Low-Level Laser Therapy Enhances Wound Healing in Diabetic Rats: A Comparison of Different Lasers



Similar documents
Diabetes mellitus. Lecture Outline

Overview of Diabetes Management. By Cindy Daversa, M.S.,R.D.,C.D.E. UCI Health

Guidance for Industry Diabetes Mellitus Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes

DIABETES MELLITUS is a chronic organic disorder that affects

Tuberculosis And Diabetes. Dr. hanan abuelrus Prof.of internal medicine Assiut University

LASER PHOTONS AND PHARMACOLOGICAL TREATMENTS IN WOUND HEALING

Antibacterial Effect of Low Level Laser Therapy in Infective Diabetic Foot Ulcers

PowerLight LED Light Therapy. The FUTURE of corrective skin

Introduction. Pathogenesis of type 2 diabetes

ETIOLOGIC CLASSIFICATION. Type I diabetes Type II diabetes

Mark Silverman DVM, MS. Sporthorse Veterinary Services

An Essential Tool For The Care DFUs

TYPE 2 DIABETES MELLITUS: NEW HOPE FOR PREVENTION. Robert Dobbins, M.D. Ph.D.

FOX Laser Therapy ONYCHOMYKOSIS FUNGAL NAIL INFECTION (ONYCHOMYCOSIS) FOX 1064 nm LASER INNOVATION MA DE IN GERMA NY

Effects of topical Cymbopogon martinii oil essential oil in wound healing on diabetes induced rats

Diabetes Mellitus. Melissa Meredith M.D. Diabetes Mellitus

What Each Vitamin & Mineral Does In Your Body. Vitamin A

Novel Treatment for the Problem Diabetic Wound

New Therapies for Hair Loss: What works and what doesn t?

DRUGS FOR GLUCOSE MANAGEMENT AND DIABETES

BIOPHYSICAL AND PHYSIOLOGICAL MECHANISMS OF LOW ENERGY LASERS INTERACTIONS WITH LIVING CELLS AND THEIR IMPLICATIONS IN PAIN TREATMENT

WHAT YOU SHOULD KNOW BEFORE YOU BUY A THERAPEUTIC LASER

CME Test for AMDA Clinical Practice Guideline. Diabetes Mellitus

THE EFFECT OF SODIUM CHLORIDE ON THE GLUCOSE TOLERANCE OF THE DIABETIC RAT*

IACUC Policy on Survival Rodent Surgery

DR. Trinh Thi Kim Hue

Department Of Biochemistry. Subject: Diabetes Mellitus. Supervisor: Dr.Hazim Allawi & Dr.Omar Akram Prepared by : Shahad Ismael. 2 nd stage.

Diabetes and Insulin Signaling

Effects of macronutrients on insulin resistance and insulin requirements

STEM CELL FELLOWSHIP

LOOK, FEEL AND LIVE BETTER. Topical Skin Care

Vitamin D und seine Bedeutung im Immunsystem und bei der Infektabwehr

DIABETES CARE. Advice. Blood Pressure. Cholesterol. Diabetes control. Eyes. Feet. Guardian Drugs

Mind the Gap: Navigating the Underground World of DKA. Objectives. Back That Train Up! 9/26/2014

Your Life Your Health Cariodmetabolic Risk Syndrome Part VII Inflammation chronic, low-grade By James L. Holly, MD The Examiner January 25, 2007

Wound Healing. Outline. Normal Wound Healing. Wounds and nutrition refresher UPHS evidence-based guideline for. wounds

Standard Operating Procedure

Effect of Coccinia indica on Blood Glucose Levels in Alloxan-induced Diabetic Mice. Kathryn Niedzielski Advisor: Dr. Linda Swift

Technological platforms

EFFIMET 1000 XR Metformin Hydrochloride extended release tablet

Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochemistry Journal. August 1, , pp.

