Chapter #2 Atoms, Molecules and Ions

Similar documents
All answers must use the correct number of significant figures, and must show units!

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Nomenclature of Ionic Compounds

Chapter 2 Atoms, Ions, and the Periodic Table

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

EXPERIMENT 4 The Periodic Table - Atoms and Elements

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

47374_04_p25-32.qxd 2/9/07 7:50 AM Page Atoms and Elements

Sample Exercise 2.1 Illustrating the Size of an Atom

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chapter 2 Atoms, Molecules, and Ions

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

PERIODIC TABLE OF THE ELEMENTS

CHEMICAL NAMES AND FORMULAS

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Periodic Table Questions

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

Elements, Atoms & Ions

Atomic Theory: History of the Atom

UNIT (2) ATOMS AND ELEMENTS

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Daytona State College (Science 120, Page 1 of 39)

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

CHM 1311: General Chemistry 1, Fall 2004 Exam #1, September 8, Name (print) SSN

CHAPTER 5: MOLECULES AND COMPOUNDS

CHAPTER Naming Ions. Chemical Names and Formulas. Naming Transition Metals. Ions of Transition Metals. Ions of Transition Metals

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

Monatomic Ions. A. Monatomic Ions In order to determine the charge of monatomic ions, you can use the periodic table as a guide:

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Nomenclature and the Periodic Table To name compounds and to determine molecular formulae from names a knowledge of the periodic table is helpful.

Name period AP chemistry Unit 2 worksheet Practice problems

Nomenclature and Formulas of Ionic Compounds. Section I: Writing the Name from the Formula

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Periodic Table, Valency and Formula

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

Chapter 7 Periodic Properties of the Elements

Rules for Naming and Writing Compounds

= 11.0 g (assuming 100 washers is exact).

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

WRITING CHEMICAL FORMULA

Chapter 9 Practice Test - Naming and Writing Chemical Formulas

Chapter 5. Chapter 5. Naming Ionic Compounds. Objectives. Chapter 5. Chapter 5

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

CHEMICAL NAMES AND FORMULAS

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

Elements and Compounds. Chemical Bonds compounds are made of atoms held together by chemical bonds bonds are forces of attraction between atoms

19.2 Chemical Formulas

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Polyatomic ions can form ionic compounds just as monatomic ions.

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

Section 1: Arranging the Elements Pages

Electronegativity and Polarity

6 Reactions in Aqueous Solutions

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Chemistry Diagnostic Questions

Chapter 2 Atoms and Molecules

Chapter 2 Lecture Notes: Atoms

Chemistry: The Periodic Table and Periodicity

The Periodic Table: Periodic trends

Exam 2 Chemistry 65 Summer Score:

Bonding Practice Problems

5.4 Trends in the Periodic Table

KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More

From Quantum to Matter 2006

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

Atoms, Elements, and the Periodic Table (Chapter 2)

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Mole. Chapter 2. Solutions for Practice Problems

Chapter 8: Chemical Equations and Reactions

3 CHEMICAL FOUNDATIONS: ELEMENTS, ATOMS AND IONS

Study Guide For Chapter 7

Atomic Structure. Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/ Orbit nucleus in outer shells

Trends of the Periodic Table Diary

Chapter 4: Nonionic Compounds and Their Nomenclature

Chapter 5 TEST: The Periodic Table name

Formulae, stoichiometry and the mole concept

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:

Unit 2 Periodic Behavior and Ionic Bonding

EARLY ATOMIC THEORY AND STRUCTURE

Tro's "Introductory Chemistry", Chapter 4

Chapter 8 Atomic Electronic Configurations and Periodicity

neutrons are present?

6.5 Periodic Variations in Element Properties

Naming and Writing Formulas for Ionic Compounds Using IUPAC Rules

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

ATOMS. Multiple Choice Questions

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 3. Molecules, Compounds and Chemical Equations

MOLES AND MOLE CALCULATIONS

TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights.

