Raman Spectroscopy Study of the Pyrochlore Superconductors KOs 2 O 6 and RbOs 2 O 6



Similar documents
Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution

Raman spectroscopy Lecture

Magnetic dynamics driven by spin current

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Time out states and transitions

Raman Spectroscopy Basics

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida

Advanced Research Raman System Raman Spectroscopy Systems

GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE. M.E. Kompan

Group Theory and Chemistry

The Application of Density Functional Theory in Materials Science

Section 6 Raman Scattering (lecture 10)

Hydrogen Bonds in Water-Methanol Mixture

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

s. GARTNER. E. GOGU. H. GFUMM AND R. ZAMBONI*

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering

(Nano)materials characterization

Introduction to EELS

The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization

Theory of Light Scattering in Condensed Matter

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

We bring quality to light. MAS 40 Mini-Array Spectrometer. light measurement

Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Pump-probe experiments with ultra-short temporal resolution

5.33 Lecture Notes: Introduction to Spectroscopy

Vibrational Raman Spectroscopy

Gamma Ray Detection at RIA

Micro-Raman Investigation of Mechanical Stress in Si Device Structures and Phonons in SiGe

LabRAM HR. Research Raman Made Easy! Raman Spectroscopy Systems. Spectroscopy Suite. Powered by:

2012 HORIBA Scientific. All rights reserved HORIBA Scientific. All rights reserved.

Edited by. C'unter. and David S. Moore. Gauglitz. Handbook of Spectroscopy. Second, Enlarged Edition. Volume 4. WlLEY-VCH. VerlagCmbH & Co.

Christine E. Hatch University of Nevada, Reno

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

LabRAM HR Evolution. Research Raman Made Easy!

- thus, the total number of atoms per second that absorb a photon is

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract

Preface Light Microscopy X-ray Diffraction Methods

Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs

Introduction to Superconducting RF (srf)

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Acousto-optic modulator

The Raman Fingerprint of Graphene

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

How To Read A Fiber Optic Sensor

Proton Nuclear Magnetic Resonance Spectroscopy

CONCEPT OF DETERMINISTIC ION IMPLANTATION AT THE NANOSCALE

Quantum Computing for Beginners: Building Qubits

Optics and Spectroscopy at Surfaces and Interfaces

Boardworks AS Physics

Near-field scanning optical microscopy (SNOM)

Pre-Compliance Test Method for Radiated Emissions of Automotive Components Using Scattering Parameter Transfer Functions

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

It has long been a goal to achieve higher spatial resolution in optical imaging and

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator

Realization of a UV fisheye hyperspectral camera

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

RAY TRACING UNIFIED FIELD TRACING

Infrared Spectroscopy 紅 外 線 光 譜 儀

A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY

Computer Vision: Machine Vision Filters. Computer Vision. Optical Filters. 25 August 2014

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Luminescence study of structural changes induced by laser cutting in diamond films

Near-field optics and plasmonics

The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures

THE INSTITUTE FOR SHOCK PHYSICS Understanding Materials at Extreme Dynamic Compression

Wir schaffen Wissen heute für morgen

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

Spatial and temporal coherence of polariton condensates

Status of the Free Electron Laser

Industrial Process Monitoring Requires Rugged AOTF Tools

Brookhaven Magnet Division - Nuclear Physics Program Support Activities

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Proton Nuclear Magnetic Resonance Spectroscopy

WP s involved WP Wide IF-band (650 GHz)

AN2866 Application note

Limiting factors in fiber optic transmissions

Short overview of TEUFEL-project

Magnetization dynamics in lanthanides new frontiers in spin-dependent band mapping at BESSY VSR

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

16 th IOCCG Committee annual meeting. Plymouth, UK February mission: Present status and near future

Introduction to superconductivity

Modification of Graphene Films by Laser-Generated High Energy Particles

THE PROFILE OF PROFESSOR JAN STANKOWSKI - FAMILY AND SCIENTIFIC REMEMBRANCES

A More Efficient Way to De-shelve 137 Ba +

Experiment 5. Lasers and laser mode structure

Recent developments in high bandwidth optical interconnects. Brian Corbett.

Micro Power Generators. Sung Park Kelvin Yuk ECS 203

3D Raman Imaging Nearfield-Raman TERS. Solutions for High-Resolution Confocal Raman Microscopy.