Response to Stress Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

Causes, incidence, and risk factors

Surgical Site Infection Prevention

Kansas Behavioral Health Risk Bulletin

Diabetes, hypertension and a lot more `in the elderly` JORIS SCHAKEL INTERNIST- CLINICAL GERIATRICIAN JGSCHAKEL@SEHOS.CW

CHAPTER V DISCUSSION. normal life provided they keep their diabetes under control. Life style modifications

Dietfree-Good News for Diabetics

Targeting Specific Cell Signaling Pathways for the Treatment of Malignant Peritoneal Mesothelioma

Insulin is a hormone produced by the pancreas to control blood sugar. Diabetes can be caused by too little insulin, resistance to insulin, or both.

DIABETES A chronic, debilitating and often deadly disease A global epidemic Diabetes in Africa

Diabetes and Obesity. The diabesity epidemic

What is Type 2 Diabetes?

How To Determine The Prevalence Of Microalbuminuria

Validation of measurement procedures

Using a Flow Sheet to Improve Performance in Treatment of Elderly Patients With Type 2 Diabetes

DIABETES MELLITUS. By Tracey Steenkamp Biokineticist at the Institute for Sport Research, University of Pretoria

A STUDY OF MAGNESIUM SUPPLEMENTATION ON GLYCEMIC CONTROL IN PATIENTS OF TYPE-2 DIABETES MELLITUS

Support Program for Improving Graduate School Education Advanced Education Program for Integrated Clinical, Basic and Social Medicine

Inpatient Treatment of Diabetes

STANDARD OPERATING PROCEDURE #201 RODENT SURGERY

THE IMPOSSIBLE DOSE HOW CAN SOMETHING SIMPLE BE SO COMPLEX? Lars Hode

Cryoinjury of Breast Cancer Cells in Tissue Equivalent Constructs

AAGPs TM Anti-Aging Glyco Peptides. Enhancing Cell, Tissue and Organ Integrity Molecular and biological attributes of lead AAGP molecule

MRET-Shield Synopsis of Scientific Research Updated on June 1, 2007

Endocrine Responses to Resistance Exercise

DCCT and EDIC: The Diabetes Control and Complications Trial and Follow-up Study

INSULIN PRODUCTS. Jack DeRuiter

Low-level laser therapy for diabetic foot wound healing.(wound care)

THE IMPACT OF USING BLOOD SUGAR HOME MONITORING DEVICE TO CONTROL BLOOD SUGAR LEVEL IN DIABETIC PATIENTS

Metabolic profile of veins and their implications in primary varicose veins Disease.

D. Vitamin D. 1. Two main forms; vitamin D2 and D3

Disability Evaluation Under Social Security

Understanding Diabetes

Scientific fraud in laser therapy

PowerPoint Lecture Outlines prepared by Dr. Lana Zinger, QCC CUNY. 12a. FOCUS ON Your Risk for Diabetes. Copyright 2011 Pearson Education, Inc.

Markham Stouffville Hospital

Imagine LIFE WITHOUT PAIN

trends in the treatment of Diabetes type 2 - New classes of antidiabetic drugs. IAIM, 2015; 2(4): 223-

CHAPTER 2 MATERIALS AND METHODS

Abdulaziz Al-Subaie. Anfal Al-Shalwi

J D R F R E Q U E S T S L E T T E R S O F I N T E N T F O R : B I O M AR K E R S O F P AN C R E A T I C B E T A C E L L S T R E S S AN D H E AL T H

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know

Guidelines for the management of hypertension in patients with diabetes mellitus

The exploration of low intensity laser therapy

Diabetic Ketoacidosis: When Sugar Isn t Sweet!!!

Arizona State University Institutional Animal Care and Use Committee STANDARD INSTITUTIONAL GUIDELINE RODENT SURGERY

THE ENDOCANNABINOID SYSTEM AS A THERAPEUTIC TARGET FOR LIVER DISEASES. Key Points

Estimated GFR Based on Creatinine and Cystatin C

CLINICAL PROTOCOL FOR THE MANAGEMENT OF FOOT CARE FOR DIABETIC PATIENTS

St Lucia Diabetes and Hypertension Screening and Disease Management Programs

Attending Director, Division of Psychosomatic Medicine, Miyagi Chuou Hospital

Medicare Podiatry Services: Information for Medicare Fee-For-Service Health Care Professionals

Module I October 18-22, 2015 JW Marriott Marquis Hotel, Dubai, UAE

Laboratory Monitoring of Adult Hospital Patients Receiving Parenteral Nutrition

glucose and fatty acids to raise your blood sugar levels.

