Chapter 7 Yielding criteria



Similar documents
ME 612 Metal Forming and Theory of Plasticity. 6. Strain

Physics. Lesson Plan #9 Energy, Work and Simple Machines David V. Fansler Beddingfield High School

The Casino Experience

at 10 knots to avoid the hurricane, what could be the maximum CPA? 59 miles - 54 nm STEP 1 Ship s Speed Radius (e-r) 10 k nm every 6 minutes

Problem Solving Session 1: Electric Dipoles and Torque

HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

Factors that Influence Memory

C e r t ifie d Se c u r e W e b

The (Bad?) Timing of Mutual Fund Investors. Oded Braverman,* Shmuel Kandel,** and Avi Wohl*** First version: February 2005 This version: August 2005

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

Handout 3. Free Electron Gas in 2D and 1D

WORKING PAPER. Design Of Extended Warranties In Supply Chains

( 1 ) Obtain the equation of the circle passing through the points ( 5, - 8 ), ( - 2, 9 ) and ( 2, 1 ).

HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004

Integration of Unemployment Insurance with Pension Through Individual Savings Account

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Exam 3: Equation Summary

United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane

PY1052 Problem Set 8 Autumn 2004 Solutions

Implied volatility formula of European Power Option Pricing

Derivations and Applications of Greek Letters Review and

A Model for Antenna-Plasma Wave Coupling towards Control of Uniformity in Slot-Excited Microwave Discharges

HOMEWORK FOR UNIT 5-1: FORCE AND MOTION

Question 3: How do you find the relative extrema of a function?

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Incorporating Statistical Process Control and Statistical Quality Control Techniques into a Quality Assurance Program

UNIT CIRCLE TRIGONOMETRY

4a 4ab b (count number of places from first non-zero digit to

OPTIONS EVALUATION - BLACK-SCHOLES MODEL VS. BINOMIAL OPTIONS PRICING MODEL

New Basis Functions. Section 8. Complex Fourier Series

12. Rolling, Torque, and Angular Momentum

ACE-1/onearm #show service-policy client-vips

Episode 401: Newton s law of universal gravitation

Transistor is a semiconductor device with fast respond and accuracy. There are two types

C relative to O being abc,, respectively, then b a c.

Model Question Paper Mathematics Class XII

Welcome to the workshop Occupational science as a theoreticalfoundation for practice in the social arena

FITNET FFS MK7 Section 8 CREEP MODULE. Module Coordinator: RA Ainsworth BRITISH ENERGY, UK

Load Balancing Algorithm Based on QoS Awareness Applied in Wireless Networks

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Coordinate Systems L. M. Kalnins, March 2009

IMPACT OF THE OPERATIONS MANAGER S DUAL ROLE ON INVENTORY POLICY *

AP Calculus AB 2008 Scoring Guidelines

POINT OF INTERSECTION OF TWO STRAIGHT LINES

IT Update - August 2006

Forces & Magnetic Dipoles. r r τ = μ B r


Calculation of torque

4.1 - Trigonometric Functions of Acute Angles

Two vectors are equal if they have the same length and direction. They do not

11 + Non-verbal Reasoning

fun

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

NURBS Drawing Week 5, Lecture 10

Section 7.4: Exponential Growth and Decay

Parallel and Distributed Programming. Performance Metrics

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Displacement, Velocity And Acceleration

Put the human back in Human Resources.

THREE DIMENSIONAL GEOMETRY

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

Should I Stay or Should I Go? Migration under Uncertainty: A New Approach

Analytical Proof of Newton's Force Laws


Core Maths C3. Revision Notes

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

High Voltage Cables. Figure Layout of three, single-core cables

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

Campus Sustainability Assessment and Related Literature

Coordinate Transformation


Mechanics 1: Motion in a Central Force Field

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

CONCEPT OF TIME AND VALUE OFMONEY. Simple and Compound interest

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION

Analysis of Stresses and Strains

Phys 2101 Gabriela González. cos. sin. sin

DEGRADATION MODEL OF BREAST IMAGING BY DISPERSED RADIATION

Chapter 4: Matrix Norms

Equations Involving Lines and Planes Standard equations for lines in space

Math 265 (Butler) Practice Midterm II B (Solutions)

MAT188H1S Lec0101 Burbulla

Chapter 5.1 and 5.2 Triangles

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

Solutions Manual for How to Read and Do Proofs

Lecture 3: Diffusion: Fick s first law

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Mathematics Notes for Class 12 chapter 10. Vector Algebra

