Models. Note: Model of the Lithium battery charger will be marked in response to the actual maximum output voltage. Models

Similar documents
User Manual for CH-PFC76810

LS1024B / LS2024B/ LS3024B. Solar Charge Controller USER MANUAL


Daker DK 1, 2, 3 kva. Manuel d installation Installation manual. Part. LE05334AC-07/13-01 GF

AUTO CHARGE 3 STEP AUTOMATIC BATTERY CHARGER

IO-RM3 3-Stage Relay Module

Manual. Solar Fountain Mobile Phone Charger

SYSTEM 45. C R H Electronics Design

R22. K Control. Indoor Unit. Nomenclature. Compatibility PL H 3 G K H B. Unit style Heat Pump Horse Power

Whale 3. User Manual and Installation Guide. DC Servo drive. Contents. 1. Safety, policy and warranty Safety notes Policy Warranty.

Modular I/O System Analog and Digital Interface Modules

Charge Regulator SCR 12 Marine

SYSTEM 4C. C R H Electronics Design

, User s Manual

with Electronic Assistant

Troubleshooting Guide, Freedom and Fleet Power Inverter/Chargers

is then retained absolutely without interruption.

Mobile Device Power Monitor Battery Connection Quick Start Guide

Instructions: Retain these instructions for future reference SmartChargePro35 RSCPR35-12v, 2 / 8 / 16 / 35A

DC DC CONVERTER 1000W VDC Input / 12VDC Output

Technical Specifications: The specifications represent a particular hardware platform. Application-specific software is provided.

MODEL 2202IQ (1991-MSRP $549.00)

How To Use A Power Supply Unit (Upu)

USER MANUAL CHARGING STATIONS FOR ELECTRIC VEHICLES

PB-600 series. 600W Single Output Battery Charger SPECIFICATION MODEL PB PB PB V 28.8V 57.6V 13.8V

OUTPUT CABLE CONNECTIONS:

EPSOLAR LS0512R / LS0524R. Solar Light Controller INSTRUCTION MANUAL. Please read this manual carefully before using the product!

CAT AVR V2.3. Instruction Manual. Voltage regulator for generators. March 2008

Process modules Digital input PMI for 24 V DC inputs for 120 V AC inputs

STUDY OF CELLPHONE CHARGERS

Ordering Part Numbers:

instabus KNX / EIB System System E F G H

MP-4000 Alarm List (Software version or later)

CAN BUS INTERFACE. Module Information

RADIANT PLASMA 4700 Plasma Spark Generator

BB800 Off-Grid Solar System

PHYS 2P32 Project: MIDI for Arduino/ 8 Note Keyboard

LG Air Conditioning Multi F(DX) Fault Codes Sheet. Multi Split Units

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

Air conditioning, electrical testing

OPENUPS. 6-30V Intelligent Uninterruptible Power Supply. Installation Guide. Version 1.0f P/N OPENUPS-06

12 Volt 30 Amp Digital Solar Charge Controller

Using voltage regulator to convert 5-12V range to 3.3V. Huan Lin

Configure Inverter output for two utility settings, (1)120V/60Hz, (2)220V/50Hz

Instruction manual. Electrobloc EBL 100-2

Copyrights 2010 Victron Energy B.V. All Rights Reserved

CANTEC-2XL. Description

ALARM ANNUNCIATOR ME INSTRUCTION MANUAL

RC Camera Control. User Guide v /20/2012

User Manual. Hybrid 1KW-5KW INVERTER / CHARGER. Version: 1.1

Technote. Frese OPTIMA Compact actuators DN10-DN32. Application. Features thermic actuators. Features motoric actuators. Approval.

Smarthome SELECT Bluetooth Wireless Stereo Audio Receiver and Amplifier INTRODUCTION

HCS-3300/3302/3304 USB Remote Programmable Laboratory Grade Switching Mode Power Supply

DC Electronic Loads 8500 series

Service Information CALIBRATION PROCEDURE AND TROUBLESHOOTING FOR LINEAR GOVERNOR CONTROLLERS NOTE

Meritor WABCO Pneumatic Antilock Braking System (ABS) 42.22

SNMP Web Management. User s Manual For SNMP Web Card/Box

Automatic Voltage Regulator User s Manual

Multi-Protocol decoder with Load regulation

USER S MANUAL. MaxPower UPS. Uninterruptible Power System 28-2MAXPO0018

LG Air Conditioning - Universal Split Fault Codes Sheet. Universal Split Systems

PSU-U-24V/AC-6A/10/FTA-TR-MC PSAC 0624

DCDC-USB. 6-34V 10A, Intelligent DC-DC converter with USB interface. Quick Installation Guide Version 1.0c P/N DCDC-USB