Institute of Ophthalmology. Thyroid Eye Disease. aka Thyroid Associated Ophthalmopathy

Diabetes Mellitus PLAN

SOP 001: POLYCLONAL ANTIBODY PRODUCTION IN RABBITS

Denominator Statement: Cardiac surgery patients with no evidence of prior infection.

Transcription:

Photomedicine and Laser Surgery Volume 2, Number 2,2007 @ Mary Ann Liebert, Inc. Pp.72-77 DOI: 10.1089/pho.2006.1094 Low-Level Laser Therapy Enhances Wound Healing in Diabetic Rats: A Comparison of Different Lasers FAROUKA.H. AL-WAIBAN, M.Sc., Ph.D, XING YANG ZHANG, M.D., and BERNARD L. ANDRES. MT(AMT) ABSTRACT Objective: The effects of wound healing acceleration on diabetic rats were determined and compared using different laser wavelengths and incident doses. Background Data: Many studies have demonstrated that lowlevel laser therapy (LLLT) can promote the wound healing on non-diabetic animals. Methods: Male Sprague- Dawley rats were used. Streptozotocin (70 mg/kg) was applied for diabetes induction. An oval full-thickness skin wound was created aseptically with a scalpel in 1 diabetic rats and six non-diabetic rats on the shaved back of the animals. The study was performed using 32,633,8L0, and 980 nm diode lasers. Incident doses of, 10, 20, and 30 J/cm2 and treatment schedule of 3 times/week were used in the experiments. The area of wound on all rats was measured and plotted on a slope chart. The slope values (mm2/day), the percentage of relative wound healing, and the percentage of wound healing acceleration were computed in the study. Results: Mean slope values were 6.0871 in non-diabetic control and 3.636 in diabetic control rats (p < 0.00). The percentages of wound healing acceleration were 1.23, 18.06, 19.4, and 20.39 with 32-nm laser, 33.3, 38.44,32.0, and 16.4 with 633-nm laser,1.72,14,94,9.62,and7,76 with 810-nm laser, and 12.80,L6.32, 13.79, and 7.74with 980-nm laser, using incident doses of, 10,20, and 30 Jlcmz, respectively. There were significant differences (p < 0.001) in the mean slope value of wound healing on diabetic rats between control groups and treatment groups in 32, 633, 810, and 980 nm lasers. Conclusion: The wound healing on control rats with diabetes was slower than on control rats without diabetes. LLLT at appropriate treatment parameters can enhance the wound healing on diabetic rats. The optimum wavelength was 633 nm, and the optimum incident dose was 10 J/cm2 in our study. INTRODUCTION IIABETES IS BELTEVED to affect 2-4Vo of the general popu- I.Jlation, and its incidence is increasing. It is predicted that it will affect 239 million people worldwide by 2010. As many as lvo of people with diabetes will develop foot ulceration and wounds, and 3Vo will have a lower limb amputation.t Diabetic wounds are complex microcosms of multiple pathophysiologic processes. The wounds are predominantly characterized by polymicrobial infection, peripheral neuropathy, structural deformity, altered immune function or increased susceptibility to infection, decreased wound nitric oxide (NO) production, and often hypoxia/ischemia.2.3 Diabetic wounds present a major problem for modern health care. Although the beneficial effects of low-level laser therapy (LLLI) on the normal tissue repair process or wound healing have been established,a-8 the acceleration of diabetic wound healing in animals using laser photostimulation has not yet been investigated extensively. The purpose of this study is to determine and compare the effects of wound healing acceleration on diabetic rats using diff'erent laser wavelengths and incident doses. Laser Research Section, Biological and Medical Research Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia. 72

