IWE slide: 1, 9/17/2009



Similar documents
Solid Oxide Fuel Cell Gas Turbine Hybrid Power Plant. M. Henke, C. Willich, M. Steilen, J. Kallo, K. A. Friedrich

Concepts and systems for power production and storage using solid oxide cells

Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics

Hands-on electrochemical impedance spectroscopy Discussion session. Literature:

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model

European COMSOL Conference, Hannover, Germany

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Keywords: polymer electrolyte membrane fuel cells; stack failure; gasket; indicators

Zarz dzanie Energi i Teleinformatyka

An Introduction to Electrochemical Impedance Measurement

FUEL CELL FUNDAMENTALS

Half the cost Half the carbon

Supporting Information

Brennstoffzellen-Systeme von der Forschung zur Kommerzialisierung: Integration Simulation Testen

Clean and energy-efficient vehicles Advanced research and testing Battery systems

Fuel Cells and Their Applications

Modeling of a Solid Oxide Electrolysis Cell for Carbon Dioxide Electrolysis

Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells

moehwald Bosch Group

reduction ore = metal oxides metal oxidation

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)

Charger Output AC Ripple Voltage and the affect on VRLA batteries

Danmark satser på konvertering og lagring

Strategic Electrochemistry Research Center

An Electrochemical-Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

New CNLS software for analysis of impedance spectra Outline

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals

Paper No APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION

Series AMLDL-Z Up to 1000mA LED Driver

SL Series AC and DC Electronic Loads

Politecnico di Milano Dipartimento di Energia MRT Fuel Cell Lab

Corrosion experiments in amine solutions

An Introduction to Electrochemical Impedance Spectroscopy (EIS)

SOFC Single Cell Performance and Endurance Test Modules

Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells. Brian Holsclaw

Fuel Cell Activities at TU Graz

Evaluation of Total Harmonic Distortion tool for SOFC diagnostics

Voltage Derating Rules for Solid Tantalum and Niobium Capacitors

Concepts in Syngas Manufacture

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS Jan 08

EIS investigation of CO 2 /H 2 S corrosion

Electrochemical Hydrodynamics Modeling Approach for a Copper Electrowinning Cell

Balance of Fuel Cell Power Plant (BOP)

Overview of CO 2 conversion R&D in Europe

Testing the voltage and power as function of current density. Polarisation curve for a SOFC single cell

Solid Oxide Fuel Cell mchp Demonstration

TETRIS High Impedance Active Probe. Features:

Vincenzo Esposito. Università di Roma Tor Vergata

FREQUENCY RESPONSE ANALYZERS

Transport phenomena and reaction engineering: basic research and practical applications

Simulation of a base case for future IGCC concepts with CO 2 capture

Stationary Fuel Cell Power Systems with Direct FuelCell Technology Tackle Growing Distributed Baseload Power Challenge

U N. Supercapattery: A Super Battery Approach. George Z. Chen

Effects of AC Ripple Current on VRLA Battery Life. A Technical Note from the Experts in Business-Critical Continuity

Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells

Fuel Cell as a Green Energy Generator in Aerial Industry

TETRIS 1000 / High Impedance Active Probe Order-No: Features:

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe

Powering Integrated Circuits (ICs), and managing ripple voltage as it relates

Chapter 5. A Power Distribution System

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Introduction to Superconducting RF (srf)

MUHAMMAD ABDULLAH AL-AZZAZ COMPANY LIMITED P.O. BOX AL-KHOBAR KINGDOM OF SAUDI ARABIA

11: AUDIO AMPLIFIER I. INTRODUCTION

LM78XX Series Voltage Regulators

Fundamental issues in subzero PEMFC startup and operation. Jeremy P. Meyers February 1, 2005 DOE Freeze Workshop

Benvenuti in SOFCpower!

Agilent 4338B Milliohm Meter

Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment

Through-mask Electro-etching for Fabrication of Metal Bipolar Plate Gas Flow Field Channels

FUEL CELLS FOR BUILDING APPLICATIONS

Embest DSO2300 USB Oscilloscope

Electrochemistry Revised 04/29/15

Current Monitoring Kit QUICK START GUIDE

A Simple Current-Sense Technique Eliminating a Sense Resistor

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION

Fabrication of (Mn,Co) 3 O 4 Surface Coatings onto Alloy Substrates

ac Impedance Characteristics and Modeling of Polymer Solution Light-Emitting Devices

AN-837 APPLICATION NOTE

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting Prof. E. Peled School of Chemistry Tel Aviv University, Israel

DATA SHEET. MMBT3904 NPN switching transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2002 Oct Feb 03.