LESTRONIC DV AUTOMATIC 12 OR 24 VOLT DUAL OUTPUT DUAL MODE BATTERY CHARGER MODEL TYPE 12/24EL40-10ET

Product Information. Gateway For Connecting EnDat Encoders to PROFIBUS-DP

PSC-A5 Solar Charge Controller Manual

Instruction Bulletin. MCS025 Sync-Check Module Installation Sheet

Quick Start Guide for High Voltage Solar Inverter DC-AC Board EVM. Version 1.3

2 X 250Watt Class D Audio Amplifier Board IRS2092 User s Guide

Contactless Encoder RI360P0-QR24M0-INCRX2-H1181

Inductive Proximity Sensors

Battery Charger For Nickel Cadmium and Nickel-Metal Hydride Rechargeable Batteries Model PSN Series

SX460. Generator Automatic Voltage Regulator Operation Manual

Operating instructions Diffuse reflection sensor. OJ50xx / / 2004

DCX300 - DCX400 - DCX600

User s Manual Before using the inverter, you need to read and save the safety instructions.

Operating Instructions

TIG INVERTER INSTRUCTION MANUAL

NC-12 Modbus Application

PD30ETB20xxIS. Photoelectrics, Background Suppression reflective with IR light. Main features. Description

DALI RC BASIC SO. Control unit Operating instructions

MULTI XS Battery charger. For lead-acid batteries 1,2-120Ah

ACS-30-EU-EMDR-10-MOD

Model 201 Wiegand Touchpad Reader Installation Guide

Business/Home GSM Alarm System. Installation and User Manual

Connecting your Victron product to a computer with VE Configure

Installation and Operation Guide for PD4100 Series Power Control Centers

MANUAL PC1000R

TC-9102 Series Surface Mount Temperature Controllers

OPERATION MANUAL VALVE CHECKER G

FL ballasts Electronic dimming. PCA T5 BASIC lp Y II, W BASIC T5

CONTOIL DFM 8EDM. Table of contents. Mounting and operating instructions

Allen-Bradley/Rockwell

DS1621 Digital Thermometer and Thermostat

BroadBand PowerShield. User Manual

Technical description MX-1 VB Edge

Analogue Input, 4-fold, MDRC AE/S 4.1, GH Q R0001

A Practical Guide to Free Energy Devices

R448 & R448 V50 A.V.R.

28V, 2A Buck Constant Current Switching Regulator for White LED

Transcription:

1.5KW HF/PFC Lithium Battery Charger Size (mm):348(l) 180(W) 140(H) Lithium Battery Charger Vout Max Iout Max TCCH-H35-40 34.6V 40A TCCH-H51-33 51.1V 33A TCCH-H65-25 65V 25A TCCH-H90-20 89.8V 20A TCCH-H104-16 103.8V 16A TCCH-H114-14 114V 14A TCCH-H130-12 130V 12A TCCH-H161-10 161V 10A TCCH-H203-08 1 203V 8A TCCH-H217-08 217V 8A TCCH-H258-6A2 258V 6.2A TCCH-H320-05 320V 5A 2KW HF/PFC Lithium Battery Charger Size ( mm):349(l) 198(W) 139(H) Lithium Battery Charger Vout Max Iout Max TCCH-H66-35 66V 35A TCCH-H83-30 82.6V 30A TCCH-H96-25 96.2V 25A TCCH-H112-21 112V 21A TCCH-H130-18 130V 18A TCCH-H145-16 144.7V 16A TCCH-H168-15 168V 15A TCCH-H192-12 192V 12A TCCH-H208-11 208V 11A TCCH-H234-10 233.3V 10A TCCH-H243-09 243V 9A TCCH-H258-09 258V 9A TCCH-H290-08 289.5V 8A TCCH-H337-7A2 337V 7.2 TCCH-H389-06 389V 6A TCCH-H417-5A5 417V 5.5A