The Vector or Cross Product

Masters Mens Physique 45+

R&DE (Engineers), DRDO. Theories of Failure. Ramadas Chennamsetti

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

FEE-HELP INFORMATION SHEET FOR DOMESTIC FULL FEE STUDENTS

Transcription:

Chat 7 Yiling itia. Citia fo yiling What is th maning about yil ition? In this as th stss is un-axial an this oint an aily b tmin. But what if th a sval stss ating at a oint in iffnt ition? Th itia fo iing whih ombination of multi-axial stss will aus yiling a all itia.. Thoy of yil ition- A Tsa ition Yiling will ou whn th maximum sha stss ahs th valus of th maximum sha stss ouing un siml tnsion. Th maximum sha stss in multi-axial stss th maximum sha stss in siml tnsion max,, 換 言 之, 最 大 剪 應 力 為 材 料 就 降 伏

Fo u sha k k k 又 k k Fo u sha k stat, th yiling is han if k Th von-miss yil ition Yiling bgin whn th otahal sha stss ahs th otahal sha stss at yil in siml tnsion. τ ot τ ot, o 又

6 ot x y y z x z xy yz zx τ τ τ τ τ ot, o 註 : τ ot, o 為 八 面 體 上 之 剪 應 力 故 由 τot τot, o 得 x z x y x z 6 τxy τ yz τzx 換 言 之, 八 面 體 之 剪 應 力 為 材 料 就 降 伏 Fo th inial stss 又 [ 6 x y y z x z xy xz yz ] J τ τ τ 6 得 J o Fo th as of u sha

k, 6 k k 註 : k 為 純 剪 應 力 之 大 小 故 von-miss yil 可 簡 化 為 : z J k Disussion: Fo Tsa ition Fo Von-Miss Yil ition kt.5 kv.577 k > k V T Yil sufa an Haigh-wstgaa stss sa Fom th yiling ition, th sha onition in multi-axial stss th sha onition in siml tnsion F K k < > : Th stss stat k : obtain fom siml tnsion 4

Yil sufa An Haigh-Wstgaa stss sa Fom th fom of yiling ition. That is Th sha onition in multiaxial stss Th sha onition in siml tnsion F K k ---------------- obtain fom siml tnsion Th stss stat A. Rsnts a hy sufa in th six-imnsional stss sa, any oint on this sufa snts a oints a oint at whih yiling an bgin an funtion is all th yiling funtion. Th sufa in th stss sa is all th yil sufa. Sin th otating th axs os not afft th yiling stat, w an hoos th inial axs fo th ooinats. F,, K Futhmo, sin it is always assum that hyostati tnsion o omssion os not influn yiling, w an assum that only th stss viatos nt into th yiling funtion. f s, s, s K 5

an s, s, s an b witn in tms of th invaiants J, J, J J s s s Wh J s s s J s s s f J, J K k Fo von-miss itial τot s s s o 和 m無 關 J o J o k, an k is th yil in u sha. Fo Tsa ition: m m ss o 和 m無 關 4J 7J 6k J 96k J 64k 4 6 B. Haigh-Wst-gaa stss sa. > yiling ition an b xss as funtion of,, 6

故 可 以,, 為 座 標 軸, 可 得 函 數 圖. Th inial,, ooinat systm snts a stss sa all th Haigh-wWst-gaa stss sa. uuu Consi a lin ON whih assing though th oigin, an having qual angls With th ooinat s axs, thn vy oint on this lin is m 即 該 線 之 點 皆 為 靜 水 壓 應 力 uuu Th lan niula toon, its quation will b ρ Wh uuu uuu ON OPg uuu ρ an ρ : is th istan fom oigin to th lan ON 7

an, is th lan all π-lan. An this is th u sha stss onition. uuu u uuu ON A A OP m ON An uuu u u u B P A i j k m m m B m m m s s s Q J s s s ss B J # an J von Miss u B J > th omonnts of B a thfo th stss > iatos s, s, s uuu u u u u ON B P A B m uuu J u at Haigh - Wst - gaa stss sa ON B Sin it is assum that yiling is tmin by th iatoi stat of stss only, it follows that if on of th oints on th lin uuu though aalll to ON lis on th yil sufa > thy must all li on th yil sufa, sin thy all hav th sam iatoi stss omonnts. Hn th yil sufa must b omos of lins uuu aalll to ON ; i., it must b a ylin with gnatos aalll to uuu ON. 8