Energy efficiency and fuel consumption of fuel cells powered test railway vehicle

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

Nanoceanal Spectroscopy of Vibrariums and Electariums

A NOVEL ION-EXCHANGE/ELECTROCHEMICAL TECHNOLOGY FOR THE TREATMENT OF AMMONIA IN WASTEWATER

Potential of Steam Energy in PV-Hybrid Systems. Prof. Dr.-Ing. Klaus Brinkmann

1. PECVD in ORGANOSILICON FED PLASMAS

Battery Cell Balancing: What to Balance and How

Long-term performance of PEM fuel cells with dry cathode supply and anodic fuel recirculation

High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST

Issues and Solutions for Dealing With a Highly Capacitive Transmission Cable

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Transcription:

International Symposium on Diagnostics Tools for Fuel Cell Technologies Impedance Spectroscopy as a Diagnosis Tool for SOFC Stacks and Systems André Weber, Dino Klotz, Volker Sonn, Ellen Ivers-Tiffée () Adenauerring 20b, 76131 Karlsruhe, Germany source: slide: 1, 9/17/2009

Control an Diagnosis of SOFC-Stacks and Systems Stack Monitoring by Impedance Spectroscopy Control of parameters critical for a failure free operation of stack and system stack performance and efficiency stack temperature(s) reformer temperature(s) steam actual to steam carbon to carbon ratio / λratio POx -value / λ POx -value fuel (reformate) composition oxidant and fuel flow rates oxidant and fuel temperatures at gas inlet oxidant and fuel pressures inlet at gas inlet exhaust gas composition (remaining CO, HC s)... Monitoring of the internal resistance of the stack by electrochemical impedance spectroscopy source: ENBW, Delphi slide: 2, 9/17/2009

Impedance Spectroscopy Materials, (Model-) Electrodes and Single Cells Electrochemical Impedance Spectroscopy H. Gerischer, Elektrodenpolarisation bei Überlagerung von Wechselstrom und Gleichstrom. Z. Elektrochem., 58, 9, 278, 1954 source: see above slide: 3, 9/17/2009

Impedance Spectroscopy Materials, (Model-) Electrodes and Single Cells Electrochemical Impedance Spectroscopy Analysis of Solid Electrolytes by Impedance Spectroscopy H. Gerischer, Elektrodenpolarisation bei Überlagerung von Wechselstrom und Gleichstrom. Z. Elektrochem., 58, 9, 278, 1954 J. E. Bauerle, Study of solid electrolyte polarization by a complex admittance method, J. Phys. Chem. Solids 30, 2657, 1969 source: see above slide: 4, 9/17/2009

Impedance Spectroscopy Materials, (Model-) Electrodes and Single Cells Electrochemical Impedance Spectroscopy Analysis of Solid Electrolytes by Impedance Spectroscopy Analysis of Electrode Microstructure and Degradation Behaviour H. Gerischer, Elektrodenpolarisation bei Überlagerung von Wechselstrom und Gleichstrom. Z. Elektrochem., 58, 9, 278, 1954 J. E. Bauerle, Study of solid electrolyte polarization by a complex admittance method, J. Phys. Chem. Solids 30, 2657, 1969 T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, M. Mori, T. Iwata, Characteristics of Slurry-Coated Nickel Zirconia Cermet Anodes for Solid Oxide Fuel Cells, J. Electrochem. Soc., 137, 3042, 1990 source: see above slide: 5, 9/17/2009

Impedance Spectrum of an Anode Supported Single Cell -0.25-0.20 anode supported single cell (Forschungszentrum Jülich) Ni-8YSZ substrate (50x50x1mm³) Ni-8YSZ anode functional layer 8YSZ electrolyte (~ 10 µm) CGO interlayer (~ 7 µm) LSCF cathode (10x10mm²) 0.08 0.07 0.06 spectrum: -Z (f) Z / Ω cm² -0.15-0.10 -Z / Ω cm² 0.05 0.04 0.03-0.05 0.02 0.01 0.00 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 Z / Ω cm² 0.00 10 0 10 1 10 2 10 3 10 4 10 5 f / Hz 2 or more electrochemical processes??? high resolution impedance data analysis required!!! cell type: ASC el. area: 1 cm² fuel: H 2 (9.4% H 2 O), 250 sccm oxidant: air, 250 sccm source: slide: 6, 9/17/2009