3KW HF/PFC Lithium Battery Charger Lithium Battery Charger Vout Max Iout Max Size (mm):357(l) 254(W) 179(H) TCCH-H35-80 34.6V 80A TCCH-H51-66 51.1V 66A TCCH-H65-50 65V 50A TCCH-H90-40 89.8V 40A TCCH-H104-32 103.8V 32A TCCH-H114-28 114V 28A TCCH-H130-24 130V 24A TCCH-H161-20 161V 20A TCCH-H203-16 203V 16A TCCH-H217-16 217V 16A TCCH-H258-12A4 258V 12.4A TCCH-H320-10 320V 10A 4KW HF/PFC Lithium Battery Charger Size (mm): 367(L) 352(W) 139(H) Lithium Battery Charger Vout Max Iout Max TCCH-H66-70 66V 70A TCCH-H83-60 82.6V 60A TCCH-H96-50 96.2V 50A TCCH-H112-42 112V 42A TCCH-H130-36 130V 36A TCCH-H145-32 144.7V 32A TCCH-H168-30 168V 30A TCCH-H192-24 192V 24A TCCH-H208-22 208V 22A TCCH-H234-20 233.3V 20A TCCH-H243-18 243V 18A TCCH-H258-18 258V 18A TCCH-H290-16 289.5V 16A TCCH-H337-14A4 337V 14.4A TCCH-H389-12 389V 12A TCCH-H417-11 417V 11A

6KW HF/PFC Lithium Battery Charger Size (mm) 546(L) 356(W) 137(H) Lithium Battery Charger Vout Max Iout Max TCCH-H66-105 TCCH-H83-90 TCCH-H96-75 TCCH-H112-63 TCCH-H130-54 TCCH-H145-48 TCCH-H168-45 TCCH-H192-36 TCCH-H208-33 TCCH-H234-30 TCCH-H243-27 TCCH-H258-27 TCCH-H290-24 TCCH-H337-21A6 TCCH-H389-18 TCCH-H417-16A5 66V 82.6V 96.2V 112V 130V 144.7V 168V 192V 208V 233.3V 243V 258V 289.5V 337V 389V 417V 105A 90A 75A 63A 54A 48A 45A 36A 33A 30A 27A 27A 24A 21.6A 18A 16.5A 8KW HF/PFC Lithium Battery Charger Size (mm) 357(L) 254(W) 377(H) Lithium Battery Charger Vout Max Iout Max TCCH-H66-140 TCCH-H83-120 TCCH-H96-100 TCCH-H112-84 TCCH-H130-72 TCCH-H145-64 TCCH-H168-60 TCCH-H192-48 TCCH-H208-44 TCCH-H234-40 TCCH-H243-36 TCCH-H258-36 TCCH-H290-32 TCCH-H337-28A8 TCCH-H389-24 TCCH-H417-22 66V 82.6V 96.2V 112V 130V 144.7V 168V 192V 208V 233.3V 243V 258V 289.5V 337V 389V 417V 140A 120A 100A 84A 72A 64A 60A 48A 44A 40A 36A 36A 32A 28.8A 24A 22A

I Product Summary & Application Scopes The charger is applicable for various lithium batteries like LiFePO4, LiMn2O4 etc., It features light weight, small volume, stable performance, high efficiency and reliable security etc., It can be switched automatically between the floating and balancing charging and also has the protection functions of reverse connection, output short-circuit and overload and so on. The charger is widely used for battery-charging cycles in electric vehicles such as electric forklift, golf cars, electric trucks, electric tour bus, electric yacht, cleaning machines, or Uninterruptible Power Supply (UPS), solar energy, wind power dynamo and electric communication system on the railway etc. II Technical Target AC Input Voltage Range AC Input Frequency III Protection Features 1. Thermal Self-Protection: When the internal temperature of the charger exceeds 75, the charging current will reduce automatically. If it exceeds 85, the charger will shutdown protectively. When the internal temperature drops, it will resume charging automatically. 2. Short-circuit Protection: When the charger encounters unexpected short-circuit, it will automatically stop to output. When fault removes, the charger will re-start in 10 seconds. 3. Reverse Connection Protection: When the battery is polarity reversed, the charger will cut off the connection between the internal circuit and the battery, and refuses to start. It can avoid any destroy. 4. Input Low-voltage & Over-voltage Protection: When the AC input Voltage is lower than 85V or higher than 265V, the charger will shutdown protectively and automatically resume working with the voltage is normal again. Ⅳ Appearance Labels Please check carefully the labels on the casing of the charger before using in order to completing the transaction check the label on the charger before using, it can provide some help for you to understand the performance and the specification of the charger. i. Bar Code Label: Attaches on the output terminal of the charger. For example, SN10071001 1007: Production batch number. 1001: Bar code number. 48-25: Hardware model HD VER 1.6 : Version number from the manufacturer AC85V~AC265V 45~65 Hz AC Power Factor 0.98 Full Load Efficiency 93% Mechanical Shock & Vibration Resistance Level Environmental Enclosure Conformance to SAEJ1378 Standard Operating Temperature -40 ~+55 (-40 ~+131 ) Storage Temperature -40 ~+100 (-40 ~+212 ) Charging Control IP46 Via CAN bus or ENABLE

