More information

Underlying Technology As already described, one of the key aspects of wireless mobility is mobility management; how to keep track of the address of,

Underlying Technology As already described, one of the key aspects of wireless mobility is mobility management; how to keep track of the address of, Wireless Mobility Introduction Whether its vehicle tracking or teleoperation or even just connecting people on the move, mobile wireless communication enables a wide variety of applications. A key aspect

More information

Demystifying Wireless for Real-World Measurement Applications

Demystifying Wireless for Real-World Measurement Applications Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Demystifying Wireless for Real-World Measurement Applications Kurt Veggeberg, Business,

More information

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions Environmental Monitoring: Guide to Selecting Wireless Communication Solutions By: Scott South Published in WaterWorld, January 2005 (Page 48) Rapidly growing demands for information and increased productivity

More information

The Basics of Wireless Local Area Networks

The Basics of Wireless Local Area Networks The Basics of Wireless Local Area Networks Andreas Johnsen Student at Mälardalens högskola ajn05012@student.mdh.se +46 712345678 ABSTRACT This paper is written as a brief education about the basics of

More information

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks LANs Local Area Networks via the Media Access Control (MAC) SubLayer 1 Local Area Networks Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring 2 Network Layer

More information

IT4405 Computer Networks (Compulsory)

IT4405 Computer Networks (Compulsory) IT4405 Computer Networks (Compulsory) INTRODUCTION This course provides a comprehensive insight into the fundamental concepts in data communications, computer network systems and protocols both fixed and

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

SECTION 2 TECHNICAL DESCRIPTION OF BPL SYSTEMS

SECTION 2 TECHNICAL DESCRIPTION OF BPL SYSTEMS SECTION 2 TECHNICAL DESCRIPTION OF SYSTEMS 2.1 INTRODUCTION Access equipment consists of injectors (also known as concentrators), repeaters, and extractors. injectors are tied to the backbone via fiber

More information

An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 802.11b Networks

An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 802.11b Networks An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 82.11b Networks Sachin Garg sgarg@avaya.com Avaya Labs Research Basking Ridge, NJ USA Martin Kappes mkappes@avaya.com Avaya Labs Research

More information

Ethernet, VLAN, Ethernet Carrier Grade

Ethernet, VLAN, Ethernet Carrier Grade Ethernet, VLAN, Ethernet Carrier Grade Dr. Rami Langar LIP6/PHARE UPMC - University of Paris 6 Rami.langar@lip6.fr www-phare.lip6.fr/~langar RTEL 1 Point-to-Point vs. Broadcast Media Point-to-point PPP

More information