Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter

Similar documents
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Lecture 13. Understanding Probability and Long-Term Expectations

AP Statistics 7!3! 6!

Section 6.2 Definition of Probability

Chapter 5 Section 2 day f.notebook. November 17, Honors Statistics

In the situations that we will encounter, we may generally calculate the probability of an event

The study of probability has increased in popularity over the years because of its wide range of practical applications.

ACMS Section 02 Elements of Statistics October 28, Midterm Examination II

Unit 19: Probability Models

If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not

AP Stats - Probability Review

ACMS Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

Introduction to Game Theory IIIii. Payoffs: Probability and Expected Utility

Lab 11. Simulations. The Concept

MATH 140 Lab 4: Probability and the Standard Normal Distribution

1) The table lists the smoking habits of a group of college students. Answer: 0.218

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections

Chapter 5 A Survey of Probability Concepts

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Session 8 Probability

Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS

STAT 35A HW2 Solutions

Statistics in Geophysics: Introduction and Probability Theory

Chapter 4 - Practice Problems 1

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

STA 371G: Statistics and Modeling

Chapter 4: Probability and Counting Rules

$ ( $1) = 40

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! 314

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I

Math 58. Rumbos Fall Solutions to Review Problems for Exam 2

Statistics 151 Practice Midterm 1 Mike Kowalski

What is the purpose of this document? What is in the document? How do I send Feedback?

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Probability definitions

Chapter 4 Probability: Overview; Basic Concepts of Probability; Addition Rule; Multiplication Rule: Basics; Multiplication Rule: Complements and

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

Statistics 100A Homework 3 Solutions

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

CONTINGENCY (CROSS- TABULATION) TABLES

Mind on Statistics. Chapter 8

Curriculum Design for Mathematic Lesson Probability

Basic Probability Theory II

A Few Basics of Probability

Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 2012

The Binomial Probability Distribution

Math 201: Statistics November 30, 2006

Probability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur.

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

EXAM. Exam #3. Math 1430, Spring April 21, 2001 ANSWERS

An Introduction to Basic Statistics and Probability

Math 728 Lesson Plan

36 Odds, Expected Value, and Conditional Probability

Chapter 13 & 14 - Probability PART

Stat 20: Intro to Probability and Statistics

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section:

2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)

Responsible Gambling Education Unit: Mathematics A & B

Math/Stats 342: Solutions to Homework

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

Statistics 100A Homework 2 Solutions

MAS113 Introduction to Probability and Statistics

Probability and Expected Value

Probability & Probability Distributions

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space)

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Example: Find the expected value of the random variable X. X P(X)

The Procedures of Monte Carlo Simulation (and Resampling)

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Math 141. Lecture 2: More Probability! Albyn Jones 1. jones/courses/ Library 304. Albyn Jones Math 141

Thursday, October 18, 2001 Page: 1 STAT 305. Solutions

6.042/18.062J Mathematics for Computer Science. Expected Value I

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

How To Find The Sample Space Of A Random Experiment In R (Programming)

MA 1125 Lecture 14 - Expected Values. Friday, February 28, Objectives: Introduce expected values.

Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3

COMMON CORE STATE STANDARDS FOR

AP * Statistics Review. Designing a Study

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.

Fundamentals of Probability

Probabilities and Proportions

Homework 3 Solution, due July 16

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

PROBABILITY SECOND EDITION

Third Grade Math Games

Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.)

Chapter 3. Probability

Section 7C: The Law of Large Numbers

5 Cumulative Frequency Distributions, Area under the Curve & Probability Basics 5.1 Relative Frequencies, Cumulative Frequencies, and Ogives

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Transcription:

Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to do that in writing at end of quarter. Grades are curved at end of quarter, not now. Material gets harder from here on! Practice problems with answers will be posted on website. Chapter 7 Probability Today: 7.1 to 7.3, small part of 7.4 Fi Fri: Finish i h74 7.4, 75 7.5 Skip Section 7.6 Mon: Section 7.7 and supplemental material on intuition and probability Random Circumstance A random circumstance is one in which the outcome is unpredictable. Could be unpredictable because: It isn't determined yet or We have incomplete knowledge Example of a random circumstance Sex of an unborn child is unpredictable, so it is a random circumstance. We can talk about the probability that a child will be a boy. Why is it unpredictable? Before conception: It isn't determined yet After conception: We have incomplete knowledge Goals in this chapter Understand what is meant by probability Assign probabilities to possible outcomes of random circumstances. Learn how to use probability wisely What does probability mean?? What does it mean to say: The probability of rain tomorrow is.3. The probability that a coin toss will land heads up is ½. The probability that humans will survive to the year 3000 is.8. Is the word probability interpreted the same way in all of these? 1

