A cost curve for greenhouse gas reduction

Similar documents
Greenhouse gas abatement potential in Israel

How To Change The Global Greenhouse Gas Cost Curve

Pathways to a Low-Carbon Economy. Version 2 of the Global Greenhouse Gas Abatement Cost Curve

Low Carbon economy: How can (or should) the insurance industry adapt?

Six greenhouse gases covered by the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol are:

WHY I LIKE ENVIRONMENTAL ECONOMICS. Lecture / Hunt Allcott MIT Department of Economics

Nuclear power is part of the solution for fighting climate change

Energy Projections Price and Policy Considerations. Dr. Randy Hudson Oak Ridge National Laboratory

Creating a Successful Outcome in Copenhagen. Bert Metz, European Climate Foundation

A sustainable energy and climate policy for the environment, competitiveness and long-term stability

Making Coal Use Compatible with Measures to Counter Global Warming

China s green revolution. Prioritizing technologies to achieve energy and environmental sustainability

Tackling Climate Change in the U.S.

Calculating Greenhouse Gas Emissions

Energy Megatrends 2020

Netherlands National Energy Outlook 2014

PRACTICAL STRATEGIES FOR IMMEDIATE PROGRESS ON CLIMATE CHANGE BUILDING BLOCKS FOR A GLOBAL AGREEMENT

Multiple sources of energy will be available, giving the consumer choices. A Higher Percentage of Energy will come from renewable energy sources

energy [r]evolution A Sustainable World Energy Outlook

Sweden Energy efficiency report

sustainable gains in energy policy. While the report addresses energy policies comprehensively, the following sections highlight these three topics.

Resolution: Energy and climate. Year and Congress: November 2009, Barcelona. Category: Environment and Energy. Page: 1. Energy and climate change

Groupwork CCS. Bio-Energy with CCS (BECCS) Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster»)

World Energy Outlook 2007: China and India Insights. International Energy Agency

World Energy Outlook Presentation to the Press London, 10 November 2009

Summary of the Impact assessment for a 2030 climate and energy policy framework

SUSTAINABLE ENERGY BLUEPRINT

The European Renewable Energy Directive and international Trade. Laurent Javaudin Delegation of the European Commission to the U.S.

Residential & Commercial Sectors Overview CLIMATE

The Burning Question. What would it take to. leave fuel worth trillions in the ground and is 12,000 10,000 8,000. 6,000 humanity up to it?

Renewable Fuels minutes

SECTOR ASSESSMENT (SUMMARY): ENERGY. 1. Sector Performance, Problems, and Opportunities

Economic Development and the Risk of Global Climate Change

Low-Carbon Development for Mexico (MEDEC)

Role of Natural Gas in a Sustainable Energy Future

ANALYSIS OF THE ADMINISTRATION S PROPOSED TAX INCENTIVES FOR ENERGY EFFICIENCY AND THE ENVIRONMENT

REPUBLIC OF TURKEY INTENDED NATIONALLY DETERMINED CONTRIBUTION

Executive Summary. The core energy policy is as follows:

Greenhouse Gas Offsets and Renewable Energy Certificates: Distinct Commodities in an Evolving Market The Climate Trust

GREENHOUSE GAS EMISSIONS INVENTORY

Common Principles for Climate Mitigation Finance Tracking

GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 2013

HORIZON Competitive Low Carbon Energy Call. Paul Verhoef DG RTD K03/Head of Unit

COAL INDUSTRY ADVISORY BOARD

Policy Brief International Renewable Energy Investment Credits Under a Federal Renewable Energy Standard

climate change is happening. This April produced the record for the first month in human history

SECTION 1. PREAMBLE 3 SECTION 2. EXECUTIVE SUMMARY 4 ABOUT US 6

Economic Outcomes of a U.S. Carbon Tax. Executive Summary

WORLD ENERGY INVESTMENT OUTLOOK 2014 FACTSHEET OVERVIEW

Cutting Australia s Carbon Abatement Costs with Nuclear Power

Working Paper #54. Greenhouse Gas Implications in Large Scale Infrastructure Investments in Developing Countries: Examples from China and India

