TDA W AUDIO AMPLIFIER

Similar documents
TDA W Hi-Fi AUDIO POWER AMPLIFIER

TDA W Hi-Fi AUDIO POWER AMPLIFIER

TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION

TDA W CAR RADIO AUDIO AMPLIFIER

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

L78M00 SERIES POSITIVE VOLTAGE REGULATORS.

L4940 series VERY LOW DROP 1.5 A REGULATORS

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

L293B L293E PUSH-PULL FOUR CHANNEL DRIVERS. OUTPUT CURRENT 1A PER CHANNEL PEAK OUTPUT CURRENT 2A PER CHANNEL (non repetitive) INHIBIT FACILITY

Obsolete Product(s) - Obsolete Product(s)

Symbol Parameter Value Unit V i-o Input-output Differential Voltage 40 V I O Output Current Intenrally Limited Top

TDA2004R W stereo amplifier for car radio. Features. Description

TL074 TL074A - TL074B

L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description

LF00AB/C SERIES VERY LOW DROP VOLTAGE REGULATORS WITH INHIBIT

L7800 SERIES POSITIVE VOLTAGE REGULATORS

SWITCH-MODE POWER SUPPLY CONTROLLER PULSE OUTPUT DC OUTPUT GROUND EXTERNAL FUNCTION SIMULATION ZERO CROSSING INPUT CONTROL EXTERNAL FUNCTION

CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION OUT CFLY + CFLY - BOOT VREG FEEDCAP FREQ. July /8

TL084 TL084A - TL084B

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS

L4970A 10A SWITCHING REGULATOR

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS

Description. Table 1. Device summary

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY THERMAL SHUTDOWN STBY-GND

.OPERATING SUPPLY VOLTAGE UP TO 46 V

TDA2030A. 18W Hi-Fi AMPLIFIER AND 35W DRIVER

HCF4081B QUAD 2 INPUT AND GATE

LM337. Three-terminal adjustable negative voltage regulators. Features. Description

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

LM78XX Series Voltage Regulators

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP

HCF4070B QUAD EXCLUSIVE OR GATE

TDA8174A TDA8174AW VERTICAL DEFLECTION CIRCUIT RAMP GENERATOR INDEPENDENT AMPLITUDE ADJUSTEMENT BUFFER STAGE POWER AMPLIFIER

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

MC Low noise quad operational amplifier. Features. Description

LM134-LM234 LM334 THREE TERMINAL ADJUSTABLE CURRENT SOURCES. OPERATES from 1V to 40V

HCC/HCF4032B HCC/HCF4038B

TDA CHANNEL VOLUME CONTROLLER 1 FEATURES 2 DESCRIPTION. Figure 1. Package

Symbol Parameter Value Unit V DS Drain-source Voltage (V GS =0) 50 V V DGR Drain- gate Voltage (R GS =20kΩ) 50 V

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS Jan 08

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY THERMAL SHUTDOWN STBY-GND

ULN2801A, ULN2802A, ULN2803A, ULN2804A

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V

L297 STEPPER MOTOR CONTROLLERS

BUX48/48A BUV48A/V48AFI

Symbol Parameter Value Unit IAR Avalanche Current, Repetitive or Not-Repetitive

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

L6234. Three phase motor driver. Features. Description

HCF4001B QUAD 2-INPUT NOR GATE

CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features.

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

TDA7318D DIGITAL CONTROLLED STEREO AUDIO PROCESSOR

STP6N60FI N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR

STP80NF55-08 STB80NF55-08 STB80NF N-CHANNEL 55V Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET

.LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M74HC154 4 TO 16 LINE DECODER/DEMULTIPLEXER. HIGH SPEED tpd = 15 ns (TYP.) at VCC =5V

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)

BTB04-600SL STANDARD 4A TRIAC MAIN FEATURES

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

HCC4541B HCF4541B PROGRAMMABLE TIMER

STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET

MC34063AB, MC34063AC, MC34063EB, MC34063EC

Obsolete Product(s) - Obsolete Product(s)

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

. MEDIUM SPEED OPERATION - 8MHz . MULTI-PACKAGE PARALLEL CLOCKING FOR HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE

HCC/HCF4027B DUAL-J-K MASTER-SLAVE FLIP-FLOP

STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT

STW20NM50 N-CHANNEL Tjmax Ω - 20ATO-247 MDmesh MOSFET

Description SO-8. series. Furthermore, in the 8-pin configuration Very low-dropout voltage (0.2 V typ.)

