Physics 1214 Chapter 17: Electric Charge and Electric Field 01/14

Similar documents
Chapter 18. Electric Forces and Electric Fields

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

Chapter 27 Magnetic Field and Magnetic Forces

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

CHAPTER 24 GAUSS S LAW

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Version 001 Electrostatics I tubman (12125) 1

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework

Charges, voltage and current

Chapter 22: Electric Flux and Gauss s Law

Exam 1 Practice Problems Solutions

Force on Moving Charges in a Magnetic Field

Gauss Formulation of the gravitational forces

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

Bonding & Molecular Shape Ron Robertson

Exam 2 Practice Problems Part 1 Solutions

Forces between charges

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 7: Polarization

Chapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics Separation of Electric Charge by Rubbing

39 kg of water at 10 C is mixed with 360 kg of ice at -7 C.

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

Phys222 Winter 2012 Quiz 4 Chapters Name

Chapter 6. Work and Energy

Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope

Electromagnetism Extra Study Questions Short Answer

Chapter 21. Magnetic Forces and Magnetic Fields

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings

Electromagnetism Laws and Equations

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

Laboratory 11: Molecular Compounds and Lewis Structures

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

Solution. Problem. Solution. Problem. Solution

At the skate park on the ramp

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Science Standard Articulated by Grade Level Strand 5: Physical Science

Review Questions PHYS 2426 Exam 2

VELOCITY, ACCELERATION, FORCE

Chapter 6 Work and Energy

Physics 202, Lecture 3. The Electric Field

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Chapter 8 Basic Concepts of the Chemical Bonding

MASS DEFECT AND BINDING ENERGY

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Chapter 13 - LIQUIDS AND SOLIDS

PROTONS AND ELECTRONS

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

9. Momentum and Collisions in One Dimension*

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE

As customary, choice (a) is the correct answer in all the following problems.

Electron Arrangements

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

Level 3 Achievement Scale

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Chapter 22 Magnetism

Chapter Five: Atomic Theory and Structure

Figure 1.1 Vector A and Vector F

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus

Free Electron Fermi Gas (Kittel Ch. 6)

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Physics 2B. Lecture 29B

Copyright 2011 Casa Software Ltd. Centre of Mass

Physics 221 Experiment 5: Magnetic Fields

Chapter 4. Electrostatic Fields in Matter

KINETIC MOLECULAR THEORY OF MATTER

Introduction to Chemistry. Course Description

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chapter 29: Magnetic Fields

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Eðlisfræði 2, vor 2007

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

ELECTRIC FIELDS AND CHARGE

Vector surface area Differentials in an OCS

Chapter 21. = C and point charge

physics 112N magnetic fields and forces

circular motion & gravitation physics 111N

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Daytona State College (Science 120, Page 1 of 39)

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Trends of the Periodic Table Diary

1. The diagram below represents magnetic lines of force within a region of space.

CHAPTER 6 WORK AND ENERGY

XI / PHYSICS FLUIDS IN MOTION 11/PA

Transcription:

Physics 1214 Chapter 17: Electric Charge and Electric Field 01/14 Introduction electrostatic interactions interactions between electric charges at rest in our frame of reference modeled by Coulomb s equation described by an electric field 1 Electric Charge electric charge We cannot say what electric charge is; we can only describe its properties and its behavior. two kinds named positive and negative one of the fundamental attributes of the particles of which matter is made the interaction of electric charges are responsible for the structure and properties of atoms and molecules (refer to periodic table) Two positive charges or two negative charges repel each other; a positive and a negative charge attract each other. The structure of ordinary matter can be described in terms of three particles: electrons, protons, and neutrons. electron: negatively charged fundamental mass = m e = 9.1093826(16) 10 31 kg proton: positively charged mass = m p = 1.67262171(29) 10 27 kg neutron: neutral or uncharged mass = m n = 1.67492728(29) 10 27 kg nucleus: dense core of the atom; consists of neutrons and protons atomic number: the number of protons or electrons in neutral atoms of any element negative ion: a negatively charged atom to which an electron has been added positive ion: a positively charged atom to which an electron has been removed ionization: the gaining or adding of electrons ion: an atom that has lost or gained one or more electrons 1

2 Conductors and Insulators conductor: materials that permit charge to move through them; most metals are good conductors insulator: materials that do not permit charge to move through them; most nonmetals are insulators semiconductor: materials with properties that fall between good conductors and good insulators induction: a process by which an object can give a charge to another object without losing any of its own charge induced charges: excess charges in a target object caused by induction from a charged object sink: a generic term used in physics (mathematics and engineering) to describe a reservoir where charges (or other fluid ) flows away from the system being observed versus a source from which charges (or other fluid ) flows into the system. When excess charge is placed on a solid conductor and is at rest, the excess charge rests entirely on the surface of the conductor. polarization: in an insulator, electric charges can shift when there is a charge nearby producing a net charge on one side of the object and the opposite charge on the other side; an induced charge in an insulator 3 Conservation and Quantization of Charge Conservation of Charge The algebraic sum of all the electric charges in any closed system is constant. Charge can be transferred from one object to another, and that is the only way in which an object can acquire a net charge. Quantization of Charge The magnitude of the charge of the electron or proton is a natural unit of charge. 2