Two basic interpretations of probability (Summary box, p. 237) Interpretation 1: Relative frequency Used for repeatable circumstances The probability of an outcome is the proportion of time that outcome does or will happen in the long run. Interpretation 2: Personal probability (subjective) Most useful for one-time events The probability of an outcome is the degree to which an individual believes it will happen. Two methods for determining relative frequency probability 1. Make an assumption about the physical world or 2. Observe the relative frequency of an outcome over many repetitions. Repetitions can be: a. Over time,, such as how often a flight is late b. Over individuals, by measuring a representative sample from a larger population and observing the relative frequency of an outcome or category of interest, such as the probability that a randomly selected person has a certain gene. How relative frequency probabilities are determined, Method 1: Make an assumption about the physical world. Examples: Flip a coin, probability it lands heads = ½. We assume the coin is balanced in such a way that t it is equally likely to land on either side. Draw a card from a shuffled, regular deck of cards, probability of getting a heart = ¼ We assume all cards are equally likely to be drawn How relative frequency probabilities are determined, Method 2a (over time): Observe the relative frequency of an outcome over many repetitions (long run relative frequency) Probability that a flight will be on time: According to United Airline s website, the probability that Flight 436 from SNA to Chicago will be on time (within 14 minutes of the stated time) is 0.90. Based on observing this particular flight over many, many days; it was on time on 90% of those days. The relative frequency on time =.9 How relative frequency probabilities are determined, Method 2b (over individuals): Measure a representative sample and observe the relative frequency of possible outcomes or categories for the sample Probability that an adult female in the US believes in life after death is about.789. [It s.72 for males] Based on a national survey that asked 517 women if they believed in life after death 408 said yes Relative frequency is 408/517 =.789 Note about methods 2a and 2b: Usually these are just estimates of the true probability, based on n repetitions or n people in the sample. So, they have an associated margin of error with them. Example: Probability that an adult female in the US believes in life after death =.789, based on n = 517 women. 1 Margin of error is 517 =.044. 2

Personal Probability Especially useful for one-time only events The personal probability of an outcome is the degree to which an individual believes it will happen. Examples: What is the probability that you will get a B in this class? We can t base the answer on relative frequency! LA Times, 10/8/09, scientists have determined that the probability of the asteroid Apophis hitting the earth in 2036 is 1 in 250,000. In 2004, they thought the probability was.027 that it would hit earth in 2029. Expert opinion has been updated. Notes about personal probability Sometimes the individual is an expert, and combines subjective information with data and models, such as in assessing the probability bilit of a magnitude 7 or higher h earthquake in our area in the next 10 years. Sometime there is overlap in these methods, such as determining probability of rain tomorrow uses similar pasts. Clicker questions not for credit! The probability that the winning Daily 3 lottery number tomorrow evening will be 777 is 1/1000. Which interpretation is best? A. Rel. freq. based on physical assumption B. Rel. freq. based on long run over time C. Rel. freq. based on representative sample D. Personal probability Clicker questions not for credit! The probability that the SF Giants will win the World Series this year is.40. Which interpretation is best? A. Rel. freq. based on physical assumption B. Rel. freq. based on long run over time C. Rel. freq. based on representative sample D. Personal probability Clicker questions not for credit! The probability that the plaintiff in a medical malpractice suit will win is.29. (Based on an article in USA Weekend) Which interpretation is best? A. Rel. freq. based on physical assumption B. Rel. freq. based on long run over time C. Rel. freq. based on representative sample D. Personal probability Section 7.3: Probability definitions and relationships We will use 2 examples to illustrate: 1. Daily 3 lottery winning number. Outcome = 3 digit number, from 000 to 999 2. Choice of 3 parking lots, you always try lot 1, then lot 2, then lot 3. Lot 1 works 30% of the time, you aren t late Lot 2 works 50% of the time, you are late Lot 3 always works, so you park there 20% of the time, and when you do, you are very late! 3