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

Description. Table 1. Device summary. Order code Package Packing

LM380 Audio Power Amplifier

IRFP450. N - CHANNEL 500V Ω - 14A - TO-247 PowerMESH MOSFET

LM380 Audio Power Amplifier

LM386 Low Voltage Audio Power Amplifier

2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description


IRF830. N - CHANNEL 500V Ω - 4.5A - TO-220 PowerMESH MOSFET

LM118/LM218/LM318 Operational Amplifiers

TS321 Low Power Single Operational Amplifier

UNISONIC TECHNOLOGIES CO.,LTD

5A 3A. Symbol Parameter Value Unit

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

INTEGRATED CIRCUITS DATA SHEET. TDA W BTL mono audio amplifier. Product specification File under Integrated Circuits, IC01

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT27 M74HCT27 TRIPLE 3-INPUT NOR GATE. tpd = 9 ns (TYP.

HCF4028B BCD TO DECIMAL DECODER

unit : mm With heat sink (see Pd Ta characteristics)

TDA X 45W QUAD BRIDGE CAR RADIO AMPLIFIER PLUS HSD. 1 Features SUPERIOR OUTPUT POWER CAPABILITY: 2 Description. Figure 1.

IRF740 N-CHANNEL 400V Ω - 10A TO-220 PowerMESH II MOSFET

STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET

Order code Temperature range Package Packaging

EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at ore.hu.

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

MC78XX/LM78XX. 3-terminal 1A positive voltage regulator. Features. Description. Internal Block Digram.

TS34119 Low Power Audio Amplifier

LM135-LM235-LM335. Precision temperature sensors. Features. Description

LM mW Stereo Cell Phone Audio Amplifier

ULN2001, ULN2002 ULN2003, ULN2004

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

Transcription:

12W AUDIO AMPLIFIER DESCRIPTION The TDA2006 is a monolithic integrated circuit in Pentawatt package, intended for use as a low frequency class AB amplifier. At ±12V, d = 10 % typicallyit provides12woutput poweron a 4Ω load and 8W on a 8Ω. The TDA2006 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented)short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shutdown system is also included. The TDA2006 is pin to pin equivalent to the TDA2030. PENTAWATT ORDERING NUMBERS : TDA2006V TDA2006H TYPICAL APPLICATION CIRCUIT May 1995 1/12

SCHEMATIC DIAGRAM ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit Vs Supply Voltage ± 15 V Vi Input Voltage Vs V i Differential Input Voltage ± 12 V I o Output Peak Current (internaly limited) 3 A Ptot Power Dissipation at Tcase = 90 C 20 W T stg,t j Storage and Junction Temperature 40 to 150 C THERMAL DATA Symbol Parameter Value Unit Rth (j-c) Thermal Resistance Junction-case Max 3 C/W PIN CONNECTION 2/12

ELECTRICAL CHARACTERISTICS (refer to the test circuit ; V S = ± 12V, T amb =25 o C unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit V s Supply Voltage ± 6 ± 15 V Id Quiescent Drain Current Vs = ± 15V 40 80 ma I b Input Bias Current V s = ± 15V 0.2 3 µa VOS Input Offset Voltage Vs = ± 15V ± 8 mv I OS Input Offset Current V s = ± 15V ± 80 na VOS Output Offset Voltage Vs = ± 15V ± 10 ± 100 mv P o Output Power d = 10%, f = 1kHz RL =4Ω RL=8Ω 6 d Distortion Po = 0.1 to 8W, RL =4Ω, f = 1kHz P o = 0.1 to 4W, R L =8Ω, f = 1kHz Vi Input Sensitivity Po = 10W, RL =4Ω, f = 1kHz P o =6W,R L =8Ω, f = 1kHz 12 8 0.2 0.1 200 220 W % % mv mv B Frequency Response ( 3dB) Po = 8W,RL = 4Ω 20Hz to 100kHz Ri Input Resistance (pin 1) f = 1kHz 0.5 5 MΩ Gv Voltage Gain (open loop) f = 1kHz 75 db G v Voltage Gain (closed loop) f = 1kHz 29.5 30 30.5 db en Input Noise Voltage B ( 3dB) = 22Hz to 22kHz, RL = 4Ω 3 10 µv i N Input Noise Current B ( 3dB) = 22Hz to 22kHz, R L =4Ω 80 200 pa SVR Supply Voltage Rejection R L =4Ω,R g = 22kΩ, f ripple = 100Hz (*) 40 50 db Id Drain Current Po = 12W, RL = 4Ω Po=8W,RL=8Ω 850 500 ma ma Tj Thermal Shutdown Junction Temperature 145 C (*) Referring to Figure 15, single supply. 3/12

Figure 1 : Output Power versus Supply Voltage Figure 2 : Distortion versus Output Power Figure 3 : Distortion versus Frequency Figure 4 : Distortion versus Frequency Figure 5 : Sensitivity versus Output Power Figure 6 : Sensitivity versus Output Power 4/12

Figure 7 : Frequency Response with different values of the rolloff Capacitor C8 (see Figure 13) Figure 8 : Value of C8 versus Voltage Gain for different Bandwidths (see Figure 13) Figure 9 : Quiescent Current versus Supply Voltage Figure 10 : Supply Voltage Rejection versus Voltage Gain Figure 11 : Power Dissipation and Efficiency versus Output Power Figure 12 : Maximum Power Dissipation versus Supply Voltage (sine wave operation) 5/12