LLLT Enhances Wound Healing in Diabetic Rats 73 Animals METHODS A number of male Sprague-Dawley rats were used in this study. Tlie animals weighed 299490 (368.42 + 43.70) g and were 2l-22 weeks old at the start of the experiment. The rats were originally imported from Charles River Co. (Margate, Kent, UK) in 1984 and, at the time of this study, were bred at the animal facility of King Faisal Specialist Hospital and Research Centre (KFSH&RC). Animal protocols were reviewed and approved by the Animal Care and Use Committee (ACUC). During the study, the rats were housed one per cage, maintained under controlled environmental conditions (12-h light/dark cycle, temperature -23"C), and provided with standard laboratory food and water ad libitum. Chemical induction of diabetes Diabetes was induced in the rats by an intraperitoneal injection of the pancreatic beta-cell toxin Streptozotocin (freshly dissolved in 0.9Vo sterile saline; Sigma, St. Louis, MO) at a dose of 70 mglkg body weight. Diabetes was assessed by estimating hyperglycemia and glycosuria. Animals were rejected from the study when blood and urine glucose did not reach 200 mg/dl and four pluses (>111 mmol/l or>20 g/l), respectively, after 24-h post-induction, and their body weight increased consistently during the first 3 days of induction. Hyperglycemia, glycosuria, and rat weight were determined and monitored on schedule as described previouslv.e Wound infliction Non-diabetic rats were anesthetized with 0 mg/kg ketamine and 20 mg/kg xylocaine, while the diabetic rats were given a30%o lower dosage. The surgical site was shaved using an electric clipper, excess hair was removed by a lotion, and the site was disinfected with an isopropyl alcohol swab. Oval-fullthickness wounds of 78.1-88.38 (82.88 t 3.99) mm2 area were created asepticaily with a scalpel in 1 diabetic rats and six non-diabetic rats on the shaved back of the animal in the gluteus maximums region. All diabetic rats with wounds were divided randomly into control (n = 3) and treatment groups (n = 48) on the basis of the experimental process designated. Six non-diabetic rats as control were used for comparison with diabetic control rats. Laser system and treatment parameters The study was performed using a 32-nm green laser system (GSF32-10P; Intelite, Inc.), with 633-nm, 810-nm, and 980-nm diode laser (Biophoton, St. Alban, France). The output power was measured using a laser power meter (Molectron Max 200). The laser treatment parameters are listed in Table 1. The laser beam was aligned to cover the entire wound area, including the boundaries. The rats treated were restrained in a Plexiglas cage without anesthesia during the laser irradiation period. The control group also received the same manipulation, excluding the laser exposure. Data analysis The areas of wound on all rats were measured using a caliper daily for days/week and plotted on a slope chart of wound healing for 3 weeks (Fig. l). A trend-line was applied on the slope chart, and the slope value (mm2/day) of the wound healing in all rats was computed using the linear type and set intercept option. Mean slope value of wound healing was computed in Tasls 1. Lasen TneeruENT PARAMETERS Laser lnm) Power (mw) Spot size (r*t) Power density (mwcm2) Irradiation time (min) Incident dose (J/cm2) Treatment schedule (times/week) Diode 32 Diode 633 143 t40 Diode 810 200 20.4 1.6 22.22 Diode 980 200 22.22 4.1 8.2 16.3 24. r0.7 2r.4 32.1 3.8 7. 1.0 22. 3.8 7. 1.0 22. t0 20 30 10 20 30 10 )i -lt, l0 20 30