Not: a Th intstion of this yil ylin with any lan niula to it will ou a uv all th yil lous. Sin this uv will b th sam fo all lans niula to th ylin. > Fo this uos w hoos th π-lan whih m. b If, as usual, isotoy is assum so that otating th axs os not afft th yiling. That mans a lin niula to, ;, ;, ; a thfo lins of symmty an w now hav six symmti stos.,-,,-,,- Th yil sufa must b symmti in th inial stss sin it tainly os not matt. 9

> Hn, w hav ivi th yil lous into symmti stos, ah of o. an w n only onsi th stss stats lying in on of ths stos. C. Th stss in π-lan a os os / b sin sin 6 a b m m m J b 6 tan tan tan a > > tan if Fo von Mis yil ition

J o o Th yil lous is thfo a il of aius o NoT: a.fo tan an m at π-lan, That mans is u sha stat m b fo, fom tan > uniaxial stss If th yil lous is assum to b onvx, th bouns on yil loi will b btwn C' A B' an C A B.

A yiling uv blow CAB Whih ass th C, A, B oint will not b onvx is all low boun. a yiling uv outsi C C' A B' B whih ass th C,A,B oint will not b onvx also is all u boun. 4 Subsqunt yil sufas, Loaing an unloaing 前 面 所 討 論 的 是 "initial yil" 之 問 題, 但 若 yiling 後, 其 yiling sufa 會 如 何 呢? 即 "stain hans" 之 問 題 Fo a yil Funtion F k 加 工 硬 化 方 程 式 An k is a valu wih fin a yil sufa. an stain-han funtion F is loaing funtion. Aft yiling has ou, k tak on a nw valu, ning on th stain-haning otis of th matial. Aft yiling has ou, k taks on a nw valu, ning on th stain-haning otis of th matial.

A. Loaing an unloaing fo a stain-haning matial Th ass fo a stain-haning matial: A B C Loaing lasti flow is ouing. F k, F > Nutal loaing stss stat moving on yil sufa. F k, F unloaing F k, F < Not: 若 取,, 為 座 標 軸, F j j i j j u uu F i j uu u F : 表 示 垂 直 yil sufa 之 向 量 i j j uu uu : 任 意 增 量 向 量 故 F j < j 表 示 曾 增 加 向 量 為 unloaing B. Subsqunt yil loi A Isotoi haning If ' >, thn th nw yil lous is a il of aius ' fo von-misss ition, whih is lag than, but onnti with, th oigin yil il. Th matial is all stain han isotoially.

B Baushing fft 註 : 可 發 現 當 剪 應 力 走 不 同 方 向 時, 橢 圓 不 在! Pag Kinmati mol Assum : a Th igi fam having th sha of th yil sufa bth fam is assum to b onstain against otation an to b ftly smooth, so that only fos nomal to th fam an b tansmitt to it. Th stat of stss an th stat of stain a snt in th mol in iffnt ways, Fo xaml, fo a igi stain-haning 4

matial, th islamnt of nt of th fam lativ to th oigin is ootional to th total stain, an th stat of stss is snt by th osition of th in lativ to th oigin. Not: th isotoi haning assumtion is still gnally us. Fo small lasti stain it obably givs answs that a suffiintly auat. 5

6,Plasti stss-stain lations- 在 彈 性 區 之 應 力 和 應 變 之 關 係 已 經 討 論 過 現 在, 則 更 進 一 步 討 論 塑 性 區 之 stss-stain. Gnal ivation of lasti stss-stain lations. not: 所 有 的 運 算 皆 為 向 量 法 則 Fo obtaining gnal stss-stain lation, two finition an two assumtion a n. Dfinition: apositiv wok is on by xtnal agny uing th aliation of th st of stss. > bth nt wok fom by it ov th yl of aliation an moval is zo o osition. lt lasti stain nggy Assum:aA loaing funtion xists. At ah stag of th lasti fomation th xists a funtion so that futh lasti fomation taks la only fo > k an on th stain histoy. Both an k may n on th xisting stat of stss 6

lina: bth lation btwn infinitsimals of stss an lasti stain is G F Not: a may b funtions of stss, stain, an histoy of loaing that imlis thy a innnt of th bfom assumtion, it follows that fo lasti may b ali to th stss an stain inmnts. If '' an a two inmnts ouing lasti stain ' inmnts, '' an.an ' '' Bl : inmntal stss niula to f ' Bl : inmntal stss tangnt to f ' B l ou no lasti flow 延 著 硬 化 方 程 式, 繞 著 走 依 然 是 彈 性 範 圍 ' '' '' Fom assumtion. ' '' Fom assumtion. F > ' ' '' Q F > '' an a F a > 7