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s

Chapter 3 Stoichiometry

Chapter 8 - Chemical Equations and Reactions

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Transcription:

Chapter #2 Atoms, Molecules and Ions 2.1 The Early History of Chemistry 2.2 Fundamental Chemical laws 2.3 Dalton s Atomic Theory 2.4 Cannizzaro s Interpretation 2.5 Early experiments to Characterize the Atom 2.6 The Modern View of Atomic Structure: An Introduction 2.7 Molecules and Ions 2.8 An Introduction to the Periodic Table 2.9 Naming Simple Compounds 1 Chapter 2 Topics 1: The Observations That Led to an Atomic View of Matter 2: The Observations That Led to the Nuclear Atom Model 3: Dalton s Atomic Theory and Today s Version 4: Molecules and Ions 5. Elements: A First Look at the Periodic Table 6: Compounds: Introduction to Bonding 7: Compounds: Formulas and Names 2 1

Law of Conservation of Mass The total mass of substances does not change during a chemical reaction. 3 Law of Definite Proportions No matter what its source, a particular chemical compound is composed of the same elements in the same parts (fractions) by mass. 4 2

Law of Definite Proportions WATER H 2 O No matter what the source water is ALWAYS 2 parts hydrogen to 1 part oxygen 5 Law of Definite Proportions Chemical analysis of a 9.07 g sample of calcium phosphate shows that it contains 3.52 g of Ca. How much Ca could be obtained from a 1.000 kg sample? 1. 0.388 kg 2. 3.52 kg 3. 38.8 kg 4. 0.38 kg 6 3

Law of Definite Proportions Chemical analysis of a 9.07 g sample of calcium phosphate shows that it contains 3.52 g of Ca. How much Ca could be obtained from a 1.000 kg sample? Mass fraction of Ca = 3.52 g Ca = 0.388 * 100% = 38.8% 9.07 g sample (i.e., ANY sample of Ca 3 (PO 4 ) 2 is 38.8% Ca by mass ) Mass of Ca in 1.000 kg of sample = 1.000 kg sample 38.8 kg Ca 100 kg sample = 0.388 kg Ca 7 Law of Multiple Proportions In a nutshell, two (or more) compounds can contain different relative amounts of the same elements: If elements A and B react to form two compounds, the different masses of B that combine with a fixed mass of A can be expressed as a ratio of small whole numbers. (Evidence of the existence tiny individual particles.) 8 4

Law of Multiple Proportions Mass of Oxygen that Combines with 1.00 g of Carbon Compound #1 Compound #2 1.33 g O per g C 2.66 g O per g C mass of O in compound #2 = 2.66 g = 2 mass of O in compound #1 1.33 g 1 EXACT 2:1 RATIO 9 10 5

Atomic Theory Protons, Neutrons and Electrons Theory and Discovery 11 Daltons Atomic Theory 1. All matter consists of tiny particles called atoms. 2. Atoms of an element are identical in mass and other properties and are different from atoms of any other element. 3. Compounds result from the chemical combination of a specific ratio of atoms of different elements. 4. Chemical reactions involve reorganization of the atoms changes in the way they are bonded. Atoms of one element do not change and cannot be converted into atoms of another element during chemical reactions. John Dalton 12 6

Thomson and Cathode Rays Aim: To study the structure of the atom. Investigate the electrical discharges of atoms. Procedure: Use a partially evacuated tube to apply high voltage to a screen coated with a chemical compound. Measure the deflection. 13 Thomson and Cathode Rays Thomson used partially evacuated glass tubes to discover the existence of negatively charged particles called electrons. Developed the plum pudding model. Plum Pudding Model 14 7

Millikan and Oil Drops Aim: To study the electronic properties of the atom. Investigate the mass of an electron. Procedure: Use x-rays to produce charges on oil drops. Measure the magnitude of the electron charge. 15 With Thomson s cathode ray experiment, determined the mass of an electron, 9.11x10-31 kg. Millikan and Oil Drops 16 8

Rutherford Experiment Aim: To study the internal structure of the atom. Investigate the mass distribution in the atom. Procedure: Use a radioactive source to bombard a thin piece of gold foil. Collect the radiation. 18 9

