Effect of 2D delocalization on charge. R. Österbacka



Similar documents
Organic semiconductors

A Review of Charge Transport and Recombination in Polymer/Fullerene Organic Solar Cells

Magneto-Optical Studies on Internal Photovoltaic Processes in Organic Solar Cells

POLYMER BASED PHOTOVOLTAICS

Exciton dissociation in solar cells:

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

2 Absorbing Solar Energy

Chapter 8. Exciton solar cells ORGANIC SOLAR CELLS

Developments in Photoluminescence Characterisation for Silicon PV

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Wafer-based silicon PV technology Status, innovations and outlook

Lecture 22: Spinodal Decomposition: Part 1: general description and

Applied Physics of solar energy conversion

The Application of Density Functional Theory in Materials Science

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

New materials for PV Mirjam Theelen

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

The Current status of Korean silicon photovoltaic industry and market Sangwook Park LG Electronics Inc.

Contamination Transport from Wafer to Lens

Esnek Güneş Pilleri ve Fotovoltaik Tekstiller

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Materials for Organic Electronic. Jeremy Burroughes FRS FREng

Solar Cell Parameters and Equivalent Circuit

Silicon Wafer Solar Cells

6.772/SMA Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline

High and Low Bandgap Polyfluorene Copolymers for Organic Solar Cells Xiwen Chen

Light management for photovoltaics using surface nanostructures

Photovoltaic Power: Science and Technology Fundamentals

Chapter 2 Solution-Processed Organic Photovoltaics

Materials and Technologies for Renewable Energy. ENEA R&D activities on PV. Anna De Lillo

Project 2B Building a Solar Cell (2): Solar Cell Performance

Dependence of the characteristics of organic solar cells on cathode polymer interface

Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids. Nuri Yazdani,

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS

EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

SMA Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

Understanding Organic Photovoltaic Cells: Electrode, Nanostructure, Reliability, and Performance. Myung-Su Kim

High Efficiency Black Polymer Solar Cells November 2012 Annual Report

Vega Spans and NiOx-TX Spans

k 2f, k 2r C 2 H 5 + H C 2 H 6

Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring

Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diode

The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Semiconductor doping. Si solar Cell

Quantitative Photoluminescence. Studies in. a-si:h/c-si Solar Cells

The Rate Constant for Fluorescence Quenching 1

Stability and degradation mechanisms. in organic solar cells

ENEE 313, Spr 09 Midterm II Solution

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 9, Thermal Notes, 3.054

The Physics of Energy sources Renewable sources of energy. Solar Energy

Solid State Detectors = Semi-Conductor based Detectors

Directed Self- Assembly of Block Copolymers; an Alternative Tool for Sub- 20 nm Lithography Parvaneh Mokarian

Technology Developments Towars Silicon Photonics Integration

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen

Chapter 4 Indium Tin Oxide Films Deposited by d.c. Sputtering

Methods of plasma generation and plasma sources

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator

EE 332 Photovoltaic Cell Design Iowa State University Electrical and Computer Engineering Dept

Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium

Electronic Transport in Solar Cells and DFT Calculations for Si and GaAs

Celle solari di terza generazione (a fotosintesi )

XCVII Congresso Nazionale

OLED display. Ying Cao

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process

Broadband THz Generation from Photoconductive Antenna

Surface characterization of oxygen deficient SrTiO 3

Solar energy: prepare for impact. Wim Sinke ECN Solar Energy, Utrecht University & European Photovoltaic Technology Platform

The study of structural and optical properties of TiO 2 :Tb thin films

High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

2. Deposition process

Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer:fullerene solar cells

Bending, Forming and Flexing Printed Circuits

A software for calculation of optimum conditions for cotton, viscose, polyester and wool based yarn bobbins in a hot-air bobbin dryer

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Influence of Solder Reaction Across Solder Joints

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

Measuring Optical and Thermal Properties of High Temperature Receivers

Size effects. Lecture 6 OUTLINE

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Transcription:

Effect of 2D delocalization on charge transport and recombination in bulkheterojunction solar cells R. Österbacka