74 Al-Watban et al. Slope Values* I E F X = Wound Healing Days 7o Reiative W.H. = (Slope in Treatment - Slope in Control) / Slope in Control x 100 (7o) *Slope Values means closure of wound area imm2l per day FIG. 1. Calculation of slope values and percentage of relative wound healing on rats every group. The percentage of relative wound healing (RWH) was calculated as follows: 7o of RWH - (slope value in diabetic control or treatment - slope value in non-diabetic control)/ slope value in non-diabetic control x fia (Vo) The percentage of wound healing acceleration (WHA) was calculated as follows: 7o of WHA = %RWH in diabetic treatment group - ToRWH in diabetic control group Statistical analysis Statistical analyses were performed using the Student's t-test for comparison of data from the study. Differences were considered statistically significant when the p value was <0.0. RESULTS Fifty-one diabetic rats were induced successfully by streptozotocin injection and used in the study. Mean slope values of wound healing were 6.0871 mm2/day on non-diabetic control rats and 3.636 mmzlday on diabetic control rats. There was a significant difference (p < 0.00) in the mean slope values of wound healing between non-diabetic control rats and diabetic control rats (Fig. 2). Mean slope values of wound healing on diabetic rats in control and treatment group using different laser doses and wavelengths are shown in Figure 3. The percentage relative wound healing on diabetic control rats and diabetic treatment rats is shown in Figure 4. The percentage of wound healing acceleration in diabetic rats after laser therapy is shown in Figure. The results of statistical analysis using Student's t-test on the mean slope value of wound healing 63a tss tt7 :\ a Nondiab-Ctrl (n=6) Diabetic-Ctrl (n=3) P < 0.00 Groups FIG. 2. Mean slope values of wound healing on non-diabetic control rats and diabetic control rats. Results are presented as mean + sd.

LLLT Enhances Wound Healing in Diabetic Rats 10 tr 6.0 o.u.0 a 4.0 /( 3.0 32nm 633 nm 810 nm 980 nm I D-Ctrl 3.636 3.636 3.636 3.636 E D-J 4.63.6161 4.926 4.41 r D-10J 4.13.9'7 6 4.449 4.629 s D-20J 4.82.866 4.2212 44t1! D-30J 4.8',77 4 631 4.1081 4.101 Laser Wavelength FIG. 3. Mean slope values of wound healing on diabetic rats in control group and treatment groups using difl-erent laser doses and wavelengths. Results are presented as mean + SD. between diabetic control and diabetic treatment groups uslng diff'erent wavelengths are shown in Table 2' DISCUSSION A total of l Sprague-Dawley rats with diabetes induced by Sffeptozotocin were used in the study' Additionally, six nondiabetic rats as control were used for comparison with diabetic control rats. Our results showed that wound healing on control rats with diabetes was slower than on control rats without diabetes. There was a significant difference (P < 0.00) in the mean slope values of wound healing between diabetic control rats and non-diabetic control rats (Fig. 2). Impairment of diabetic wound healing is well recognized. However, the exact mechanism is still not completely known.r0 The course of diabetic wound healing appears to be hindered by many factors, including specific metabolic deficiencies and impaired physiological responses-fbr example, the altered metabolism of carbohydrates, fats and proteins resulting from the absence or deficiency of insulin, hyperglycemia leading to nonenzymatic glycosylation, osmotic diuresis leading to decreased p"riu.ion and oxygenation, and free radical production'rr Olerud et al.r2 observed the wound healing in normal elderly 0.00-10.00-20.00 F 6) o -30.00-40.00-0.00 32 nm 633 nm 810 nrt 980 nm tr D-Ctrl -40.2'7-40.21-40.21-40.21 M D-J -2.04-6.14-21.47 EI D-IOJ -22.21 L83-2.33-23.9 @ D-20J -20;73-8.22-30.6-26.48 0 D-30J - 19.88-23.82-32.1 32.3 Laser Warelength FIG. 4. The percentage of relative wound healing (RWH) in the diabetic rats after laser therapy compared with non-diabetic control. 7o of RWH = (slope value in diabetic conirol or treatment - slope value in non-diabetic control)/slope value in nondiabetic control X 100 (7o).

