Process performance improvement by Hybsi nanosieve membranes for dehydration by pervaporation H.M. van Veen A. Motelica D.P. Shanahan R. Kreiter M.D.A. Rietkerk H.L. Castricum J.E. ten Elshof J.F. Vente Presented at Euromembrane 2009, Montpellier, France, 6-10 September 2009 ECN-M 09-119 November 2009
EUROMEMBRANE 2009 Conference, September 6-10, 2009, Montpellier, France Process performance improvement by HybSi nanosieve membranes for dehydration by pervaporation Henk M. van Veen, a Anatolie Motelica, a Donough P. Shanahan, a Robert Kreiter, a Mariëlle D.A. Rietkerk, a Hessel L. Castricum, b,c Johan E. ten Elshof, b Jaap F. Vente a a Energy research Centre of the Netherlands, Efficiency and Infrastructure, Molecular Separation Technology, PO Box 1, 1755ZG Petten, The Netherlands. b Inorganic Materials Science, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente. c Van t Hoff Institute for Molecular Sciences Faculty of Science, University of Amsterdam. vanveen@ecn.nl The key objective of the International Energy Agency (IEA) for future energy technologies is to reduce CO 2 emissions with ~50Gt/yr by 2050. The 27 EU states decided a 20% boost overall in renewable fuel use by 2020. In another key measure EU leaders decided to cut carbon dioxide emissions by 20% from 1990 levels by 2020. Carbon-neutral bio-based fuels such as ethanol, butanol, and bio-diesel are promising candidates for transportation purposes. Effective and energy-efficient separation technologies to dehydrate the wet fuels are needed for large scale application. It is widely accepted that molecular separation membranes will play a crucial role in this transition to sustainable transportation fuels. Furthermore these membranes can be used in the energy efficient dehydration of all kinds of chemicals. Pervaporation or hybrid distillation-pervaporation separation processes using membranes are commonly considered options for the energy efficient dehydration of organics. We recently explored the use of organic-inorganic hybrid silica for microporous membranes. These membranes have unprecedented life times of at least 2 years in the dewatering of n-butanol at 150 C. 1 These membranes have a good performance in the dehydration of ethanol as well, both under pervaporation and vapor permeation conditions 2. Here, we report on the optimization of industrial processes using these new membranes. By process simulation and flow sheeting for example the bio-ethanol production process via fermentation has been calculated, new process schemes have been made and the process has been optimized. Calculations show that an important improvement in the energy consumption can be obtained, meeting the future environmental criteria but also leading to important cost price reductions. 1. a) H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, J. E. ten Elshof, Chem. Commun. 2008, 1103-1105; b) H. L. Castricum, R. Kreiter, H. M. van Veen, D. H. A. Blank, J. F. Vente, J. E. ten Elshof, J. Membr. Sci. 2008, 324, 111-118. 2. R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, J. F. Vente, ChemSusChem 2009, in press.
Process improvement by HybSi membranes in dehydration pervaporation bio-ethanol production Henk van Veen, et.al. www.ecn.nl
Contents Background HybSi pervaporation membranes - Preparation and performance Bio-ethanol production process HybSi membranes in bio-ethanol - Measurement data - Flow sheeting results Conclusions 2 5-11-2009
Background Objective IEA: reduce CO 2 emissions with 50 Gt/yr by 2050 27 EU states: 20% renewable fuels by 2020 EU: cut CO 2 emissions by 20% in 2020 compared to 1990 Needed for bio-based fuels Molecular separation can play key role, e.g. in dehydration of bioethanol Need for stable and high flux pervaporation membranes 3 5-11-2009
Hybrid membranes from bisfunctional silica precursors HybSi Stable membranes: replace Si O Si bonds by Si C C Si bonds (OC 2 H 5 ) 3 Si CH 2 CH 2 Si (OC 2 H 5 ) 3 (bis(triethoxysilyl)ethane, BTESE) Patented in collaboration with Univ. of Twente and Univ. of Amsterdam (Ashima Sah, Andre ten Elshof, Hessel Castricum, Marjo Mittelmeijer) WO2007081212, 2006; Chem. Commun. 2008, 1103-1105 4 5-11-2009
Precursors and preparation of HybSi membranes Precursors: BTESE + MTES BTESE BTESM Hybrid layer MTES BTESE BTESM 5 5-11-2009
Performance HybSi membranes, 190 o C Feed = 5 wt.% water in nbuoh BTESE precursor stable > 1 month Fluxes and water conc. in permeate vs. time Fluxes (g/m 2 h) 12000 10000 8000 6000 4000 2000 "Water flux" "Butanol flux" "Water in permeate" 100 98 96 94 92 90 Water in permeate [wt.%] 0 0 10 20 30 40 Time (days) 88 Tests up to 150 C see: J. Membr. Sci. 2008, 324, 111-118 6 5-11-2009