Impedance Data Analysis Distribution of Relaxation Times (DRT) ideal: R 1 R 2 C 1 C 2 γ R 1 R ges τ 1 τ 2 R 2 R ges τ γ real: Process 1 (RQ/CPE) Process 2 (RQ/CPE) τ 1 τ 2 τ γτ () Z pol( ω ) = R dτ 1+ jωτ pol 0 γ(τ): Distribution function of relaxation times H. Schichlein et al., Deconvolution of Electrochemical Impedance Spectra for the Identification of Electrode Reaction Mechanisms in Solid Oxide Fuel Cells, J. Appl. Electrochemistry, 32, 8, 875, (2002) source: slide: 7, 9/17/2009

Impedance Spectrum of an Anode Supported Single Cell Distribution of Relaxation Times Z / Ω cm² -0.25-0.20-0.15-0.10-0.05 -Z / Ω cm², g(f) / Ω sec 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 spectrum: -Z (f) DRT: g(f) 0.00 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 source: Z / Ω cm² 0.00 10 0 10 1 10 2 10 3 10 4 10 5 high resolution data analysis by the DRT 5 processes resovable perform impedance measurements at varying operating conditions! A. Leonide et al., J. Electrochem. Soc, 155 (1), pp. B36-B41, (2008). f / Hz cell type: ASC el. area: 1 cm² fuel: H 2 (9.4% H 2 O), 250 sccm oxidant: air, 250 sccm slide: 8, 9/17/2009

Analysis of Electrochemical Processes in an ASC Variation of Operating Temperature g(f) / Ohm*sec 0.05 0.04 0.03 0.02 T / C P 1A 730 740 750 770 800 860 P 2C P 2A P 3A ASR / Ω cm² 1 0.1 temperature/ C 850 800 750 700 650 600 R 2A +R 3A : anode electrochemistry R 2C : cathode electrochemistry R 1A : gas diffusion E a,2a+3a =1.30 ev E a,2c =1.43 ev 0.01 0.00 1 10 100 source: up to 5 different electrochemical processes resolvable impedance values in between 10 and 1000 mω cm² A. Leonide et al., J. Electrochem. Soc, 155 (1), pp. B36-B41, (2008). 0.01 10 3 10 4 10 5 0.9 1.0 1.1 f / Hz 1000 K/T T = 600... 850 C fuel: H 2, 250 sccm p(h 2 O) = 0.635 bar ox.: air, 250 sccm slide: 9, 9/17/2009

Analysis of Electrochemical Processes in an ASC Impedance Model of a Single Cell Z / Ω cm 2 Abbreviation P 1C -0.2 1 Q( ω) = Q 3A Q 2A Q 1C -0.1 ( jω) n Y0 α tanh ( jωt) ZW ( ω) = RW α ( jωt) P ( ) Z 3A 0 ZG ω = P 2A P k+ jω 2C P 1A 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 f r, ASR R 0 0.3...10 Hz, 2...100 mωcm 2 R 3A R 2A R 2C R 1A R 1C CPE2 CPE3 CPE1 dependence p(o 2 ) cell type: ASC el. area: 1 cm² fuel: H 2 (9.4% H 2 O), 250 sccm oxidant: air, 250 sccm T = 717 C OCV gas diffusion (<< 10 mω cm² in air) impedance spectrum CNLS-Fit anodic cathodic Z / Ω cm 2 electrode process / physical origin P 2C 10...500 Hz, 8...50 mωcm 2 p(o 2 ), T oxygen surface exchange kinetics and O 2- - diffusivity P 1A 4...20 Hz, 30...150 mωcm 2 p(h 2 ), p(h 2 O) gas diffusion (anode substrate) P 2A P 3A source: 2...8 khz, 10...50 mωcm 2 12...25 khz,10...130 mωcm 2 p(h 2 ), p(h 2 O),T p(h 2 ), p(h 2 O), T A. Leonide et al., J. Electrochem. Soc, 155 (1), pp. B36-B41, (2008). gas diffusion coupled with charge transfer reaction and ionic transport (AFL: anode functional layer) slide: 10, 9/17/2009

Electrochemical Impedance Spectroscopy for Stacks Impact of Cell and Stack Size anode supported single cell 1 cm² active electrode area single cell 100 cm² 0.8... 20 mω impedance of a few mω per cell gradients in temperature, gas composition etc. ASR: 0.08... 2 Ω cm² 80 mω... 2 Ω gas conversion impedance additional noise and error sources source: slide: 11, 9/17/2009

