5.1. It might seem unfair, but many banks will charge you money for not having money. Go for the Curve! Comparing Linear and Exponential Functions

Similar documents
5.1 Simple and Compound Interest

With compound interest you earn an additional $ ($ $1500).

Comparing Simple and Compound Interest

SEQUENCES ARITHMETIC SEQUENCES. Examples

What is the difference between simple and compound interest and does it really matter?

Investigating Investment Formulas Using Recursion Grade 11

9.2 Summation Notation

Logarithmic and Exponential Equations

1. Annuity a sequence of payments, each made at equally spaced time intervals.

Solutions of Equations in Two Variables

Solving Compound Interest Problems

MAT12X Intermediate Algebra

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

$ Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months?

Lesson 4 Annuities: The Mathematics of Regular Payments

Percent, Sales Tax, & Discounts

16 21 Linear vs. Exponential.notebook May 14, LT 1c: I can compare linear vs. exponential change.

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:

Semester Exam Review ANSWERS. b. The total amount of money earned by selling sodas in a day was at least $1, F 200 F

Finance Unit 8. Success Criteria. 1 U n i t 8 11U Date: Name: Tentative TEST date

21.1 Arithmetic Growth and Simple Interest

The Mathematics 11 Competency Test Percent Increase or Decrease

5.4 Solving Percent Problems Using the Percent Equation

Lesson 4: Solving and Graphing Linear Equations

Financial Mathematics

Chapter 2 Time value of money

Part 1 will be selected response. Each selected response item will have 3 or 4 choices.

The Point-Slope Form

5 Systems of Equations

Graphing calculators Transparencies (optional)

EQUATIONS and INEQUALITIES

Lesson Plan -- Simple and Compound Interest

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

Algebra I Credit Recovery

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)

GEOMETRIC SEQUENCES AND SERIES

Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = q. a) Find the equilibrium point b) Sketch a graph

Finance 197. Simple One-time Interest

Absolute Value Equations and Inequalities

How To Understand And Solve Algebraic Equations

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Absolute Value Equations and Inequalities

What You ll Learn. And Why. Key Words. interest simple interest principal amount compound interest compounding period present value future value

Solving Quadratic Equations

Tennessee Department of Education

Financial Literacy in Grade 11 Mathematics Understanding Annuities

Annuities: Present Value

Polynomials and Quadratics

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

How To Calculate A Balance On A Savings Account

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Decimals and Percentages

Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

Math of Finance Semester 1 Unit 2 Page 1 of 19

Week 13 Trigonometric Form of Complex Numbers

What s the Cost of Spending and Saving?

Lesson 1. Key Financial Concepts INTRODUCTION

Lab 17: Consumer and Producer Surplus

MACMILLAN/McGRAW-HILL. MATH CONNECTS and IMPACT MATHEMATICS WASHINGTON STATE MATHEMATICS STANDARDS. ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs)

Finding Rates and the Geometric Mean

price quantity q The Supply Function price quantity q

Years after US Student to Teacher Ratio

Analyzing Functions Intervals of Increase & Decrease Lesson 76

Pre-Session Review. Part 2: Mathematics of Finance

Finance CHAPTER OUTLINE. 5.1 Interest 5.2 Compound Interest 5.3 Annuities; Sinking Funds 5.4 Present Value of an Annuity; Amortization

Solutions of Linear Equations in One Variable

Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED

Oral and mental starter

Chapter 4: Exponential and Logarithmic Functions

Section 1.5 Linear Models

UNIT AUTHOR: Elizabeth Hume, Colonial Heights High School, Colonial Heights City Schools

Return on Investment (ROI)

Algebra Word Problems

3. Time value of money. We will review some tools for discounting cash flows.

Sums & Series. a i. i=1

APPENDIX. Interest Concepts of Future and Present Value. Concept of Interest TIME VALUE OF MONEY BASIC INTEREST CONCEPTS

LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,

Credit Card Loans. Student Worksheet

Questions. Strategies August/September Number Theory. What is meant by a number being evenly divisible by another number?