Transcription:

Raman Spectroscopy Study of the Pyrochlore Superconductors KOs 2 O 6 and RbOs 2 O 6 and Joachim Schoenes Institut für Physik der Kondensierten Materie,TU Braunschweig in collaboration with Klaus Doll 1, Janusz Karpinski 2, Zbigniew Bukowski 2 1 Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany 2 Laboratorium für Festkörperphysik, ETH Zürich, Switzerland

Outline Introduction Raman effect Raman measurements for different geometries Conclusions and future prospects 2

Pyrochlore Superconductors S. Yonezawa, Y. Muraoka, Y. Matsushita, Z. Hiroi, J. Phys.: Condens. Matter 16, L9 (2004). G. Schuck, S. M. Kazakov, K. Rogacki, N. D. Zhigadlo, J. Karpinski, Phys. Rev. B 73, 144506 (2006). Z. Hiroi, S. Yonezawa, Y. Nagao, J. Yamaura, Phys. Rev B 76, 014523 (2007). -pyrochlore: A 2 B 2 O 6 O -pyrochlore: a 2 B 2 O 6 A Cd 2 Re 2 O 7 : T c = 1 K KOs 2 O 6 : T c = 9.6 K RbOs 2 O 6 : T c = 6.3 K CsOs 2 O 6 : T c = 3.3 K 3

Proposed Crystal Structures for KOs 2 O 6 3 F43m Fd m Os O K (Rb) (111) oriented crystals from J. Karpinski and Z. Bukowski 4 1 mm

K (Rb) in a Cage of OsO 6 Hiroi et al., Phys. Rev. B 76, 014523 (2007). 5

Superconductivity in KOs2O6 Resistivity Z. Hiroi et al., Phys. Rev. B 76, 014523 (2007). Magnetic Properties G. Schuck et al., Phys. Rev. B 73, 144506 (2006). 6

Specific Heat in KOs2O6 TP Tc Hiroi et al., Phys. Rev. B 76, 014523 (2007). Einstein Temperatures: E1 = 22 K, E2 = 61 K 7

Superconducting Parameters in KOs2O6 2 0 / kbtc = 5 (BCS = 3.5) C / Tc = 2.87 (BCS = 1.43) Tc2 / Hc2 = 0.128 (BCS = 0.168) ep = 2.38 Strong Electron-Phonon Coupling in KOs2O6 8

Motivation for Raman Experiments Raman spectroscopy is powerful to clarify the crystal structure Exact determination of the phonon frequencies Temperature dependence of the Raman spectra give information about phonon relaxation processes like phonon-phonon or electronphonon coupling 9

Raman Effect Stokes Anti-Stokes Example: Raman spectrum of Si Inelastic light scattering by phonons E1 Stokes elastic scattered light v=1 v=0-800 -600 Anti-Stokes Antistokes Stokes Intensity (arb. units) h -400-200 0 200 400 600 E0 800-1 Raman shift (cm ) Normal Raman Resonance Raman 10

Raman Spectrometer LN2 Cryostat Mirror Soleil-BabinetCompensator Interference filter Ar - Laser, 514.5 nm CCD Polarisation filter Sample Objectivlens Projection lens LHe-Cryostat Doublemonochromator Computer Signal processor Singlemonochromator CCD Electronics 11

12

Factor Group Analysis for K(Rb)Os2O6 Space group Os K (Rb) O Raman active modes IR active modes Fd3m 16c 8b 48f A1g+Eg+4T2g 5T1u F43m 16e 3A1+3E+9T2 9T2 4c, 4b 24f, 24g 13

Polarization and Angular Dependence of the Raman Intensity Ag parallel Eg parallel T2g parallel 90 90 90 45 45 45 0 0 0 T2g perpendicular Eg perpendicular 90 90 Ag perpendicular 90 45 45 0 0 45 0 14

Micro-Raman Spectra at Room Temperature KOs2O6 T2g (241.6) parallel perpendicular K rattling mode Ag (488.6) Eg (267.2) T2g (696.3) T2g (74.8) T2g (413.4) 100 200 300 400 500 600-1 Raman shift (cm ) 700 800 Intensity (arb. units) Intensity (arb. units) T2g (238.1) RbOs2O6 parallel perpendicular Rb rattling mode Ag (492.9) T2g (60.3) Eg (267.8) T2g (694.6) T2g (416.9) 100 200 300 400 500 600-1 Raman shift (cm ) 700 800 J. Schoenes, A.-M. Racu, K. Doll, Z. Bukowski, J. Karpinski, Phys. Rev. B 77, 134515 (2008). 15

Angular Dependence of the Intensity 90 120 = 45 60 T2g 240 cm parallel -1 90 120 30 150 180 150 0 210 0 330 210 300 240 270 60 150 Eg 260 cm parallel 90-1 120 30 180 300 270 Eg 260 cm perpendicular 30 180 330 210-1 60 150 0 240 300 270 90 120-1 30 180 330 240 T2g 415 cm parallel 60 0 330 210 240 300 270 16

Theory and Experiment KOs2O6 experiment Fd3m theory F43m theory RbOs2O6 experiment Fd3m theory 74,87 71 70 60,3 60 143 228 800 RbOs2O6 274 275 241,6 265 267,2 285 278 267,8 278-1 theory (cm ) 600 238,1 301 400 319 KOs2O6 326 200 442 0 0 100 200 300 400 500 600 700 413,4 477 476 416,9 466 488,6 530 531 492,9 531 694,6 765-1 543 experiment (cm ) 698 696,3 768 769 17

Conclusions KOs2O6 and RbOs2O6 belong to the Fd3m space group The Raman active rattling modes have been identified at 74.8 cm-1 (K) and 60.3 cm-1 (Rb) Future Work Electron-phonon coupling from temperature dependent Raman spectra 18