76 Al-Watban et al. E!E i-9 3 ts< ^ot 2.0 e 0.0 32 nm 633 nm 810 nm I-aser Wavelength 980 nm tr D-J 1.23 33.3 t.12 12.80 tr D-10J 18.06 38.44 14.94 t6.32 E D-2OJ t9.4 32.0 9.62 t3.79 d D-30J 20.39 t6.4 L16 "/;74 FIG.. The percentage of wound healing acceleration (WHA) in the diabetic rats after laser therapy using different laser doses and wavelengths. ToWHA = ToRWH in diabetic treatment group - %RWH in diabetic control group. adults and patients with diabetes or peripheral vascular disease. Their results showed that wound healing was impaired in patients with diabetes, with a significant reduction in the numbers of fibroblasts found in the deep components of the wounds. On our animal study, the wound healing was delayed in diabetic rats. Our results are similar to their findings. A study by Loots et al.rr demonstrated that fibroblasts from patients with type 2 diabetes showed a significantly lower proliferation rate and an altered morphology in vitro compared with non-lesion and age-matched control fibroblasts from patients without diabetes. The researchers conclude that the diabetic process and the rvound environment itself cause the fibroblasts to age. The overall functional activity ofthe fibroblast is thus reduced. The main functions of the fibroblast are the production of components of the extracellular matrix and wound contraction. On entering the wound space, the fibroblasts become involved in the formation of granulation tissue. Within the uound. the flbroblasts produce collagen, which is the most abundant protein within the extracellular matrix and contributes to the tensile strength of wounds.ra A more recent study, involvin-e non-lesion fibroblasts, showed that diabetic fibroblasts have a decreased proliferation response to growth factors, caused by a deficiency in growth factor receptor expression, compared with non-diabetic fibroblasts from sibling control.r0 Research has shown that the defects that occur in diabetic wound healing may be caused by altered collagen metabolism and abnormal granulation tissue formation.1 Diabetes can result in the development of several complications, including diabetic foot wounds that can potentially lead to lower limb amputation. The poor wound healing in diabetes is a barrier in medicine. Our study indicated that the inadiation of lowpower lasers at appropriate treatment parameters can accelerate the wound healing on diabetic rats. Mean slope values of wound healing on diabetic rats in treatment groups using different laser doses and wavelengths were bigger than control groups (Fig. 3). There were significant diffbrences (p < 0.001) in the mean slope value of wound healing on diabetic rats between control and heatment groups using several wavelengths (Table 2). The percentage of relative wound healing and the percentage of wound healing acceleration after laser therapy showed that the optimum wavelength and incident dose was 633 nm and l0 J/cm2 in the study (Figs. 4 and ). The research revealed also that the irradiation of visible laser light was better than invisible laser light in the treatment of wound healing Trelr 2. Resulrs op Srerrsrrcs ANelvsIs UsrNc SruonNr's Z=Trsr on MEAN Sr-opp VeluE or WouNo Heennc on Drasprrc Rars eerween CoNrnol eno TnsatvpNr Gnoups Mean slope value (mm2/day) Inser (rtnt) Control Treatmenf p-vttlue Diode (32) Diode (633) Diode (810) Diode (980) 3.636 t 0.1 3.636 t 0.1 3.636 t 0.1 3.636 r 0.1 4.701t0.2.4960 t 1.0 4.3661 x.0.3 4.4064 x.0.4 1 1 1 1 oevery treatment group included doses of, 10, 20, and 30 J/cm2. bthere was a significant difference in the mean slope value of wound healing between treatment and control.