Our financing of the energy sector in 2013

LONG-TERM OUTLOOK FOR GAS TO 2 35

Security of electricity supply

How to Earn the LEED Green Power Credit

NEW NUCLEAR POWER PLANT UNIT IN FINLAND ACCEPTED BY THE FINNISH PARLIAMENT

Argentina Energy efficiency report

Economic Impacts of Potential Colorado Climate Change Initiatives: Evidence from MIT and Penn State Analyses. July 2007

St. Petersburg Declaration - Energy Security: Challenges and Strategic Choices

Annex 5A Trends in international carbon dioxide emissions

Norwegian position on the proposed EU framework for climate and energy policies towards 2030

Pages 110 Energy Efficient measures and Their Impact on Abatement

CRS Report Summaries WORKING DRAFT

Office of Climate Change, Energy Efficiency and Emissions Trading. Business Plan

Energy Situation in Egypt

Myths and Realities about Wind, Water, and Sun (WWS) Versus Current Fuels Mark Z. Jacobson September 26, 2012

Renewable Choice Energy

Energy Prices, Climate Change Policy and U.S. Economic Growth

Saving energy: bringing down Europe s energy prices

The Role of Offsets in a Greenhouse Gas Emissions Cap-and-Trade Program: Potential Benefits and Concerns

World Simulations with GEM-E3

EU renewable energy and biofuel targets what will they mean?

China s CO2 Emission Scenario Toward 2 degree global target. Jiang Kejun. Energy Research Institute, China

The impact Equation where scientists and engineers fit in the picture

ACCOUNTING FOR ASIA S NATURAL CAPITAL

Roadmap for moving to a competitive low carbon economy in 2050

SOUTHEAST ENERGY EFFICIENCY ALLIANCE. Clean Energy Greenville, SC May 29, 2009

How To Reduce Emissions In Australia

Economic Analysis of the Renewable Energy Policies in the European Union

Building a Low-Carbon Economy The UK's Contribution to Tackling Climate Change.

Implications of Carbon Cap-and-Trade for Electricity Rate Design, with Examples from Florida. Hethie Parmesano and Theodore J.

The UK s progress towards its carbon budgets

Natural Gas and Greenhouse Gases. OLLI Lectures November 2014 Dennis Silverman Physics and Astronomy UC Irvine

Chemical industry contributions to energy efficiency and mitigating climate change ICCA Technology Roadmaps on Energy & Climate Change

Germany Energy efficiency report

SaskPower CCS Global Consortium Bringing Boundary Dam to the World. Mike Monea, President Carbon Capture and Storage Initiatives

Prepared by the Commission on Environment & Energy

Chicago Regional Energy Snapshot Profile and Strategy Analysis. Prepared for the Chicago Metropolitan Agency for Planning

Ontario Hydro. September 28, 1995

Annual Energy Outlook 1998

KAYA IDENTITY ANALYSIS OF DECARBONIZATION OF THE NY ECONOMY REQUIRED FOR CLIMATE ACTION PLAN GOAL OF 40% REDUCTION BY 2030

New Zealand s response to climate change. March

ESBI Carbon Solutions. Partnering with Countries to Achieve their Full Carbon Credit Potential

THE UK CLIMATE CHANGE PROGRAMME AND EXAMPLES OF BEST PRACTICE. Gabrielle Edwards United Kingdom

Fact Sheet on China s energy sector and Danish solutions

Michigan Nuclear Power Plants Contribution to the State Economy

Revealing the costs of air pollution from industrial facilities in Europe a summary for policymakers

OUTLOOK FOR NATURAL GAS IN EUROPE

2. The German energy transition is driven by citizens and communities.

Transcription:

A cost curve for greenhouse gas reduction 35 A cost curve for greenhouse gas reduction A global study of the size and cost of measures to reduce greenhouse gas emissions yields important insights for businesses and policy makers. Per-Anders Enkvist, Tomas Nauclér, and Jerker Rosander The debate about greenhouse gases is heating up. Across a wide spectrum, some voices argue that emissions and climate aren t linked, while others urge immediate concerted global action to reduce the flow of emissions into the atmosphere. Even the advocates of action disagree about timing, goals, and means. Despite the controversy, one thing is certain: any form of intensified regulation would have profound implications for business. Our contribution on this topic is not to evaluate the science of climate change or to address the question of whether and how countries around the world should act to reduce emissions. In this article we aim instead to give policy makers, if they choose to act, an understanding of the significance and cost of each possible method of reducing emissions and of the relative importance of different regions and sectors. To that end, we have developed an integrated fact base and related cost curves showing the significance and cost of each available approach, globally and by region and sector. Our other purpose is to help business leaders understand the implications of potential regulatory actions for companies and industries. Indeed, regulation is already on the minds of many executives. A recent survey 1 indicates that half of all companies in Europe s energy-intensive industries regard the 1 Review of EU Emissions Trading Scheme, conducted by McKinsey on behalf of the EU Commission, was published in November 2005. Its findings reflect responses from 167 companies and 163 other institutions.

36 The McKinsey Quarterly 2007 Number 1 Article at a glance A study of the relative economics of different approaches to reducing greenhouse gas emissions offers surprising insights for policy makers and business leaders. For starters, in a 25-year perspective, power generation and manufacturing industry offer less than half of the potential for reducing emissions. Almost a quarter of possible emission reductions would result from measures (such as better insulation in buildings) that carry no net life cycle cost in effect, they come free of charge. The study finds that a substantial share of the overall opportunities, including a large potential to reduce emissions by protecting and replanting forests, lies in developing economies. Related articles on mckinseyquarterly.com Preparing for a low-carbon future, 2004 Number 4 Climate change for Europe s utilities, 2003 Number 1 Going from global trends to corporate strategy, 2006 Number 3 European Union s Emissions Trading Scheme (EU ETS) as one of the primary factors affecting their longterm investment decisions. As the baseline for our study, we used the business-as-usual projections for emissions growth 2 from the International Energy Agency (IEA) and the US Environmental Protection Agency (EPA). We then analyzed the significance and cost of each available method of reducing, or abating, emissions relative to these business-as-usual projections. Our study 3 covers power generation, manufacturing industry (with a focus on steel and cement), transportation, residential and commercial buildings, forestry, and agriculture and waste disposal, in six regions: North America, Western Europe, Eastern Europe (including Russia), other developed countries, China, and other developing nations. It spans three time horizons 2010, 2020, and 2030 and focuses on abatement measures that we estimate would cost 40 euros per ton or less in 2030. Others have conducted more detailed studies on specific industries and geographies. But to our knowledge, this is the first microeconomic investigation of its kind to cover all relevant greenhouse gases, sectors, and regions. Reading the cost curves The cost curves we developed show estimates of the prospective annual abatement cost 4 in euros per ton of avoided emissions of greenhouse 2 Growth in emissions is driven mainly by the increasing demand for energy and transport around the world and by the deforestation of tropical areas. 3 Launched in spring 2006, the study has been conducted as a joint effort with the Swedish utility Vattenfall. However, the views expressed here are ours alone, and we are solely responsible for any errors. The results of the study have been reviewed by an academic panel consisting of professors Dennis Anderson (Imperial College London), Lars Bergman (Stockholm School of Economics), and Steve Pacala, Robert Socolow, and Robert Williams (Princeton University). 4 Calculated as the annual additional operating cost (including depreciation) less potential cost savings (for example, from reduced energy consumption) divided by the amount of emissions avoided. This formula means that costs can be negative if the cost savings are considerable. Possible costs for implementing a system to realize the abatement approaches are not included.