Physics 1214 Chapter 17: Electric Charge and Electric Field 01/16 4 Coulomb s Law Coulomb s Law The magnitude F of the force that each of two point charges q 1 and q 2 a distance r apart exerts on the other is directly proportional to the product of the charges (q 1 q 2 ) and inversely proportional to the square of the distance between them (r 2 ). The relationship is expressed symbolically as F = k q 1q 2 4πr 2. This relationship is Coulomb s Law. The SI unit of electric charge is called one coulomb (1C) The value of k in SI units k = 8.987551789 10 9 N m 2 /C 2 8.99 10 9 N m 2 /C 2 also k = 1 4πɛ 0 where ɛ 0 = 8.854 10 12 C 2 /(N m 2 ) This interaction force always acts along the line joining the charges obeys Newton s third law The fundamental unit of charge is the magnitude of the charge of an electron or a proton, denoted by e. As of January 2013, according to NIST e = 1.602176565(35) 10 19 C principle of superposition: when two charges exert forces simultaneously on a third charge, the total force acting on that charge is the vector sum of the fores that the two charges would exert individually 3

5 Electric Field and Electric Forces Using the concept of an electric field, E, we can describe the effect charged particles have on each other action at a distance. test charge: a charged object, placed in the system to determine whether there is an electric field at a particular point. vector field: a vector quantity associated with every point in a region of space, different at different points. In general, each component of E, at any point, depends on all the coordinates of the point. To define E at any point, we place a test charge q at the point and measure the electric force F on it. When a charged particle with charge q at a point P is acted upon by an electric force F, the electric field, E, at that point is defined as E = F the test charge q can be either positive or negative. If it is positive, the directions of F and E are the same; if it is negative, they are opposite. In SI units, the unit of electric field magnitude is 1 N/C. q. E is not a single vector quantity, but an infinite set of vector quantities a vector field For those of you who are curious and feel like we ve missed the effect of the test charge SEE NOTE on page 558 for more precise explanation of a point charge effect on a conductor! In an electrostatic situation, the E at every point within the material of a conductor must be zero. 6 Calculating Electric Fields Principle of superposition The total F at any point due to two or more charges is the vector sum of the fields that would be produced at that point by the individual charges. source point: denoted by S in the text, the origination of the electric field caused by many point charges field point: denoted by P in the text, the point where we want to find the electric field Using the superposition principle the total electric field, E total = E 1 + E 2 + E 3 +... 4

The magnitude E of the electric field E at point P due to a point charge q at point S, a distance r from P, is given by E = k q r 2. By definition, the electric field produced by a positive point charge always points away from it, but the electric field produced by a negative point charge points toward it. 5

Physics 1214 Chapter 17: Electric Charge and Electric Field 01/18 7 Electric Field Lines electric field lines: an imaginary line drawn through a region of space so that, at every point, it is tangent to the direction of the electric field vector at that point. at every point in space, the electric field vector, E, at that point is tangent to the electric field line through that point electric field lines are close together in regions where the magnitude of E is large, farther apart where it is small field line point away from positive charges and toward negative charges field lines never intersect (only one field line can pass through each point of the field) dipole: two equal charges, one positive and one negative Note: Most field drawings are 2-D slices of 3-D fields. The direction of a field line at a given point determines the direction of the particle s acceleration, not its velocity. 8 Gauss s Law and Field Calculations Gaussian surface: an imaginary closed surface surrounding a charge distribution electric flux: the flux of the electric field; intuitively: the flow of the electric field magnitude, E, through an area, A, of the Gaussian surface denoted by Φ E = EA. Roughly, the number of field lines that pass through A. More generally, non-perpendicular. Φ E = EA cos φ Gauss law The total electric flux Φ E coming out of any closed surface (that is, a surface enclosing a definite volume) is proportional to the total (net) electric charge Q enclosed inside the surface, according to the relation E A = 4πkQ enclosed. The sum on the left side of this equation represents the operations of dividing the enclosing surface into small elements of area A, computing E A for each one, and adding all these products. 9 Charges on Conductors So far for electrostatics: in the electrostatic system, E at every point within a conductor is zero the charge on a solid conductor is located entirely on its surface 6

Conductor with a cavity: if no charge in the cavity the only charge is as if the conductor is solid and thus the charge is located entirely on its surface if there exists charge in the cavity (not touching the conductor) there is the charge in the cavity plus any charge on the surface, q + q Faraday s ice-pail experiment: metal pail with a lid, an insulating stand, and a charged metal ball with insulating thread; if the ball hangs with the lid closed (not touching the pail), it induces a negative charge on the interior surface of the pail and a positive charge on the exterior surface; once the ball touches the pail, the ball becomes part of the pail and the ball loses its charge to the pail Faraday cage: in a uniform electric field a conductive closed surface surrounding a volume redistributes charge on its surface such that the interior of the volume has a total electric field of zero (Gauss law); also knowing as electrostatic shielding. 7