Electrochemical Impedance Spectroscopy for Stacks Testing Equipment 3 kw el SOFC stack 60 cells a 100 cm² U stack = 42 V I stack = 71.4 A target values 1260/1287 + Power Booster IM6 + PP 2xx VersaSTAT4 + Power Booster CLB 500 TrueData-EIS frequency range 1 mhz... 1 MHz 10 µhz... 100 khz 10 µhz... 200 khz (10 µhz... 1 MHz) 10 µhz... 10 khz 200 µhz... 100 khz impedance range 0.1... 100 mω 10 µω... 1 kω 1 µω... 1 kω n.s. n.s. 0.1 mω... 15 Ω accuracy (error at 1 mω / 100 khz) 1 % 30 % / 30 (@ 10 mω) 0.25 % (f, Z not specified) n.s. 2 % / 2 1 % / 1 max. bias voltage 100 50 ± 5 / 10 / 20 20 10 300 [V] max. bias current [A] 100 25 ± 40 / 20 / 10 20 50 1000 max. power diss. [kw] 3 0.125 0.25 n.s. 0.5 limitations due to the testing equipment 150 source: websites and datasheets of manufacturers slide: 12, 9/17/2009

Analysis of Electrochemical Processes in an ASC Gas Conversion Impedance (at decreased fuel flow rate) 0.04 gas diffusion (anode substrate) 250 ml/min g(f)/ωs 0.03 0.02 gas conversion (gas channel) cathode (+ 2 nd peak of anode gas diffusion) anode 150 ml/min 100 ml/min 50 ml/min 0.01 0 0.01 0.1 1 10 100 1000 10k 100k 1M f/hz the gas conversion impedance will be included in the stack impedance source:, A. Leonide, presented at European SOFC Forum, Lucerne 2008 slide: 13, 9/17/2009

Electrochemical Impedance Spectroscopy for Stacks 2-dimensional Impedance Model oxidant (air) cathode electrolyte anode H 2 + 20% H 2 O fuel H 2 + 80% H 2 O U............ R 2C (x) R 1C (x) R 0 (x) P 3A (x) based on the impedance model of a single cell 1 single cell impedance units along a gas channel impact of the gas utilization on the local impedance is considered...... R 2A (x) R 1A (x) dynamics of gas conversion have to be taken into account 1 A. Leonide et al., J. Electrochem. Soc, 155 (1), pp. B36-B41, (2008). D. Klotz et al., accepted for publication in ECS Transactions (2009) source: slide: 14, 9/17/2009

2-dimensional Impedance Model Local Impedance Spectra and Stack Impedance U cell = 750 mv source: simulated fuel utilization along the gas channel D. Klotz et al., accepted for publication in ECS Transactions (2009) simulated local impedance spectra and impedance spectrum of the stack slide: 15, 9/17/2009

2-dimensional Impedance Model for Stacks Space and Time Dependence of the Fuel Utilization β f t time [s] / ms operating parameters U cell U ampl. f AC L v gas 0,725 V 70 mv 50 Hz 10 cm 3 m/s β f,in 20% β f,out 80% source: slide: 16, 9/17/2009

Experimental Sulzer Hexis Stack Test Bench Sulzer Hexis stack test bench 5 cell stack 100 cm² electrode area operating on pipeline gas desulfurization (disengageable) catalytic partial oxidation controlled gas flows controlled stack temperature (not thermal self-sustaining) variable interconnect / flow field geometry testing of different MEAs and MICs possible Impedance spectroscopy? source:, presented at Solid State Ionics 15 (2005) slide: 17, 9/17/2009

Sulzer Hexis Stack Test Bench Modifications for Impedance Spectroscopy initial state impedance / mω phase / EIS-Equipment Zahner IM6 & PP200 potentiostat impedance range: 1 µω... 1 kω frequency range: 10 µhz... 100 khz dc current: 20 A frequenzy / khz Significant interferences at frequencies above 10 khz source:, presented at Solid State Ionics 15 (2005) slide: 18, 9/17/2009

Sulzer Hexis Stack Test Bench Modifications for Impedance Spectroscopy Modifications adaptation of voltage probes & current lines to decrease mutual inductances impedance converters for dc voltage metering multiplexer for single cell / stack impedance measurement impedance / mω modified phase / frequenzy / khz Low interferences over the whole frequency range source:, presented at Solid State Ionics 15 (2005) slide: 19, 9/17/2009