A cost curve for greenhouse gas reduction 37 gases, 5 as well as the abatement potential of these approaches in gigatons of emissions. The abatement cost for wind power, for example, should be understood as the additional cost of producing electricity with this zeroemission technology instead of the cheaper fossil fuel based power production it would replace. The abatement potential of wind power is our estimate of the feasible volume of emissions it could eliminate at a cost of 40 euros a ton or less. Looked at another way, these costs can be understood as the price ultimately, to the global economy of making any approach to abatement cost competitive or otherwise viable through policy decisions. A wide range of assumptions about the future cost and feasible deployment rates of available abatement measures underlie the estimates of their cost and significance. For example, the significance of wind power assumes that actions to abate greenhouse gases will have already begun across regions by 2008. The volumes in our model (and this article) should be seen as potential abatement, not as forecasts. Our model for the supply of abatement can be compared with any politically determined target ( demand ) for abatement in the years 2010, 2020, and 2030. The science of climate change is beyond the scope of our study and our expertise, however. We thus compare, for illustrative purposes, our findings on supply with three emissions targets discussed in the debate targets that would, respectively, cap the long-term concentration of greenhouse gases in the atmosphere at 550, 450, or 400 parts per million (a measure of the share of greenhouse gas molecules in the atmosphere). The goal of each target, according to its advocates, is to prevent the average global temperature from rising by more than 2 degrees Celsius. Any of these emissions targets would be challenging to reach by 2030, for they would all require at least a 50 percent improvement in the global economy s greenhouse gas efficiency (its volume of emissions relative to the size of GDP) compared with business-as-usual trends. A simplified version of the global cost curve (Exhibit 1) shows our estimates of the significance and cost of feasible abatement measures in 2030 the end year of a period long enough for us to draw meaningful conclusions but short enough to let us make reasonably factual assumptions. We have developed similar cost curves for each sector in each region and for each of the three time frames. At the low end of the curve are, for the most part, measures that improve energy efficiency. These measures, such as better insulation in new buildings (see Making the most of the world s energy resources, in the current issue), thus reduce emissions by lowering demand for power. Higher up 5 Such as carbon dioxide, methane, nitrous oxide, and sulfur hexafluoride.

38 Q1 2007 Greenhouse gases Exhibit The McKinsey 1 of 5 Quarterly 2007 Number 1 Glance: A simplified global cost curve illustrates the estimated size and cost of feasible approaches to abatement by 2030. e x h i b i t 1 What might it cost? Global cost curve for greenhouse gas abatement measures beyond business as usual ; greenhouse gases measured in GtCO 2 e 1 Approximate abatement required beyond business as usual, 2030 Cost of abatement, per tco 2 e 2 100 50 0 50 100 150 Medium-cost forestation Cofiring biomass Wind; low penetration Industrial feedstock substitution CCS, enhanced oil recovery, new coal Low-cost forestation Livestock Nuclear Industrial non-co 2 Standby losses Sugarcane biofuel Fuel efficiency in vehicles Water heating Air-conditioning Lighting systems Fuel efficiency in commercial vehicles 5 Building insulation Carbon capture and storage (CCS); new coal Coal-to-gas shift CCS; coal retrofit Industrial motor systems Avoided deforestation Biodiesel Waste Industrial CCS Higher-cost abatement 33 18 26 550 ppm 4 450 ppm 4 400 ppm 4 ~25 ~40 ~50 Marginal cost, 5 per tco 2 e 2 10 15 20 25 Abatement beyond business as usual, GtCO 2 e 1 per year in 2030 Further potential 3 30 35 1 GtCO 2 e = gigaton of carbon dioxide equivalent; business as usual based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation. 2 tco 2 e = ton of carbon dioxide equivalent. 3 Measures costing more than 40 a ton were not the focus of this study. 4 Atmospheric concentration of all greenhouse gases recalculated into CO 2 equivalents; ppm = parts per million. 5 Marginal cost of avoiding emissions of 1 ton of CO 2 equivalents in each abatement demand scenario. the cost curve are approaches for adopting more greenhouse gas efficient technologies (such as wind power and carbon capture and storage 6 ) in power generation and manufacturing industry and for shifting to cleaner industrial processes. The curve also represents ways to reduce emissions by protecting, planting, or replanting tropical forests and by switching to agricultural practices with greater greenhouse gas efficiency. We have no opinion about the demand for abatement or the probability of concerted global action to pursue any specific goal. But the application of our supply-side research to specific abatement targets can help policy makers and business leaders to understand the economic implications of abatement approaches by region and sector, as well as some of the repercussions for companies and the global economy. Our analysis assumes that the focus would be to capture all of the cheapest forms of abatement around 6 A technology for separating greenhouse gases from the combustion gases of fossil fuels and industrial processes and then storing the greenhouse gases in natural underground cavities.