LLLT Enhances Wound Healing in Diabetic Rats 77 on diabetic rats. The reason for the effective acceleration of wound healing on diabetic rats using low-power lasers was that perhaps the absorption of laser light with specific wavelength by target tissue resulted in the enhancement of fibroblast proliferation and the promotion of collagen metabolism and granulation tissue formation in the diabetic wound. The healing process of diabetic wound is a complicated one and is initiated by a complex series of events that include chemoattraction, growth factor pathways, complement generation, and the energy-poor environments created by low oxygen tensions, low PH, and high lactate concentrations.r6 Macrophages attracted to such environments release lactate aerobically, as well as anaerobically, and generate potent growth factors, resulting in brisk angiogenesis and multiplication of fibroblasts at wound margins. These events can take place in a low-oxygen environment. However, the modification of collagen by fibroblasts so that it can be polymerized and secreted into the extracellular space can be accomplished only when oxygen is present at high partial pressures. Further studies are necessaty to use more efficient laser light sources, adjust the laser treatment parameters, and improve the supply of energy and oxygen in diabetic wound. CONCLUSION Our study indicated that wound healing on control diabetic rats was slower than on control non-diabetic rats. We concluded that inadiation of low-power lasers at appropriate treatment parameters can accelerate wound healing on diabetic rats. The optimum wavelength and incident dose was 633 nm and 10 J/cm2 in the study. ACKNOWLEDGMENTS We would like to thank the Animal Facility and KFSH&RC for their assistance in the study. Also, we would like to thank Maria Victoria D. Gonzaga and Mary Jane S. Anonuevo for their support in completing the experiment and the manuscript. We extend our gratitude to King Abdulaziz City for Science and Technology (KACST) for financial support. REFERENCES l. Mandrup-Poulson, T. (1998). Clinical review: diabetes. Br. Med. J. 316,1221-122. 2. SchatTer, M.R., Tantry, U., van Wesep, R.A., et al. (1997). Nitric oxide metabolism in wounds. J. Surs. Res. 71. 2-31. 3. Reiber, G.E., Pecoraro, R.E., and Keopsell, T.D. (1992). Risk factors for amputation in patients with diabetes mellitus: a case control study. Ann. Intern. Med. I 17, 97-10. 4. A1-Watban, F.A.H., and Zhang, X.Y. (1994). The effect of lowpower He-Ne and He-Cd laser therapy on wound healing on rats. J. Clin. Laser Med. Surg. I 2, 32'7-329.. A1-Watban, F.A.H., and Zhang, X.Y. (199). Stimulative and inhibitory effects of 1ow incident levels of argon laser energy on wound healing. Laser Ther. 7, i 1-18. 6. Al-Watban, F.A.H., and Zhang, X.Y. (1996). Comparison ol the eff'ects of laser therapy on wound healing using different laser wavelength. Laser Ther. 8, 127-13. 7. Al-Watban, F.A.H. (1996). Therapeutic laser's eftectiveness and dosimetry, inl. Biomedical Optical Instrumentation and Laser- Assisted Biotechnology. A.M. Verga Scheggi, et a1. (eds.). Amsterdam: KluwerAcademic Publishers, pp. 171-183. 8. Reddy, G.K., Stehno-Bittel, L., and Enwemeka, C.S. (2001). Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 9, 248-2. 9. Al-Watban, F.A.H., and Andres, B.L. (2003). Polychromatic LED therapy in burn healing of non-diabetic and diabetic rats. J. Clin. Laser Med. Surg. 21, 249-28. 10. Reenstra, W.R., Veves, A., Orlow, D., et al. (2001). Decreased proliferation and cellular signaling in primary dermal fibroblasts derived tiom diabetics versus non-diabetic siblins controls. Acad. Emerg. Med. 8,19. I 1. Pecoraro, R.E., Ahroni, J.H., Boyko, E.J., et al. ( 1991). Chronology and extrem:ities of tissue repair in diabetic 'lower-extremity ulcers. Diabetes 40. I 30-1313. 12. Olerud, J.8., Odland, G.P, Burgess, 8.M., et al. (199). A model for the study of wound in normal elderly adults and patients with peripheral vascular disease or diabetes mellitus. J. Surg. Res. 9, 349-360. 13. Loots, M.A.M., Lamme, E.N., Mekkes, J.R., et al. (1999). Cultured tlbroblasts from chronic diabetic wounds on the lower extremity show disturbed prolif'eration. Arch. Dermatol. Res. 291, 93-99. 14. Martens, M.F.W.C., Huyben, C.M.L.C., and Hendriks, T.H. (1992). Collagen synthesis in fibroblasts from human colon: regulatory aspects and difl'erences with skin fibroblasts. Gut 33, 1664-1670. 1. Spanheimer, R.G. (1988). Direct inhibition of collagen production in vitro by diabetic rats serum. Metabolism 37, 479-48. 16. Knighton, D.R.. Fylling, C.P., Fiegel, VD., et al. (1990). Amputation prevention in an independently reviewed at-risk diabetic population using a conprehensive wound care protocol. Am. J. Surg. \60.466411. Address reprint requests to: Dr. Farouk A.H. Al-Watban Laser Research Section Biological and Medical Research Department King Faisal Specialist Hospital & Research Centre MBC-03, P.O. Box 334 Riyadh I121l, Kingdom of Saudi Arabia E - mai I : w atban@ kfshrc. edu. sa