ii. Model Label:take the model TCCH-H58V4-25A for example INDUSTRIAL BATTERY CHARGER 58.4Vmax Input: 100~240VAC 50/60Hz 14 / 8.1A Output: 48V 25A@220VAC 48V 24.5A@115VAC Battery: LiFePO4 16 cells Model: TCCH-H58V4-25A Environmental Enclosure: IP46 a) Input 100~240VAC 50/60Hz 14/8.1A: The rated input current is 14A at 115VAC and 8.1A at 220VAC; b) Output 48V 25A@220VAC 48V 24.5A@115VAC: The maximum current is 25A at input 220VAC, and 24.5A at input 115VAC. c) Will add -CAN after the model if the charger controlled by CAN module. E.g. TCCH-H58V4-25A-CAN. iii. LED Label It is the important symbol to evaluate whether the charger works normally. Red-Green flash (one second interval) Red flash (three seconds interval) Red flash (one second interval) Yellow flash (one second interval) Green flash (one second interval) Battery Disconnected Repair Battery <80% Charge Indicator >80% Charge Indicator 100% Charge Indicator Ⅴ Common Faults & Solutions In case of the charging fails, please examine all the outside lines carefully to make sure that they are connected correctly. If circuits failure have been excluded, you can check the failure code of charging LED and handle it according to the following table. LED Flashing Sequence (One Cycle) Indication 1 R G Wrong Battery 2 R G R _ Overcharged 3 R G R G Battery Overheated 4 R G R G R _ Incorrect AC Input Voltage 5 R G R G R G External Thermal Sensor Fault 6 R G R G R G R _ Communication Interface Fault 7 G R Charger Overheated 8 G R G _ Charger Relay Fault 9 G R G R Charger Itself Fault

Note: 1. R red G green 2. _ denotes one second pause 3. Above LED flashing sequence is one cycle; the LED will flash repeatedly if the fault has not been removed. Solutions Wrong Battery: Verify the battery voltage range matching with charger or inspect the battery for damage. Overcharged: Confirm the battery capacity and the selected curve are matched or if the battery is defective. Battery Overheated: Check the temperature at the external thermal sensor. If overheated, the charger will start the battery protection. Incorrect AC Input Voltage: Check that the AC input voltage is in accordance with the requirement. External Thermal Sensor Fault: Ensure connect the thermal sensor correctly. Communication Interface Fault: Make sure the communication have been correctly connected or if it is damaged. Charger Overheated: Check if the ambient temperature is too high or the ventilation is smooth. Charger Relay Fault: Repair. Charger Itself failure: Repair. Connection Instruction for Control Interface I. Charger s Communication Connector PIN Description 1 ENABLE: 2 GND: 3 +12V:+12V internal power supply 12V (Load 50mA) 4 LED - Red 5 LED - Green 6 RX: Serial Communication Receiver (for charger) II. Security Tips 7 TX: Serial Communication Sender (for charger) 1. Do not allow the lead from any PIN to contact the battery positive or negative. 2. Never attempt to connect any two wires from the SP1312 connector that not be connected. 3. Applied power supply or load above 50mA to +12V PIN3 is forbidden. 4. Internal impedance of PIN1 (ENABLE) is 10K with allowable range 0~16V. Please connect a series resistance of 10 K when controlling by an external 24V supply. (Refer to manufacturer first)