Figure 13 : Application Circuit with Spilt Power Supply Figure 14 : P.C. Board and Components Layout of the Circuit of Figure 13 (1:1 scale) 6/12

Figure 15 : Application Circuit with Single Power Supply Figure 16 : P.C. Board and Components Layout of the Circuit of Figure 15 (1:1 scale) 7/12

Figure 17 : Bridge Amplifier Configuration with Split Power Supply (PO = 24W, VS = ± 12V) PRACTICAL CONSIDERATIONS Printed Circuit Board The layout shown in Figure 14 should be adopted by the designers. If different layout are used, the ground points of input 1 and input 2 must be well decoupled from ground of the output on which a rather high current flows. Assembly Suggestion No electrical isolation is needed between the package and the heat-sink with single supply voltage configuration. Application Suggestion The recommended values of the components are the ones shown on application circuits of Figure 13. Different values can be used. The table 1 can help the designers. Table 1 Component Recommanded Value Purpose Larger Than Recommanded Value Smaller Than Recommanded Value R1 22 kω Closed Loop Gain Setting Increase of Gain Decrease of Gain (*) R 2 680 Ω Closed Loop Gain Setting Decrease of Gain (*) Increase of Gain R 3 22 kω Non Inverting Input Biasing Increase of Input Impedance Decrease of Input Impedance R 4 1 Ω Frequency Stability Danger of Oscillation at High Frequencies with Inductive Loads R5 3R2 Upper Frequency Cut-off Poor High Frequencies Attenuation Danger of Oscillation C 1 2.2 µf Input DC Decoupling Increase of Low Frequencies Cut-off C 2 22 µf Inverting Input DC Decoupling Increase of Low Frequencies Cut-off C3C4 0.1 µf Supply Voltage by Pass Danger of Oscillation C5C6 100 µf Supply Voltage by Pass Danger of Oscillation C 7 0.22 µf Frequency Stability Danger of Oscillation 1 C 8 2πBR1 Upper Frequency Cut-off Lower Bandwidth Larger Bandwidth D1D2 1N4001 To Protect the Device Against Output Voltage Spikes. (*) Closed loop gain must be higher than 24dB. 8/12

SHORT CIRCUIT PROTECTION The TDA2006 has an original circuit which limits the current of the output transistors. Figure 18 shows that the maximum output current is a function of the collector emitter voltage ; hence the output transistors work within their safe operating area (Figure 19). This function can therefore be considered as being peak power limiting rather than simple current limiting. It reduces the possibility that the device gets damaged during an accidental short circuit from AC output to ground. Figure 19 : Safe Operating Area and Collector Characteristics of the Protected Power Transistor THERMAL SHUT DOWN The presence of a thermal limiting circuit offers the following advantages : 1) an overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the Tj cannot be higher than 150 C. 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to 150 C, the thermal shutdown simply reduces the power dissipation and the current consumption. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance) ; Figure 22 shows the dissipable power as a function of ambient temperature for different thermal resistances. Figure 18 : Maximum Output Current versus Voltage VCE (sat) accross each Output Transistor Figure 20 : Output Power and Drain Current versus Case Temlperature (RL = 4Ω) Figure 21 : Output Power and Drain Current versus Case Temlperature (RL = 8Ω) 9/12

Figure 22 : Maximum Allowable Power Dissipation versus Ambient Temperature DIMENSION SUGGESTION The followingtable shows the length of the heatsink in Figure 23 for several values of P tot and R th. P tot (W) 12 8 6 Lenght of Heatsink (mm) 60 40 30 Rth of Heatsink ( C/W) 4.2 6.2 8.3 Figure 23 : Example of Heatsink 10/12

PENTAWATT PACKAGE MECHANICAL DATA DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 4.8 0.189 C 1.37 0.054 D 2.4 2.8 0.094 0.110 D1 1.2 1.35 0.047 0.053 E 0.35 0.55 0.014 0.022 F 0.8 1.05 0.031 0.041 F1 1 1.4 0.039 0.055 G 3.4 0.126 0.134 0.142 G1 6.8 0.260 0.268 0.276 H2 10.4 0.409 H3 10.05 10.4 0.396 0.409 L 17.85 0.703 L1 15.75 0.620 L2 21.4 0.843 L3 22.5 0.886 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 L7 6 6.6 0.236 0.260 M 4.5 0.177 M1 4 0.157 Dia 3.65 3.85 0.144 0.152 L A C E L1 D M M1 D1 L2 L5 L3 H3 G G1 Dia. L7 F1 H2 F L6 11/12

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. 1995 SGS-THOMSON Microelectronics - All Rights Reserved PENTAWATT is Registered Trademark of SGS-THOMSON Microelectronics SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A. 12/12