Application testing - alcohols Feed = 5 wt.% water in alcohol Water content permeate (wt.%) 100 80 60 40 20 0 BTESM BTESE BTESE/MTES MeOH EtOH PrOH BuOH T = 55 70 85 95 C ChemSusChem 2009, 2, 158-160 7 5-11-2009
Acid stability Water flux (kg/m 2 h) 3.0 2.5 2.0 1.5 1.0 0.5 Feed : 5 wt.% water in n-buoh 0.005 0.5 wt.% HNO 3 BTESE 0.005 0.05 0.5 wt% HNO 3 100 90 80 70 Water content permeate (wt.%) Water flux (kg/m 2 h) 3.0 2.5 2.0 1.5 1.0 Feed : 5 wt.% water in EtOH 0.15 wt% HAc BTESM 0.15 wt% HAc 100 95 90 85 80 75 70 Water content permeate (wt.%) 0 10 20 30 40 Time on stream (d) 50 10 20 30 40 Time on stream (d) 50 J.Mater.Chem. 2008, 18, 1-10 ChemSusChem 2009, 2, 158-160 8 5-11-2009
Bio-ethanol Production Feedstock Preparation Pretreatment Hydrolysis and Saccharification Fermentation Distillation and Purification Step I Step II Step III Step IV Step V Sugar Crops - Sucrose; Cereal crops Starch; Lignocellulosic biomass - Lignocellulosic; Purification Step 0.995 wt. fraction Final EtOH concentration 9 5-11-2009
HybSi Membranes for Bio-ethanol Production: data Water and ethanol flux and permeance vs. temperature in a binary mixture Water flux, g/(m 2 h) 1600 160 45 0,35 Water 1400 y = 0,0004e 0,044x Water 140 40 Ethanol R 2 = 0,9915 Ethanol 1200 120 0,30 35 y = 9262,3e -0,0178x 1000 100 R 2 = 0,9789 30 0,25 800 80 600 25 60 0,20 20 400 y = 73,849e -0,0182x 40 0,15 15 y = 0,0032e R 2 = 0,9608 200 20 R 2 = 0,9966 0 10 0 0,10 300 310 320 300 330 310 340 320 350 330 340 350 Temperature, (K) Water permeance, kg/(m 2 h bar) Temperature, (K) Ethanol flux, g/(m 2 h) Ethanol permeance kg/(m 2 h bar) 10 5-11-2009
HybSi Membranes for Bio-ethanol Production: flow sheets Water 0.9 0.995 Water Steam Constant feed of 450 t/hr Water 0.05 Electricity Cte = 1.5 kw Feed Composition (wt fraction EtOH) Distillation Column Pervaporation Unit Q Total (PJ/Year) Elec. Condenser Vacuum Q Cooler Q Total % % Q Total Pump Q Total PJ/year Final Total Duty EtOH (PJ/Year) Flow (t/year) Duty (MJ/L EtOH ) 0.02 1.3 98 0.013 0.000 0.009 0.0 2 1.3 54326 19.358 0.05 1.8 97 0.039 0.000 0.025 0.1 3 1.9 161786 9.204 0.08 2.3 95 0.067 0.000 0.043 0.1 5 2.4 271984 6.898 0.12 2.8 94 0.101 0.000 0.065 0.2 6 3.0 415149 5.627 11 5-11-2009
HybSi Membranes for Bio-ethanol Production: energy Dewatering Energy (MJ/L) 25 20 15 10 5 0 Base Case (MS) HybSi PV SiftekTM D-MS vs D-HybSi PV D-PV energy savings: 7 to 22% 0 0,02 0,04 0,06 0,08 0,1 0,12 EtOH fraction in Feed (wt%) D-PV without Cooling Water Siftek D-VP vs HybSi D-PV Siftek TM DID NOT consider the cooling water energy; Siftek TM is optimized in two membrane steps; Feed EtOH (wt %) MJ/L 8 4,6 12 3,5 Siftek TM 10 4,8 12 5-11-2009
HybSi Membranes for Bio-ethanol Production: economics Costs of utilities taken from DACE (Dutch Association of Cost Engineers) Reboiler (DC) and Heater (MS): Steam; Molecular Sieve: Natural Gas; Vacuum pump (PV): Electricity; Condensers (DC and PV unit) and Coolers (PV and MS units): Cooling water; 0,35 0,30 /L 0,25 0,20 0,15 Base Case (MS) HybSi PV EtOH* D-HybSi PV cost savings: 0,10 6 to 23%; 0,05 0,00 0 0,02 0,04 0,06 0,08 0,1 0,12 EtOH fraction in Feed (wt%) 13 5-11-2009
HybSi Membranes for Bio-ethanol Production: economics Payback period I (Initial investments, M ) and Mr (Membrane replacement, M /3years) 10,0 Year 8,0 6,0 4,0 2,0 0,0 I = 5 Mr = 0,5 I = 11,3 Mr = 1,1 I = 19 Mr = 1,9 I = 29 Mr = 2,9 Factor 1 Factor 0.8 Factor 0.6 Factor 0.4 Factor 0.2 0 0,02 0,04 0,06 0,08 0,1 0,12 EtOH fraction in Feed (wt.%) 14 5-11-2009
HybSi Membranes for Bio-ethanol Production Conclusions for D-HybSi PV vs. D-MS HibSi membrane shows energetic (up to 22%) and economic (up to 23%) benefits in bio-ethanol production A payback period of 6 years is realistic, a cost decrease or a flux increase by a factor 2 is wished After return of investment: savings from 0.6 to 4.7 M /year Environmental benefits PV vs. MS (not presented): o CO 2 emissions: reduction almost 100% leading to extra economic savings from 68 to 520 k /year) o Reduction in cooling water up to 19% 15 5-11-2009
Further information and acknowledgements Chem. Commun., 2008, 1103-1105 J. Mater. Chem., 2008, 18, 2150-2158 J. Sol-Gel Sci Techn, 2008, 48, 203-211 J. Mem. Sci, 2008, 324, 111-118 ChemSusChem, 2009, 2, 158-160 Patent: WO2007081212 www.hybsi.com ECN T.N. Ferreira Novo Simões de Matos A. Motelica R. Kreiter D.P. Shanahan G.G. Paradis M.D.A. Rietkerk J.F. Vente H.M. van Veen Twente University / University of Amsterdam H.L. Castricum J.E. ten Elshof A.J.A. Winnubst vanveen@ecn.nl 16 5-11-2009