The people! Drs: H. Majumdar, S. Majumdar, T. Mäkelä, T. Remonen ÅA PhD students: H. Aarnio, N. Kaihovirta, D. Tobjörk, F. Jansson, N. Björklund, M. Nyman, S. Sanden, F. Petterson M.Sc. Students. E. Holm, M. Pesonen, A. Ylinen K.-M. Källman (lab engineer), ÅA Left the group: J. Lin (China), J. Baral (India), A. Pivrikas (Linz), T. Bäcklund (Merck), H. Sandberg (VTT), M. Westerling (Perkin- Elmer), H. Stubb (emeritus) G. Juška, G. Sliauzys, K. Arlauskas, N. Nekrasas, K. Genevicius/Vilnius Univ A. Pivrikas, A. Mozer and N.S. Sariciftci, LIOS G. Dennler and M. Scharber, Konarka Austria D. Vanderzande, Universiteit Hasselt, Belgium

Outline 1. Motivation for plastic solar cells Langevin recombination 2. Effect of morphology on transport Treated/untreated bulk-heterojunction solar cells 3. 3D vs 2D Langevin recombination Drift model Full drift-diffusion model 4. Importance of the interface Cw-PIA on treated and untreated solar cell blends 2D polarons generated Hybrid interfaces

Why Solar Energy? Available solar power: 20 MW p.p. (total earth surface) Human energy consumption: range 100 W - 10 kw p.p. average 2.5 kw p.p. (NL: 6 kw) at 10% overall efficiency: surface needed 1400x1400 km 2 to cover energy needs in 2050 (~1500 EJ) How to store and distribute? Source: ECN, Slide courtesy of P.W.M. Blom

The challenge for plastics Source: NREL/Wikipedia 7.87%, Solarmer Energy Inc, November 2009

Motivation High power conversion efficiencies in solar cells of lowmobility materials require high carrier densities. Higher carrier densities leads to shorter lifetimes [ ] (0) 1 τ = n β where β is the bimolecular recombination coefficient To understand charge transport and recombination is crucial for making more efficient solar cells!

Langevin Recombination Expected in all low-mobility (µ<1 cm 2 /Vs) materials Necessary condition: The carrier mean free path is much smaller than the Coulomb capture radius r c, i.e. a << r C. r c = 2 e 4 πεε kt 4 0 19nm Langevin recombination is determined by the probability for the charge carriers to meet in space, independent of the subsequent fate of the carriers dp dt = dn dt = β np = L β L n 2 β e( µ + µ ) n p L = µ f εε 0 ( F, T ) P. Langevin, Ann. Chim. Phys. 28, 433 (1903).

Consequences of Langevin recombination Langevin recombination is the time reversed process to Onsager-type generation Photogenerated charges will be bound within the Coulomb radius, r r c Field dependent generation of free carriers due to lowering of barrier Clarifying the recombination mechanism yields also information about generation! r c r kt

Effect of morphology l Untreated Treated 1.6.2010 Beal et al., Macromolecules 43, 2343 2348 (2010) Page 9

3D vs 2D Langevin recombination Homogeneous (3D) Lamellar structure (2D) l f 3D = β e( µ + µ ) L dn dt n εε 0 p = β L n 0 n 2 e ( µ n + µ p) = εε f 2D = 3 π e( µ n + µ n) 4 εε dn dt 0 = γ 2 3 2 ( ln) 3/ = γ n n 5/ 2 2D γ 2D π = l n = 6 10 β 4 L 3 3/ 2 1/ 2 3 2D ( * ) for l = 1.6 nm n=10 16 cm -3 Juska et al., APL 95 013303 (2009) (*)Shuttle et al., APL 92, 093311 (2008)

Including diffusion in 2D Greenham and Bobbert, PRB 68, 245301 (2003) Page 11

Inclusion of diffusion important in 2D! Neglecting diffusion underestimates the recombination time! V.I. Nenashev, F. Jansson et al., APL in press. Sivu 12

Importance of the interface 1,2 OD (normalized) 1,0 0,8 0,6 0,4 0,2 P3HT P3HT:PCBM 4:1 P3HT:PCBM 1:1 PCBM 0,0 300 400 500 600 700 800 900 λ [nm] 754 nm K. Vandewal et al. / Thin Solid Films 516 (2008) 7135 7138

Cw-PIA in RR-P3HT 514 nm 754 nm - T/T [10-3 ] 1.2 PA P3HT OS2100 IN PA 1.0 OUT 514 nm 0.8 0.6 0.4 0.2 0.0-0.2 T=80K, f=133hz -0.4 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 E [ev] - T/T [10-3 ] 0.006 0.004 0.002 0.000-0.002-0.004 P3HT 785 nm T=80K, f=133hz PA IN PA OUT -0.006 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 E [ev] Above gap excitation Below gap excitation H. Aarnio et al., manuscript in preparation Page 14