Fom F a > '' F a F F k l F F G F G F an G C k is all otntial funtion k Fom finition. ' '' k k ' Baus ou no W an hos any onst. ositiv o ngativ, ' '' ' will ou th sam < lasti inmnt ' G F Q F > ' G ' GF G is a onstant whih may k G G Ck b funtion of stss, stain an histoy of loaing k k 8

f G F GF λ Haning valu ^ 垂 直 yil lous之 方 向 梯 度 λ: is a nonngativ onstant whih may vay though out th loaing histoy > Th lasti stain inmnt vto must b nomal to th yil sufa. '' Not : Fom G F F G '' F 之 增 加 由 控 制, 而 F 則 為 yil lous 半 徑 增 加 量 '' 一 Th flow uls assoiat with von-miss an Tsa 一 Fo th von-miss yil funtion F J s s 6 o s s Fom GF GF s m s GFs λs Paatl - Russ quation 9

二 Fo Tsa yil funtion Assuming it is known whih is th maximum inial stss an minimum inial stss, > > F,, o λ λ a known as th flow uls assoiat with th von-miss an Tsa itia. 二.Pftly Plasti Matial Fo ial lastiity it is also assum that F xists an is funtion of stss only, an that lasti flow tak la without limit whn F k, an th matial bhavs lastially whn F Fo lasti flow. F // λ <k.

// λ wh λ is a sala. 三.Dtmination of th funtion G.. Efftiv stss an stain 一 Efftiv stss Fom yil ition F K o f Fom uni-axial tnsil tst. 即 左 式 為 多 軸 壓 力 狀 態, 可 相 對 某 一 值, 若 該 值 等 於 則 降 伏 稱 之 fftiv stss. Dfinition F K J Fo Von-Miss s ' s, ss Not: 當 降 伏 時, 即 應 力 之 降 伏 相 當 於 單 軸 應 力 之 降 伏. 二 Efftiv lasti stain Fom th finition of lasti wokefftiv lasti wok s If lasti flow is han s s an ss Gλs s Gλ

Fo Von-miss ition x y z xy yz zx Fo uniaxial tns it tst y x, z x x 即 降 伏 之 塑 性 應 變 當 於 單 軸 應 力 之 降 伏 即 s x 塑 性 功 能 不 變 法 則 達 到 塑 性 狀 態 所 所 需 之 功 和 過 程 無 關 三 Dtmination of th Funtion G. Fom GF an GF FG ' ' Th slo of th uniaxial stss-lasti stain uv at th unt valu of

Fo Von-Miss ition s, s s Q ss s, s s s s s ' s Q ss s s ' s s Th flow ul assoiat with von miss yil ition o s s v v i j vi, x x j j s s ' an s If th vloity fil is know v v i j vi, x x j j

s will b know, If in lasti stat.? Inmntal an fomation thois s s Fo a all inmntal stss-stain lations baus thy lat th inmnts of lasti stain to th stss. Fo th as of ootion o aial loaing i. if all th stss a inasing in atio stss isk o ylins, th inmntal thoy us of th fomation thoy. s K K IF s s monotonially inasing funtion of K an K is Thn s Ks K s s s Th lasti stain is a funtion only of th unt of stss an is innnt of th loaing ath.?convxity of yil sufa. Singula oints. 一. Convxity of yil sufa Lt som xtnal agny a stsss along som abitay ath insi th sufa until a stat of stss is ah whih is on th 4

yil sufa. Now suos th xtnal agny to a a vy small outwa oint stss inmnt whih ous small lasti stain inmnts, as oll as lasti inmnts. Th wok on by th xtnal agny ov th yl is Elastolasti oblms of shs an ylins 一 Shial ooinats Th oblms of shs φ φ a Th quilibium quation φ sinφ φ sinφ sinφφ volum F an F boy fo unit b Th stain-islamnt o omatibility lation 5

6 > < > < u Fom u u φ φ, ~~~~~, Th stss-stain lation E E E φ µ µ µ µ ] [ ] [ Ⅰ. Von-Mis yil funtion ] [ 6, S S J J an, Ⅱ.Panfl-uss Equation Fom S sgn 二 Pola ooinats-fo ylins oblms Th quation of quilibium of stss F Th stain-islamnt lations o omatibility quation u u, z