Q1 2007 Greenhouse gases Exhibit 2 of 5 A cost curve for greenhouse gas reduction 39 Glance: Three abatement scenarios would require reductions beyond business as usual. e x h i b i t 2 Three scenarios Business-as-usual 1 greenhouse gas emissions, CO 2 e 2 per year, gigaton Abatement demand scenarios, CO 2 e, 2 gigaton, 2030 Reductions required 3 beyond business as usual, 2030, gigaton 40 18 58 33 26 32 18 40 Abatement required in emissions by 2030 to begin stabilizing concentration levels toward long-term targets 25 2002 Growth 2002 30 2030 400 450 550 Targeted long-term concentrations of greenhouse gases in atmosphere, ppm 4 1 Business as usual based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation. 2 CO 2 e = carbon dioxide equivalent. 3 Reduction requirements = midpoints with uncertainty of +/ several gigatons. 4 Parts per million. Source: International Energy Agency (IEA); US Environmental Protection Agency (EPA); McKinsey analysis the world but makes no judgment about what ought to be the ultimate distribution of costs. Of course, the ability to pay for reducing emissions varies greatly between developed and developing economies and among individual countries in each group. For simplicity s sake, we compared our cost curve with the 450-parts-permillion scenario in the midrange of the targets put forward by advocates. This scenario would require greenhouse gases to abate by 26 gigatons a year by 2030 (Exhibit 2). Under that scenario, and assuming that measures are implemented in order of increasing cost, the marginal cost per ton of emissions avoided would be 40 euros. (As a point of reference, since trading under the EU ETS began, in 2005, the price of greenhouse gas emissions has ranged from 6 to 31 euros a ton.) We had to make many assumptions about future cost developments for these measures and the practical possibilities for realizing them. We assumed, for instance, that the cost of carbon capture and storage will fall to 20 to 30 euros per ton of emissions in 2030 and that 85 percent of all coal-fired power plants built after 2020 will be equipped with this technology. These assumptions in turn underpin our estimate that it represents 3.1 gigatons of feasible abatement potential.