ICASL - Business School Programme

0.8 Rational Expressions and Equations

In addition to looking for applications that can be profitably examined algebraically,

Charlesworth School Year Group Maths Targets

Higher Education Math Placement

Answer Key for California State Standards: Algebra I

MATH 60 NOTEBOOK CERTIFICATIONS

IB Maths SL Sequence and Series Practice Problems Mr. W Name

Introduction to the Hewlett-Packard (HP) 10BII Calculator and Review of Mortgage Finance Calculations

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

3. Solve the equation containing only one variable for that variable.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Unit 7 The Number System: Multiplying and Dividing Integers

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

Personal Financial Literacy

Prentice Hall: Middle School Math, Course Correlated to: New York Mathematics Learning Standards (Intermediate)

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Math 120 Final Exam Practice Problems, Form: A

Binary Adders: Half Adders and Full Adders

Transcription:

Go for the Curve! Comparing Linear and Exponential Functions.1 LEARNING GOALS In this lesson, you will: Construct and identify linear and exponential functions from sequences. Compare graphs, tables, and equations of linear and exponential functions. Construct a linear function from an arithmetic sequence. Construct an exponential function from a geometric sequence. Compare formulas for simple interest and compound interest. KEY TERMS simple interest compound interest It might seem unfair, but many banks will charge you money for not having money. And they ll pay you money if you have a lot of it. In 2008, U.S. banks made about $24 billion in overdraft fees a 3% increase from 2006. By contrast, personal interest income in 2008 was over $1 trillion! When you deposit money in a bank account which accrues interest, your money doesn t just sit there, waiting for you to withdraw it. The bank lends this money to people who want to buy cars, houses, and pay for college. Banks collect interest on these loans and reward you for your contribution. The more money you have in an interest-earning account, the more you are rewarded! 29

PROBLEM 1 Let s Build a Formula for Simple Interest Nico considers depositing money into an account that earns simple interest each year. In a simple interest account, the interest earned at the end of each year is a percent of the original deposited amount (also known as the original principal). If Nico deposits $00 into an account that earns 2% simple interest each year, 2% of the original principal, or $00(0.02), is added to the account each year. Remember that when you are given a percent, you can convert it to a decimal before you perform any calculations. The balance after 1 year would be $00 $00(0.02), or $10. The balance after 2 years would be $10 $00(0.02), or $20, and so on. 1. Suppose that Nico deposits $1000 into an account that earns % simple interest each year. Complete the table to show Nico s account balance after each year. Show your work. The first three rows have been completed for you. Value in the time column is 1 less than the corresponding term number n. This is because a sequence always begins with the first term at n = 1, but the problem situation begins at time = 0. Term Number (n) Time (years) Interest Earned (dollars) Account Balance (dollars) 1 0 0 1000 2 1 1000(0.0) 0 1000 1000(0.0) 100 3 2 1000(0.0) 0 100 1000(0.0) 1100 4 6 2. Is this problem situation a sequence? If so, describe the sequence type and how you know. If it is not a sequence, explain why not. 3. Suppose P t represents the account balance after t years. So, P 0 represents the account balance after 0 years (the original principal), P 1 represents the account balance after 1 year, P 2 represents the account balance after 2 years, and so on. If r represents the interest rate, what does P 0 represent? 296 Chapter Exponential Functions

The amount in the account after 1 year, P 1, is equal to the initial amount plus the interest earned. Amount after 1 year Initial amount Interest earned ed This formula represents the balance in the account after 1 year in terms of P 0. P 1 To write the formula for P 2 in terms of P 0, substitute the equivalent expression for P 1. You can use the formula for P 1 to determine the formula for P 2 in terms of P 0. The amount in the account after 2 years, P 2, is equal to the amount in the account after 1 year plus the interest earned. Amount after 2 years Amount after 1 year Interest earned ed P 2 P 1 P 2 [P 0 ] You can continue this sequence to determine the balance in the account after 3 years, 4 years, and so on, in terms of P 0. 4. Write a formula in terms of P 0 to represent the balance in the account after: a. 3 years. P 3 P 2 P 3 1 b. 4 years. P 4 P 3 P 4 1 For this exercise, don t simplify! And, remember to keep each formula in terms of P 0 and r, just like in the worked example. c. years. P 1.1 Comparing Linear and Exponential Functions 297

. Is this an arithmetic or geometric sequence? How do you know? Determine the common difference or common ratio from the formulas in Question 4. 6. Substitute the original principal P 0, and the common difference or common ratio into the explicit formula for the sequence. 7. Remember that t represents the time in years. Since t begins at 0 and the term number n begins at 1, t is always 1 less than n. How can you represent t algebraically in terms of n? t 8. Let P(t) represent the account balance after t years. Use your answers in Questions 6 and 7 to write the formula for the balance P(t) in the simple interest account as a function of time t. Recall that an arithmetic sequence can be written as a function in function notation. 9. Write Nico s balance in the simple interest account described in Question 1 as a function of time t. Recall that the original principal is $1000 and the interest rate is %. Use the function to verify the values in your table. 10. Determine which function family represents the simple interest formula. Explain your reasoning. 298 Chapter Exponential Functions