Original and Revised Theories Original Theory: Plum pudding model Revised Theory: Nucleus (dense positive charge) at the center of the atom. Large amount of space between nucleus and electron. 19 Moving electron cloud surrounding nucleus. Almost all the mass is in the nucleus! 20 10

1+ + 1- - Notes: mass of e - tiny relative to p +, n. p +, n have same mass (almost). e -, p + have same charge, opposite sign. 21 Atomic Definitions I: Symbols, Isotopes, Numbers A Z X The Nuclear Symbol of the Atom X = Atomic symbol of the element Z = The atomic number: the number of protons in the nucleus (All atoms of the same element have the same # of protons.) A = The mass number (protons plus neutrons: A = Z + N) N = The number of neutrons in the nucleus N = A - Z Isotopes = atoms of an element with the same number of protons, but different number of neutrons in the nucleus 22 11

Figure 2.14 Isotopes of sodium 23 What is the nuclear particle with no charge? 1. Electron 2. Proton 3. Neutron 4. Positron 5. Alpha 24 12

Atomic Nucleus contains protons with positive charge contains neutrons with no charge chemistry of atom is determined by its electronic structure atoms with same number of protons have identical chemical properties isotopes are atoms with same number of protons but different number of neutrons 25 Which of the following statements are true? I. The number of protons is the same for all neutral atoms of an element. II. The number of electrons is the same for all neutral atoms of an element. III. The number of neutrons is the same for all neutral atoms of an element. 1. I, II, and III 2. I and II only 3. II and III only 4. I and III only 5. None 26 13

Available on the course website under Exam Info and Lecture Notes 27 A neutral atom of rhenium(re)-185 contains: 1. 110 p +, 75 n, 110 e - 2. 75 p +, 111 n, 75 e - 3. 75 p +, 110 n, 75 e - 4. 75 p +, 110 n, 74 e - 28 14

Neutral ATOMS If neutral, then # e - = # p + = atomic number. Remember: # n = A - # p + Numbers of each particle: 51 Cr = p + (24), e - (24 ), n ( 27) 239 Pu = p + (94), e - (94), n (145) 15 N = p + (7), e - (7), n (8) 56 Fe = p + (26), e - (26), n (30) 235 U = p + (92), e - (92), n (143) 29 Modern Reassessment of the Atomic Theory 1. All matter is composed of atoms. Although atoms are composed of smaller particles (electrons, protons, and neutrons), the atom is the smallest body that retains the unique identity of the element. 2. Atoms of one element cannot be converted into atoms of another element in a chemical reaction. Elements can only be converted into other elements in nuclear reactions in which protons are changed. 3. All atoms of an element have the same number of protons and electrons, which determine the chemical behavior of the element. Isotopes of an element differ in the number of neutrons, and thus in mass number, but not in chemical behavior (much). A sample of the element is treated as though its atoms have an average mass. 4. Compounds are formed by the chemical combination of two or more elements in specific ratios, as originally stated by Dalton. 30 15

What separates isotopes of the same element? 1. Different number of protons 2. Different number of electrons 3. Different number of neutrons 4. Different overall charge 5. None of the above 31 Definitions Element - The simplest type of substance with unique physical and chemical properties. An element consists of only one type of atom. It cannot be broken down into any simpler substances by physical or chemical means. Compound - A substance composed of two or more elements that are chemically combined. Pure Substances - Their compositions are fixed! Elements and compounds are examples of pure substances. Mixture - Is a group of two or more elements and/or compounds that are physically intermingled. Molecule - A structure that consists of two or more atoms that are chemically bound together and thus behave as an independent unit. 32 16

Definitions Chemical Formula The symbols of for the elements are used to indicate the types of atoms present, and the subscripts are used to indicate the relative numbers of atoms present. Structural Formula A formula in which the bonds are shown along with the elemental symbols and order of atom arrangement. 33 See figures 2.15-2.17 in the textbook. 34 17