40 The McKinsey Quarterly 2007 Number 1 In a 25-year perspective, such assumptions are clearly debatable, and we make no claim that we are better than others at making them. We believe that the value of our work comes primarily from an integrated view across all sectors, regions, and greenhouse gases using a uniform methodology. This model allows us to assess the relative weight of different approaches, sectors, and regions from a global perspective. The supply of abatement approaches Our analysis offers some noteworthy insights. It would be technically possible, for one thing, to capture 26.7 gigatons of abatement by addressing only measures costing no more than 40 euros a ton. But because these lower-cost possibilities are highly fragmented across sectors and regions for instance, more than half of the potential abatements with a cost of 40 euros a ton or less are located in developing economies an effective global abatement system would be needed to do so. Politically, this may be very challenging. What s more, power generation and manufacturing industry, so often the primary focus of the climate change debate, account for less than half of the relatively low-cost potential (at a cost of up to 40 euros a ton) for reducing emissions (Exhibit 3). The implication is that if policy makers want to realize abatement measures in order of increasing cost, they must also find ways to effectively address opportunities in transportation, buildings, forestry, and agriculture. This potential is more difficult to capture, as it involves billions of small emitters often consumers rather than a limited number of big companies already subject to heavy regulation. Looking at specific measures, nearly one-quarter of the abatement potential at a cost of up to 40 euros a ton involves efficiency-enhancing measures (mainly in the buildings and transportation sectors) that would reduce demand for energy and carry no net cost. The measures we include in this category do not require changes in lifestyle or reduced levels of comfort but would force policy makers to address existing market imperfections by aligning the incentives of companies and consumers. Further, we found a strong correlation between economic growth and the ability to implement low-cost measures to reduce emissions, for it is cheaper to apply clean or energy-efficient technologies when building a new power plant, house, or car than to retrofit an old one. Finally, in a 2030 perspective, almost three-quarters of the potential to reduce emissions comes from measures that are either independent of technology or rely on mature rather than new technologies. The role of developing economies Even though developed economies emit substantially more greenhouse gases relative to the population than developing ones, we found that the latter

Q1 2007 Greenhouse gases Exhibit 3 of 5 A cost curve for greenhouse gas reduction 41 Glance: Power and manufacturing industry account for less than half of the overall potential to reduce emissions at a cost of 40 euros a ton or less. e x h i b i t 3 Abatement potential Abatement potential for greenhouse gases by sector, GtCO 2 e 1 per year by 2030 (costing up to 40 per ton) 100% = 26.7 Possible abatement measures (examples) Power, manufacturing Power 5.9 Manufacturing 6.0 Buildings, transportation Buildings 3.7 Transportation 2.9 Forestry, agriculture Forestry 6.7 Agriculture/waste 1.5 Renewables (wind, solar, biomass) Nuclear Carbon capture and storage Energy efficiency (eg, cogeneration, process shift) Fuel switching (eg, biofuels) Carbon capture and storage in industrial process Improved building insulation, heating/cooling efficiency Energy efficiency in lighting, appliances Fuel-efficient vehicles Biofuels Deforestation avoided Afforestation/reforestation Capture of methane from landfills New agricultural methods without tillage 2 1 GtCO 2 e = gigaton of carbon dioxide equivalent. 2 Reduces CO 2 emissions from soil. account for more than half of the total abatement potential at a cost of no more than 40 euros a ton. Developing economies have such a high share for three reasons: their large populations, the lower cost of abating new growth as opposed to reducing existing emissions (especially in manufacturing industry and power generation of high-cost developed markets), and the fact that tropical countries have much of the potential to avoid emissions in forestry for 40 euros a ton or less (Exhibit 4). Forestry measures protecting, planting, and replanting forests make up 6.7 gigatons of the overall 26.7 gigatons of the potential abatement at a cost up to 40 euros per ton. 7 We estimate that for no more than 40 euros a ton, tropical deforestation rates could be reduced by 50 percent in Africa and by 75 percent in Latin America, for example, and that this effort could generate nearly 3 gigatons of annual abatement by 2030. Major abatements in Asia s forests would cost more, since land is scarce and commercial logging has a higher opportunity cost than subsistence farming in Africa and commercial agriculture in Latin America. 7 As trees grow, they bind greenhouse gases. When they are cut down and burned, the greenhouse gases are released back into the atmosphere.