Cw-PIA in P3HT:PCBM 514 nm 754 nm 1.5 1.0 P3HT:PCBM 1:1 514 nm 0.06 P3HT:PCBM 1:1 785 nm - T/T [10-3 ] 0.5 0.0-0.5-1.0 PA IN PA OUT T=80K, f=133hz -1.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 E [ev] - T/T [10-3 ] 0.04 0.02 0.00-0.02 Signs of 2D-delocalized polarons Also with sub-gap excitation! T=80K, f=133hz 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 E [ev] PA IN PA OUT H. Aarnio et al., manuscript in preparation Page 15

Use of nanostructured TiO 2 for hybrid solar cells Gold P3HT PCBM Dye h + e - h + e - h + e - TiO 2 TiO 2 TiO 2 ITO Nanocratermonolayer Access to substrate through TiO 2 pores Charges can dissociate at: P3HT:TiO 2 P3HT/PCBM Dye:TiO 2 interface Extraction can take place directly to ITO or through TiO 2 Effective charge screening? Possibility to expand the absorption by using an IR-dye S. Sanden, Q. Xu, J.-H. Smått, et al.,

300 K, V off = 0,05 V 180 K, V off = 0,14 V j [ma/cm 2 ] 2,0 1,5 1,0 0,5 30 µs 40 µs 60 µs 90 µs 150 µs 300 µs 600 µs 1 ms 2 ms 4 ms 8 ms dark j [ma/cm 2 ] 0,4 0,3 0,2 0,1 40 µs 60 µs 90 µs 150 µs 300 µs 600 µs 1 ms 2 ms 4 ms 8 ms 16 ms dark 0,0 0,0-0,5 0 100 200 300 0 500 1000 1500 t [µs] t [µs] j [ma/cm 2 ] 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0-0,1 240 K, V off = 0,07 V 30 µs 40 µs 60 µs 90 µs 150 µs 300 µs 600 µs 1 ms 2 ms 4 ms 8 ms dark -100 0 100 200 300 400 500 600 700 j [ma/cm 2 ] 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0,00 120 K, V off = 0,15 V 60 µs 90 µs 150 µs 300 µs 600 µs 1 ms 2 ms 4 ms 8 ms 16 ms 32 ms dark -0,01-1000 0 1000 2000 3000 4000 5000 6000 7000 t [µs] t [µs]

µ [cm 2 /Vs] 10-3 300 K 270 K 240 K 10-4 10-5 10-6 10-7 10 1 10 2 10 3 10 4 t del [s] 210 K 180 K 150 K 120 K (dn/dt)/n 2 [cm 3 /s] 10-11 10-12 10-13 10-14 10-15 10-16 10 10-5 10-4 10-3 10-2 10-1 10-17 300 K 270 K 240 K 210 K 180 K 150 K 120 K t del + t max [s] n(t) [cm -3 ] 10 17 300 K 270 K 240 K 210 K 10 16 180 K 150 K 120 K 10 15 10 14 10-5 10-4 10-3 10-2 10-1 10 0 t del +t max [s] β/µ [cm 3 /s] 10-6 10-7 10-8 10-9 10-10 10-11 300 K 270 K 240 K 210 K 180 K 150 K 120 K 10-5 10-4 10-3 10-2 10-1 t del + t max [s]

Measurements on Sn:Sn Devices Au 3,0 ev LUMO 3,7 ev 4,4 ev 4,4 ev 5,1 ev HOMO 6,3 ev ITO Sn The work function of Sn lies between the LUMO of PCBM and the HOMO of P3HT The low conductivity of Sn is problematic

Measurements on Sn:Sn Devices 1E15 P3HT:PCBM 1:1 (Sn:Sn contacts) τ = 7,5 µs β = 1,33E-10 β/β L = 0,37 N0 =1E15 N -3 ext [cm ] 1E14 τ = 30 µs β = 1,45E-10 β/β L = 0,24 N0=2,3E14 Untreated Treated Bimolecular fit 1E13 1E-6 1E-5 1E-4 1E-3 Time [s] Mathias Nyman In collaboration with Fraunhofer ISE and Linköping niversity

Summary We have measured charge tranport and recombination in bulk heterojunction solar cells We found greatly reduced recombination in annealed RR-P3HT/PCBM Demixing and formation of lamellar structures in P3HT seems to be very important 2D Langevin model suggested Neglecting diffusion underestimates the recombination time in 2D Photoinduced absorption shows that 2D delocalized polarons are generated even with sub-gap excitation Hybrid interfaces offer new challenges

Thank You!