Definitions of Sample space and Simple event The sample space S for a random circumstance is the collection of unique, non-overlapping outcomes. A simple event is one outcome in the sample space. Ex 1: S = {000, 001, 002,, 999} Simple event: 659 There are 1000 simple events. Ex 2: S = {Lot 1, Lot 2, Lot 3} Simple event: Lot 2 There are 3 simple events. Definition and notation for an event Definition: An event is any subset of the sample space. (One or more simple events) Notation: A, B, C, etc. Ex 1: A = winning number begins with 00 A = {000, 001, 002, 003,, 009} B = all same digits = {000, 111,, 999} Ex 2: A = late for class = {Lot 2, Lot 3} Probability of Events: Notation and Rules (for all interpretations and methods) Notation: P(A) = probability of the event A Rules: Probabilities are always assigned to simple events such that these 2 rules must hold: 1. 0 P(A) 1 for each simple event A 2. The sum of probabilities of all simple events in the sample space is 1. The probability of any event is the sum of probabilities for the simple events that are part of it. Special Case: Assigning Probabilities to Equally Likely Simple Events P(A) = probability of the event A Remember, Conditions for Valid Probabilities: Each probability is between 0 and 1. The sum of the probabilities over all possible simple events is 1. Equally Likely Simple Events If there are k simple events in the sample space and they are all equally likely, then the probability of the occurrence of each one is 1/k. Example: California Daily 3 Lottery Random Circumstance: A three-digit winning lottery number is selected. Sample Space: {000, 001, 002, 003,..., 997, 998, 999}. There are 1000 simple events. Probabilities for Simple Event: Probability that any specific three-digit number is a winner is 1/1000. Physical assumption: all three-digit numbers are equally likely. Event A = last digit is a 9 = {009, 019,..., 999}. P(A) = 100/1000 = 1/10. Event B = three digits are all the same = {000, 111, 222, 333, 444, 555, 666, 777, 888, 999}. Since event B contains 10 events, P(B) = 10/1000 = 1/100. Example 2: Simple events are not equally likely Simple Event Probability Park in Lot 1.30 Park in Lot 2.50 Park in Lot 3.20 Event A = late for class = {Lot 2, Lot 3} P(A) =.50 +.20 =.70 Note that these sum to 1 4

Probability in daily language: People often express probabilities as percents, proportions, probabilities: United flight 436 from SNA to Chicago is late 10 percent of fthe time. The proportion of time United flight 436 is late is.1. The probability that United flight 436 from SNA to Chicago will be late is.1. These are all equivalent. RELATIONSHIPS BETWEEN EVENTS Defined for events in the same random circumstance only: Complement of an event Mutually exclusive events = disjoint events Defined for events in the same or different random circumstances: Independent events Conditional events Definition and Rule 1 (apply to events in the same random circumstance): Definition: One event is the complement of another event if: They have no simple events in common, AND They cover all simple events Notation: The complement of A is A C RULE 1: P(A C ) = 1 P(A) Ex 2: Random circumstance = parking on one day A = late for class, A C = on time P(A) =.70, so P(A C ) = 1.70 =.30 Complementary Events, Continued Rule 1: P(A) + P(A C ) = 1 Example: Daily 3 Lottery A = player buying single ticket wins A C = player does not win P(A) = 1/1000 so P(A C ) = 999/1000 Example: On-time flights A = flight you are taking will be on time A C = flight will be late Suppose P(A) =.80, then P(A C ) = 1.80 =.20. Mutually Exclusive Events Two events are mutually exclusive, or equivalently disjoint, if they do not contain any of the same simple events (outcomes). (Applies in same random circumstance.) Example: Daily 3 Lottery A = all three digits are the same (000, 111, etc.) B = the number starts with 13 (130, 131, etc.) The events A and B are mutually exclusive (disjoint), but they are not complementary. (No overlap, but don t cover all possibilities.) Independent and Dependent Events Two events are independent of each other if knowing that one will occur (or has occurred) does not change the probability that the other occurs. Two events are dependent if knowing that one will occur (or has occurred) changes the probability that the other occurs. The definitions can apply either to events within the same random circumstance or to events from two separate random circumstances. 5

EXAMPLE OF INDEPENDENT EVENTS Events in the same random circumstance: Daily 3 lottery on the same draw A = first digit is 0 B = last digit is 9 Knowing first digit is 0, P(B) is still 1/10. Events in different random circumstances: Daily 3 lottery on different draws A = today s winning number is 191 B = tomorrow s winning number is 875 Knowing today s # was 191, P(B) is still 1/1000 Mutually exclusive or independent? If two events are mutually exclusive (disjoint), they cannot be independent: If disjoint, then knowing A occurs means P(B) = 0 In independent, knowing A occurs gives no knowledge of P(B) Example of mutually exclusive (disjoint): A = today s winning number is 191, B = today s winning number is 875 Example of independent: A = today s winning number is 191 B = tomorrow s winning number is 875 Conditional Probabilities The conditional probability of the event B, given that the event A will occur or has occurred, is the long-run relative frequency with which event B occurs when circumstances are such that A also occurs; written as P(B A). P(B) = unconditional probability event B occurs. P(B A) = probability of B given A = conditional probability event B occurs given that we know A has occurred or will occur. EXAMPLE OF CONDITIONAL PROBABILITY Random circumstance: Observe one randomly selected child A = child slept in darkness as infant [Use total column.] P(A) = 172/479 =.36 B = child did not develop myopia [Use total row] P(B) = 342/479 =.71 P(B A) = P(no myopia slept in dark) [Use darkness row] = 155/172 =.90 P(B) NOTES ABOUT CONDITIONAL PROBABILITY 1. P(B A) generally does not equal P(B). 2. P(B A) = P(B) only when A and B are independent events 3. In Chapter 6, we were actually testing if two types of events were independent. 4. Conditional probabilities are similar to row and column proportions (percents) in contingency tables. (Myopia example on previous page.) 6