11. Use the function you wrote in Question 9 to determine Nico s account balance after: a. 8 years. b. 100 years. 12. Use the intersection feature of a graphing calculator to determine the number of years it will take for the balance in Nico s account to: a. reach $1600. b. double..1 Comparing Linear and Exponential Functions 299

PROBLEM 2 Now Let s Build a Formula for Compound Interest Raul considers depositing money into an account that earns compound interest each year. In a compound interest account, the interest earned at the end of each year is a percent of the account balance at the beginning of the year. For example, if $00 is deposited into an account that earns 2% compound interest each year, the balance after 1 year would be $00 $00(0.02) $10, the balance after 2 years would be $10 $10(0.02) $20.20, and so on. 1. Suppose that Raul deposits $1000 into an account that earns % compound interest each year. Complete the table to show Raul s account balance after each year. Show your work. The first three rows have been completed for you. Term Number (n) Time (years) Interest Earned (dollars) Account Balance (dollars) 1 0 0 1000 2 1 1000(0.0) $0 1000 + 1000(0.0) 100 3 2 100(0.0) 2. 100 100(0.0) 1102. 4 6 Suppose that P 0 represents Raul s original principal, and r represents the interest rate in the compound interest account. So, the formula P 1 represents the balance in the account in terms of P 0 after 1 year. You can use the Distributive Property to rewrite this formula as P 1 (1 ) 300 Chapter Exponential Functions

2. Use the Distributive Property to write a formula to represent the balance in the account in terms of P 0 after the given number of years. The first one has been done for you. a. 2 years P 2 P 1 P 1 P 2 P 1 (1 ) P 2 [P 0 (1 )](1 ) (1 )(1 ) b. 3 years P 3 P 2 P 2 P 3 P 3 c. 4 years P 4 P 3 P 3 P 4 P 4 3. Is this an arithmetic or geometric sequence? How do you know? Determine the common difference or common ratio from the formulas in Question 2. 4. Substitute Raul s original principal, P 0, and the common difference or common ratio into the explicit formula for the sequence.. Let P(t) represent Raul s account balance after t years. Remember that time t is 1 less than the term number n. Write the formula for the balance P(t) in the compound interest account as a function of time t. 6. Write the balance in Raul s compound interest account as a function of time t. Recall that the original principal is $1000 and the interest rate is %. Use the function to verify the values in your table..1 Comparing Linear and Exponential Functions 301

7. Determine which function family represents the compound interest formula. Explain your reasoning. 8. Use the function you wrote in Question 6 to determine the account balance after: a. 8 years. b. 100 years. 9. Use the intersection feature of a graphing calculator to determine the number of years it will take for the balance in Raul s account to: a. reach $1600. b. double. Talk the Talk You now know the formulas for simple and compound interest. The simple interest formula is P t P 0 1 (P 0? r)t P 0 (1 1 rt) where P t represents the balance in the account after t years, P 0 represents the original principal, and r represents the interest rate each year (written as a decimal). The compound interest formula is P t P 0? (1 1 r) t where P t represents the balance in the account after t years, P 0 represents the original principal, and r represents the interest rate each year (written as a decimal). 302 Chapter Exponential Functions

1. Use the simple and compound interest formulas from the situations for Nico s simple interest account and Raul s compound interest account to complete the table. Round the values to the nearest cent. Quantity Time Simple Interest Balance Compound Interest Balance Units Expression 0 1 2 8 100 2. Terrell is looking for some financial advice. He has the option to deposit $1000 into the simple interest account just like Nico s account, or a compound interest account just like Raul s account. The compound interest account would cost him a one-time start-up fee of $200. The simple interest account is free. Into which account would you tell Terrell to put his money and why? 3. Graph the simple interest and compound interest functions on your calculator. Then, sketch the graphs on the given grid. Use the bounds [0, 40] [0, 6000]..1 Comparing Linear and Exponential Functions 303

4. What is the average rate of change for the simple interest function? Explain how you know.. Determine the average rate of change between each pair of values given for the compound interest function. Between t 0 and t 1: Between t 1 and t 2: Between t 2 and t 8: Between t 8 and t 100: 6. Compare the average rates of change for the simple and compound interest accounts. a. What do you notice? b. What does this tell you about the graphs of linear and exponential functions? Be prepared to share your solutions and methods. 304 Chapter Exponential Functions