More on amu in Ch 3. 35 Review: Based on the Law of Definite Proportions, what H:O ratio do you expect to find in water (H 2 O)? 1. 1:1 2. 2:1 3. 1:2 4. 2:2 36 18

Forming Bonds Sharing and Transfer of Electrons 37 Chemical Compounds and Bonds Chemical Bonds The forces that hold the atoms of elements together in the compound. Covalent Bonds Electrons are shared between atoms of different elements to form covalent compounds. Ionic Bonds- Attractive forces between two oppositely charged ions to form ionic compounds. 38 19

Chemical Compounds and Bonds Cation An atom that has lost electron(s) to form a + ion. Common for metal elements. Anion An atom that has gained electron(s), to form a - ion. Common for nonmetal elements. Monatomic (single atom) ions form binary ionic compounds. Polyatomic ions have many atoms per ion and an overall charge. 39 A: No interaction, atoms too far apart. B: Atoms move closer, electron clouds distort. C: Covalent bond forms. D: The protons from each nucleus share the overlapping electron cloud. 40 20

Forming an Ionic Bond Step 1: Electron transfer from sodium atom (neutral sodium atom becomes sodium + ion) 41 Copyright Houghton Mifflin Company. All rights reserved. Forming an Ionic Bond Step 2: Electron added to chlorine atom (neutral chlorine atom becomes chloride - ion) 42 Copyright Houghton Mifflin Company. All rights reserved. 21

Arrangement of sodium ions and chloride ions 43 Figure 2.18: Sodium metal reacts with chlorine gas 2 Na(s) + Cl2(g) 2NaCl(s) 44 22

How is an ion formed? 1. By either adding or subtracting protons from the atom. 2. By either adding or subtracting electrons from the atom. 3. By either adding or subtracting neutrons from the atom. 4. All of the above are true. 5. Two of the above are true. 45 PERIODIC TABLE MENDELEEV TABLE A tabular arrangement of the elements based upon their chemical properties most elements are metals (left side of line) and tend to lose electrons nonmetals (right side) tend to gain electrons vertical columns are groups - similar properties such as: alkali metals, halogens, noble gases, etc. horizontal rows are periods 46 23

Figure 2.20: The periodic table 47 Groups in the Periodic Table Main Group Elements (Vertical Groups) Group 1A - Alkali Metals Group 2A - Alkaline Earth Metals Group 3A - Boron Family Group 4A - Carbon Family Group 5A - Nitrogen Family Group 6A - Oxygen Family Group 7A - Halogens Group 8A - Noble Gases Other Groups (Vertical and Horizontal Groups) Groups 3-12 - Transition Metals Period 6 - Lanthanides (Rare Earth Elements) Period 7 - Actinides (Radiocative & Artificial) 48 24

POSITION of ELEMENTS on the PERIODIC TABLE Tells you about: Properties Reactivity with other elements Most probable oxidation state(s) Composition of compounds 49 WRAP TABLE AROUND! nonmetals tend to gain electrons metals tend to lose electrons 50 25

What monatomic ion would chlorine (Cl) form? 1. Cl 2-2. Cl - 3. Cl + 4. Cl 2+ 51 Predicting the Ion that an Element will Form Problem: What monatomic ions will each of the elements form? (a) barium(z=56) (b) sulfur(z=16) (c) titanium(z =22) (d) fluorine(z=9) Plan: We use the z value to find the element in the periodic table and which is the nearest noble gas. Elements that lie after a noble gas will lose electrons and those before a noble gas will gain electrons. Solution: (a) Ba 2+, barium - an alkaline earth element (Group 2A) - will lose two electrons - attains the same number of electrons as the xenon (Xe) (b) S 2-, sulfur - in the oxygen family (Group 6A) - expected to gain two electrons - attains the same number of electrons as argon (Ar) (c) Ti 4+, titanium - in Group 4B - expected to lose 4 electrons - attains the same number of electrons as argon (Ar). (d) F -, fluorine - a halogen (Group 7A) - expected to gain one electron 52 - attains the same number of electrons as neon (Ne). 26