7 Th stss-stain lation ] [ ] [ ] [ z z z z E E E µ µ µ NOTE: fo th as of lan stss, z,an fo th as of lan stain z o. z onst fo gnaliz stain. In both ass th sta stsss an stains a zo. 三 Thik Hollow sh with intnal ssu Consi a sh with inn aius a an out aius b, subjt to an intnal ssu P. It is obvious that omlt symmty about th nt will xist so that th aial an any two tangntial ition will b inial ition. Elasti solution ] [ E E Fom µ µ µ an quabhuiums quations omatituibility E E ] [ µ µ µ

8 µ µ µ µ Fom lt D z z z z z ϑ ϑ, 原 式 ϑ y z h y Λ ϑ ϑ ϑ ϑ y y y h Fom bounay onition b b a P a, a b b Pa a b Pa a b Pa a b a b Pa a b Pa a b b a Fo onvnin th following imnsionlss quantitis a now intou:,, a a b ρ β,, S S P P β ρ β ρ β ρ β ρ P P S S w an : som stat of stss insi

th loaing sufa π π Q os aut angl π π Q osψ aut angl Fo onvx sufa No vto an ass outsi th sufa intsting th sufa twi. Th sufa must thfo b onvx. π π at ψ onition 9

Fo sufa is not onvx If th sufa is not onvx, th xist, som oints, suh that th vto fom an obtus angl. 二. Singula oint- Th yil sufa has vtis o ons wh th gaint is not fin Tsa hxagon. Suh oint an b tat by intouing an auxiliay aamt. 7.Aliation To solv any lastiity oblm, fou sts of lations must b satisfi as: a Th quation of quilibium of stss f j x j b Th stain-islamnt o omatibility lations: u u i j x j xi ii fo lastiity

Th stss-stain lations I Von-Miss yil funtion J, J s s II Pantl-Russ Equations s an Th bounay onitions stss-bounay l i τ j islamnt-bounay uj U ss Tst by tnsil-tt J 6

If w know, thn any oint stss oul b know. m If uvs a now awn in th xy lan suh that at vy oint of ah uv th tangnt oinis with on of maximum sha ition, Th two familis of uvs all sha lins, o sli lins. α lin β lin Not:<a> α, β a mly aamts o uvilina ooinats us to signat th oint un onsiation, just as x an y signat th oint. <b>tak a uv lmnt, Fom mon s yls

Fom x u v x y v v x y x, y, xy t x t y y x v os vsin αβ, vy sin vβ os m K along α lin m K along β lin If w hoos th α, β uv lina ooinat systm,, x α y β m K α α m K along α-uv m m K along β-uv K β β Hnky quation, Fom bounay onition, w obtain, If w know,,, τ m x y xy 三. Giing Vloitis quation Fom Pantl-Russ quation, an inomssibility onition x y x y x y x y s τ xy τ xy xy xy ii x y x y u u x y u u x y an x, y, xy x y y x x ux v v x y v v x y x, y, xy t x t x y y x

v v x y x y x y v v x y τ xy y x v v x y x y Sin th inial axs of stss an stss an of lasti stain inmnt oini, it follows that th maximum sha stss lins an maximum sha vloity lins oinis, o th stss sli lins a th sam as th vloity sli lin. th stain ats nomal to th α an β ition a qual to th man stain at, that man. α β x y Th a no xtnsion, only t t shaing flows in th sli ition. 在 靜 水 壓, 方 向 無 應 變 率 Now onsi th vloitis in th sli ition An vx vα os vβ sin vy vα sin vβ os Tak α, β uv-lin ooinat an vx vα α vβ x α α vy v β β vα y β β vα vβ along a α lin vβ vα along a β lin Giing vloitis quation 四.Gomty of th sli-lin fil 4

Hnky s fist law th angl btwn two sli lins of on family at th oints wh thy a ut by a sli lin of th oth family is onstant along thi lngths. Fom Hnky s quation m K along α lin m K along β lin along AD-α-lin md K D along DC-β-lin md mc 4K K K K K 4K D ma 4K 4K 4K 4K D B C A D B C A A B D C A C C A B along AD-α -lin ma KA md K D along DC-β -lin md KD mc KC 4K K K mc ma D A Th sam mtho along AB an BC D C K K 4K mc D B C A D B C A A B D C ma C A 4K K K K K 4K A C C A 4K 4K 4K 4K B B 5

Maximum An Otahal sha stss 一. Maximum sha stss Lt us tak th ooinat axs in th inial ition. An any stion ition is v l i nj mk v j Fom vi Tvj v T, v T, v T v v v uuuu Tv Tvg Tv v v v 6