42 Q1 2007 Greenhouse gases Exhibit 4 of 5 The McKinsey Quarterly 2007 Number 1 Glance: Developing economies may account for more than half of the total abatement potential at a cost less than or equal to 40 euros a ton. e x h i b i t 4 Developing economies will play an important role Abatement potential for greenhouse gases by region, GtCO 2 e 1 per year by 2030 (costing up to 40 per ton) 100% = 26.7 % of global emissions Business as usual, 3 2030 After abatement Eastern Europe 2 1.6 9 11 Western Europe 2 2.5 8 7 North America 4.4 15 14 Other developed countries 2.5 11 13 China 4.6 18 18 Other developing countries 11.1 39 37 1 GtCO 2 e = gigaton of carbon dioxide equivalent. 2 Eastern Europe includes former Soviet Union and Balkans; Western Europe includes EU25 plus Iceland, Norway, Switzerland, Turkey, minus Baltic states. 3 Business as usual based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation. In agriculture and waste disposal, which produce greenhouse gases such as methane and nitrous oxide, developing economies also represent more than half of the 1.5 gigatons of possible abatements costing no more than 40 euros a ton. Abatement measures in this sector would include shifting to fertilization and tillage techniques that generate fewer emissions and capturing methane from landfills. Reducing growth in energy demand An additional 6 gigatons almost a quarter of the total abatement potential at a cost of 40 euros a ton or less could be gained through measures with a zero or negative net life cycle cost. This potential appears mainly in transportation and in buildings. Improving the insulation of new ones, for example, would lower demand for energy to heat them and thus reduce emissions. Lower energy bills would more than compensate for the additional insulation costs. According to our model, measures like these, as well as some in manufacturing industry, hold the potential to almost halve future growth in global electricity demand, to approximately 1.3 percent a year, from 2.5 percent. As for measures that would have a net cost, we found that around 35 percent of all potential abatements with a net cost of up to 40 euros a ton

A cost curve for greenhouse gas reduction 43 involve forestry; 28 percent, manufacturing industry; 25 percent, the power sector; 6 percent, agriculture; and 6 percent, transportation. A power perspective The power sector represented 9.4 gigatons, or 24 percent, of global greenhouse gas emissions in 2002, the latest year that consistent global figures are available across all sectors. In the IEA s business-as-usual scenario, emissions from power generation will increase to 16.8 gigatons a year in 2030 as a result of a doubling of global electricity demand. Five key groups of abatement measures costing 40 euros a ton or less are relevant to the power sector: reducing demand, carbon capture and storage, renewables, nuclear power, and improving the greenhouse gas efficiency of fossil fuel plants. Combined, these measures hold the potential to reduce the power sector s total emissions to 7.2 gigatons by 2030 (Exhibit 5). Among power generation technologies, nuclear (at 0 to 5 euros a ton for avoided emissions) is the cheapest source of abatement and nearly cost competitive with power generated by fossil fuels. We estimate that abatements from carbon capture and storage could cost 20 to 30 euros a ton by 2030; those from wind power could average around 20 euros a ton, with a wide Q1 2007 cost range depending on the location and on the previous penetration Greenhouse gases of weather-dependent electricity sources. In our model, the overall addi- Exhibit 5 of 5 tional cost to the power sector of achieving the target of 450 parts per Glance: Five abatement measures hold the potential to reduce the power sector s total million, compared with the business-as-usual scenario, would be around emissions to 7.2 gigatons by 2030, from 9.4 in 2002. e x h i b i t 5 Abatement potential in the power sector Emissions development and abatement potential in power sector, greenhouse gases measured in GtCO 2 e per year by 2030 (costing 40 per ton) 1 7.4 16.8 3.7 3.1 9.4 1.4 1.1 0.4 7.2 2002 emissions Emissions growth 2002 30 Businessas-usual emissions, 2 2030 Demand reduction Carbon capture and storage Renewables Nuclear power Other 3 Potential 2030 emissions after full abatement 1 GtCO 2 e = gigaton of carbon dioxide equivalent; figures do not sum to 100%, because of rounding. 2 Business as usual based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation. 3 For example, coal-to-gas shift beyond business as usual, improved efficiency in existing plants; these measures compete with other measures and could have higher impact on abatement in other abatement scenarios.