+1 H Li K Rb Cs Fr +2 Be Na Mg +3 +4 +5 Ca Sr Ba Ra Sc Y La Ac The Periodic Table of the Elements Ti Most Probable Oxidation States (more on these in Ch 4) Hf Rf V Zr Nb Mo Tc Ta Cr Mn Fe Co Ni Cu W Re Ru Os Ir Pt Db Sg Bh Hs Mt Ds 0 +3 + 4-3 - 2-1 He B +1 + 2 Al Rh Pd Ag Cd Au In Tl C Si Sn Pb N P Zn Ga Ge As Hg Sb Bi O S Se Te Po F Cl Br I At Ne Ar Kr Xe Rn +3 +3 Ce Th Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Pa U Np Pu Am Cm Bk Cf Es FmMd No Lr 53 Naming Simple Compounds BINARY: comprised of two elements IONIC: cation + anion (metal + nonmetal; two types of metals: Type I and Type II) COVALENT: between two nonmetals POLYATOMIC: several elements 54 27

55 (Type II: metals that have >1 common oxidation state) 56 28

Rules for Naming Binary Ionic Compounds Always list cation (+) name first, anion (-) name second. Monatomic anion s name = first part of element name + -ide If the ion is not listed in the Type II table, assume it s Type I. 57 Which of the following compounds is not properly named? 1. FeCl 3 : iron(iii) chloride 2. NaBr : sodium bromide 3. Ca 3 N 2 : calcium nitride 4. PbO : lead(ii) oxide 5. MgH 2 : magnesium hydride 6. None of the above 58 29

59 Which of the following compounds is not properly named? 1. Fe 2 (SO 4 ) 3 : iron(iii) sulfate 2. Ba(OH) 2 : barium hydroxide 3. CaCrO 4 : calcium chromate 4. Cr(NO 2 ) 3 : chromium(iii) nitrite 5. KClO 3 : potassium chloride 6. RbHCO 3 : rubidium hydrogen carbonate 60 30

Naming Binary Covalent Compounds The element further to the left in the periodic table goes first, named as if it were the cation. Second element is named as if it were the anion. Use prefixes to say how many atoms of each element are present, EXCEPT never use mono- on first element. EXAMPLES: N 2 O dinitrogen monoxide NO nitrogen monoxide N 2 O 4 dinitrogen tetroxide 61 Which of the following compounds is not properly named? 1. CCl 4 : carbon tetrachloride 2. CO 2 : carbon dioxide 3. H 2 S : dihydrogen sulfide 4. NF 3 : nitrogen trifluoride 5. SF 6 : sulfur hexafluoride 6. None of the above 62 31

HYDRATES Compounds containing WATER molecules MgSO 4 7H 2 O magnesium sulfate heptahydrate CaSO 4 2H 2 O calcium sulfate dihydrate Ba(OH) 2 8H 2 O barium hydroxide octahydrate CuSO 4 5H 2 O copper(ii) sulfate pentahydrate Na 2 CO 3 10H 2 O sodium carbonate decahydrate 63 Many common anions, when combined with H + as the cation(s), make a very reactive compound called an acid, which dissociates in water to give the two separate ions both dissolved in water. Examples: Acids H 3 PO 4 (aq) H + (aq) + H 2 PO 4- (aq) HCl (aq) H + (aq) + Cl - (aq) H 2 SO 4 (aq) 2 H + (aq) + SO 4 2- (aq) phosphoric acid hydrochloric acid sulfuric acid Litmus paper indicates if it s an acidic solution ph = quantitative measure of H + concentration in water 64 32

Rules for naming acids Acids = Molecules which dissociate when dissolved in water to give H + (aq) Binary acids Oxoacids Keep any prefixes (hypoor per-) 65 Which of the following compounds is not properly named? 1. HNO 3 : nitric acid 2. HCl : hydrochloric acid 3. H 2 SO 4 : sulfuric acid 4. HClO 4 : chloric acid 5. H 3 PO 4 : phosphoric acid 6. None of the above 66 33