Stack Diagnosis Impedance Spectra of Stacks and Cell Units -Z / Ohm 0.06 0.04 0.02 Stack Stack A: Sulzer Hexis MEAs & MICs 2002 Stack B: Sulzer Hexis MEAs & MICs 2004 5 cell stack electrode area: 100 cm² oxidant: air, 1000 g/h temperature: 930 C fuel: natural gas, 20 g/h fuel processing: CPO, λ POx : 0.28 Z / Ohm -0.03-0.02-0.01 Single Cell Units 1 to 5 Stack A cell 1 cell 2 cell 3 cell 4 cell 5 0 0 0.01 0.02 0.03 0.04 0.05 0 0 0.02 0.04 0.06 0.08 0.1 0.12 source:, presented at Solid State Ionics 15 (2005) Z / Ohm Impedance spectra of the stack provide an averaged ohmic and polarisation resistance Impedance spectra of the individual cell units provide more detailed information Z / Ohm -0.03-0.02-0.01 Stack B Z / Ohm 0 0 0.01 0.02 0.03 0.04 0.05 Z / Ohm cell 1 cell 2 cell 3 cell 4 cell 5 slide: 20, 9/17/2009

System Diagnosis Impedance Data Analysis by parametric extended DRT Im Z / Ω impedance spectra -0.01 Re Z / Ω 0.015 0.02 0.025 0.03 0.035 0 100 khz 10 Hz gas conversion impedance 12 mhz DRT γ(τ) / Ω s 0.006 0.004 0.002 0-2 0 2 4 log(1s/τ) γ(τ) τ L L R L source:, presented at Solid State Ionics 15 (2005) τ RQ, n RQ, R RQ RQ - element Z(DRT) Series resistance inductance slide: 21, 9/17/2009

System Diagnosis Impact of CPOx Reformer Temperature on cell voltage and n RQ U / V 0.89 0.88 0.87 Cell 1 voltage cell 1 no dependency in cell voltage 0.86 575 625 675 725 T pox / C n CPE 0.925 0.92 0.915 0.91 RQ exponent n RQ Variation in fuel composition is detected theory: n 1 for pure H 2 0.905 0.9 575 625 675 725 T pox / C source:, presented at Solid State Ionics 15 (2005) slide: 22, 9/17/2009

Conclusions and Outlook Future Research Activities - Diagnostic Tools for FC-Technologies Impedance spectroscopy is a powerful tool to analyze SOFC stacks but The available testing equipment hardly fulfills the requirements The stack testing facilities have to be designed for impedance spectroscopy Complex impedance models are required to understand the stack impedance To do s: Development of impedance analyzers for (SOFC-) stacks Development of tools for stack impedance modeling and data analysis Standardized testing procedures for stack impedance measurement and data analysis source: slide: 23, 9/17/2009

Impedance Spectroscopy and Impedance Data Analysis -References H. Schichlein, M. Feuerstein, A. C. Müller, A. Weber, A. Krügel and E. Ivers-Tiffée, "System identification: a new modelling approach for SOFC single cells", Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), pp. 1069-1077 (1999). H. Schichlein, Experimentelle Modellbildung für die Hochtemperatur-Brennstoffzelle SOFC, Aachen: Verlag Mainz (2003). E. Ivers-Tiffée, A. Weber and H. Schichlein, "Electrochemical impedance spectroscopy", in W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), Handbook of Fuel Cells - Fundamentals, Technology and Applications, Chichester: John Wiley & Sons Ltd, pp. 220-235 (2003). E. Ivers-Tiffée, A. Weber and H. Schichlein, "O2-reduction at high temperatures: SOFC", in W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), Handbook of Fuel Cells - Fundamentals, Technology and Applications, Chichester: John Wiley & Sons Ltd, pp. 587-600 (2003). H. Schichlein, A. C. Müller, M. Voigts, A. Krügel and E. Ivers-Tiffée, "Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells", Journal of Applied Electrochemistry 32, pp. 875-882 (2002). V. Sonn, A. Leonide and E. Ivers-Tiffée, "Towards Understanding the Impedance Response of Ni/YSZ Anodes", ECS Transactions 7, pp. 1363-1372 (2007). A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffée, "Evaluation and Modelling of the Cell Resistance in Anode Supported Solid Oxide Fuel Cells", ECS Transactions 7, pp. 521-531 (2007). A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffée, "Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells", J. Electrochem. Soc. 155, p. B36-B41 (2008). source: slide: 24, 9/17/2009

Acknowledgements Many Thanks to our Partners and Funding Organizations Fraunhofer Institut für Silicatforschung NSA source: & Partners slide: 25, 9/17/2009