III. Charger s Connection Instruction for Control Interface ElCon chargers can have CAN communication control or ENABLE control modes. ElCon will configure either before delivery as per customer s requirement. Note that the control interface can not be active at the same time in different modes. The customer should select the appropriate control mode according to the battery management system (BMS) type and the battery requirement. BMS Category Mode of Connection Brief Description BMS with CAN communication function Battery protector broad or BMS without CAN communication function CAN communication Module (Model: TC-619B) Relay control Optocoupler device control 2-5V control BMS controls the charging process by the commands sent from CANbus Use normally open contacts of relay to control the charging enable wires. Closed=Enable, Open=Disable Use optoelectronic coupled devices to control the charging enable wires. Use 2-5V (dividing by resistance) controlling the charging enable wires and stop charging and be able to set up the output current from 0% to 100% for the charger. Control mode No 1# : USING THE CAN COMMUNICATION CONTROL 1. The charger can be controlled by CAN communication when the BMS has functionality. The CAN communication module is required (TC-619B) and can be connected with the BMS CANbus. 2. The customer should specify CAN communication protocol when ordering. Specified CAN ID, CAN module type and CAN communication protocol supported are set up before delivery. 3. A Standard CAN module with cable length 225mm and the mating connector can be provided. PIN 1 connects to CAN-H, PIN 3 connects to CAN-L. See below. TC-619B CAN communication module s interface Diagram

4. An external cable with mating model TC-618E CAN interface is shown. 5. SCHEMATIC Control mode No 2# : USING THE ENABLE CONTROL 1. Charging process: Constant current (this current is controllable) charging mode is applied first, then constant voltage charging when the battery reaches the specified voltage point. The voltage does not increases in the constant voltage stage and the charge current will gradually reduce. Charging ceases automatically when the current falls to a preset value (generally one tenth of maximum charging current). If ENABLE signal is removed at any time, charging ceases. 2. The ENABLE/+12V wires can be used to control the charger by an ON/OFF signal from a battery management system. 3. Alternatively the voltage between ENABLE and GND can be used to linearly control the charger output current. When it is above 2V, charger commences charging. Applying 2~5V can control the maximum output current. Below 1.5V the charger will cease charging, re-applying above 2V will re-enable charging.

4. SCHEMATIC 5. ENABLE CONTROL THREE METHODS ENABLE CONTROL method 1: USING RELAY CONTROL The charger provides +12V (red) and ENABLE(black) from 7-PIN connector. A relay can be connected with BMS according to the Schematic below. Charging is controlled by connecting or disconnecting +12V and ENABLE. If ENABLE is disconnected, charging will cease. Upon re-connection, the charger will recommence charging. ENABLE CONTROL method 2: Optical-couple Control Alternatively an Optical-coupling device can be connected with the BMS according to the Schematic below. Charging is controlled by connecting or disconnecting +12V and ENABLE. If ENABLE is disconnected, charging will cease. Upon re-connection, the charger will recommence charging.

ENABLE CONTROL method 3: USING 2-5V CONTROL a. Control of charging current and stop charging can be controlled by altering the DC voltage on ENABLE (PIN 1). It is possible to control the the maximum output current from 0% to 100% of the charger maximum capability. During the stop mode (<1.5V) if the voltage rises above 2V between ENALBE (PIN 1) and GND(PIN 2) charger will enter into working mode. In this working mode, when the control voltage is reduced under 1.5V the charger returns to the stop mode. 2V~5V on ENABLE corresponds linearly to output current from 0% to 100%. For example, When it is 2V between PIN 1 and PIN 2, maximum output current of the charger is 0; When 3V between them, it is 33% of the maximum output current; When 4V between them, it s 66% of it; When above 5V between them, it s 100%. b. If control only of the maximum charging current is required, use two resistors (R1, R2) to divide voltage and get a fixed DC voltage to ENABLE and the charger operates at the corresponding current. Output current is determined by the voltage that divided by resistors. It s also possible to use the external relay control or optical-couple control. The output capacity of optical-couple should be more than 10mA and total value of two resistors should not be less than 1500 Ohms. c. If the maximum charging current need to be altered at any time, it can be accomplished by changing the voltage between ENALBE and GND. Generally, use PWM to drive the optical-couple. The output of optical-couple goes through RC filter and then connect to ENABLE. The Schematic below shows another way of altering the voltage between ENABLE and GND using PWM output from the BMS. IV. Descriptions PIN DEFINITION 1 ENABLE input 2 GND 3 +12V internal power supply 4 5 6 7 Select PINs (1, 2, 3), when using 2-5V to control. Select PINs (1, 3), when using Relay and optocoupler to control. PIN 1: Black PIN 2: Green PIN3: Red PIN 1: Black PIN 3: Red