44 The McKinsey Quarterly 2007 Number 1 120 billion euros annually in 2030. This figure illustrates the very significant potential implications, for companies in the power sector, of any further actions that regulators may take to reduce greenhouse gas emissions. Addressing the abatement potential described above would likely create a major shift from traditional coal and gas power generation to coal plants with carbon capture and storage, to renewables, and to nuclear power. In our model, coal-fired plants using carbon capture and storage would increase their share of the world s power generation capacity from nothing in 2002 to 17 percent by 2030; renewables (including a big but slow-growing share for large-scale hydropower), to 32 percent, from 18 percent; and nuclear power, to 21 percent, from 17 percent. Fossil fuel power generated without carbon capture and storage would decrease to 30 percent, from 65 percent. Low-tech abatement The role of technology in reducing emissions is much debated. We found that some 70 percent of the possible abatements at a cost below or equal to 40 euros a ton would not depend on any major technological developments. These measures either involve very little technology (for example, those in forestry or agriculture) or rely primarily on mature technologies, such as nuclear power, small-scale hydropower, and energy-efficient lighting. The remaining 30 percent of abatements depend on new technologies or significantly lower costs for existing ones, such as carbon capture and storage, biofuels, wind power, and solar panels. The point is not that technological R&D has no importance for abatement but rather that lowtech abatement is important in a 2030 perspective. What are the implications? Our analysis has revealed a number of important implications for each sector and region, should regulators choose to reduce emissions. We summarize the primary overall conclusions below. Costs for reducing emissions For the global economy, the cost of the 450-parts-per-million scenario described in this article would depend on the ability to capture all of the available abatement potential that costs up to 40 euros a ton. If that happens, our cost curve indicates that the annual worldwide cost could be around 500 billion euros in 2030, 0.6 percent of that year s projected GDP. However, should more expensive approaches be required to reach the abatement goal, the cost could be as high as 1,100 billion euros, 1.4 percent of global GDP. If, as some participants in the climate debate argue, the cost of reducing emissions could be an insurance policy against the potentially severe consequences of unchecked emissions in the future, it might be relevant

A cost curve for greenhouse gas reduction 45 to compare the costs with the global insurance industry s turnover (excluding life insurance) some 3.3 percent of global GDP in 2005. Cost-conscious regulation Should regulators choose to step up current programs to reduce greenhouse gas emissions, they should bear in mind four types of measures to restrain costs: 1. Ensuring strict technical standards and rules for the energy efficiency of buildings and vehicles 2. Establishing stable long-term incentives to encourage power producers and industrial companies to develop and deploy greenhouse gas efficient technologies 3. Providing sufficient incentives and support to improve the cost efficiency of selected key technologies, including carbon capture and storage 4. Ensuring that the potential in forestry and agriculture is addressed effectively, primarily in developing countries; such a system would need to be closely linked to their overall development agenda Shifting business environment For companies in the power sector and energy-intensive industries, heightened greenhouse gas regulation would mean a shift in the global business environment on the same order of magnitude as the one launched by the oil crisis of the 1970s. It would have a fundamental impact on key issues of business strategy, such as production economics, cost competitiveness, investment decisions, and the value of different types of assets. Companies in these industries would therefore be wise to think through the effects of different types of greenhouse gas regulation, strive to shape it, and position themselves accordingly. No matter whether, how, or when countries around the globe act to reduce greenhouse gas emissions, policy makers and business leaders can benefit from a thorough understanding of the relative economics of different possible approaches to abatement, as well as their implications for business and the global economy. Q The authors would like to thank Richard Duke, a project manager of the underlying research effort, as well as acknowledge the contributions of Malavika Jain, Thomas Koch, Enrico Villa, and Nick Zuo to this article. Per-Anders Enkvist is an associate principal and Tomas Nauclér and Jerker Rosander are principals in McKinsey s Stockholm office. Copyright 2007 McKinsey & Company. All rights reserved.