Dynamic Penetration Test with Measurement of Pull Out Resistance

Similar documents
Figure CPT Equipment

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:!

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

CHAPTER 1 INTRODUCTION

HAULBOWLINE, CORK STATIC CONE PENETRATION TESTS FACTUAL REPORT

2009 Japan-Russia Energy and Environment Dialogue in Niigata S2-6 TANAKA ERINA

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

Cone Penetration Test (CPT)

DYNAMIC CONE PENETRATION TEST INSTRUCTIONAL MANUAL GEOTECHANICAL

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions

Cone penetration testing, CPTu

KWANG SING ENGINEERING PTE LTD

GUIDELINE FOR HAND HELD SHEAR VANE TEST

Numerical Simulation of CPT Tip Resistance in Layered Soil

How To Design A Foundation

CPTic_CSM8. A spreadsheet tool for identifying soil types and layering from CPTU data using the I c method. USER S MANUAL. J. A.

Cone Penetration Testing in Geotechnical Practice. Tom Lunne Peter K. Robertson John J.M. Powell

CEEN Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

Cone Penetration Testing (CPT) Michael Bailey, P.G. U.S. Army Corps of Engineers, Savannah District

Anirudhan I.V. Geotechnical Solutions, Chennai

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

Using Combination of SPT, DMT and CPT to Estimate Geotechnical Model for a Special Project in Turkey

An Automatic Kunzelstab Penetration Test

Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard Penetration Tests (SPT)

ON THE INTERPRETATION OF SEISMIC CONE PENETRATION TEST (SCPT) RESULTS

Soil Classification Through Penetration Tests

Chapter 7 Analysis of Soil Borings for Liquefaction Resistance

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus

STABILITY ANALYSIS OF AN EARTH DAM FOUNDATION IN TUNISIA

Numerical Analysis of Texas Cone Penetration Test

Dynamic Load Testing of Helical Piles

ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY

Penetration rate effects on cone resistance measured in a calibration chamber

Improvement in physical properties for ground treated with rapid impact compaction

TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS AND SILTY SANDS ABSTRACT

Soil behaviour type from the CPT: an update

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil

Ingeniería y Georiesgos Ingeniería Geotécnica Car 19 a Nº of 204 ; TEL : igr@ingeoriesgos.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September ISSN

NOTES on the CONE PENETROMETER TEST

Step 11 Static Load Testing

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand

CIVL451. Soil Exploration and Characterization

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

ALLOWABLE LOADS ON A SINGLE PILE

The Challenge of Sustainability in the Geo-Environment Proceedings of the Geo-Congress 2008 ASCE New Orleans LA

How To Prepare A Geotechnical Study For A Trunk Sewer Project In Lincoln, Nebraska

The advantages and disadvantages of dynamic load testing and statnamic load testing

STANDARD OPERATING PROCEDURE

Drained and Undrained Conditions. Undrained and Drained Shear Strength

PAPAMOA EAST URBAN DEVELOPMENT PART 1 AREA LIQUEFACTION HAZARD REVIEW Technical Report

PILE FOUNDATIONS FM 5-134

Fundamentals of CONE PENETROMETER TEST (CPT) SOUNDINGS. J. David Rogers, Ph.D., P.E., R.G.

Comparison of Continuous Dynamic Probing with the Standard Penetration Test for Highly Weathered Limestone of Eastern Sudan

Geotechnical Testing Methods II

Instrumented Becker Penetration Test for Liquefaction Assessment in Gravelly Soils

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load

Abstract. Keywords. Pouya Salari 1, Gholam Reza Lashkaripour 2*, Mohammad Ghafoori 2. * lashkaripour@um.ac.ir

Multiple parameters with one Cone Penetration Test. by Mark Woollard

Caltrans Geotechnical Manual

SEISMIC SETTLEMENT OF SHALLOW FOUNDATIONS

Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage

Estimation of Compression Properties of Clayey Soils Salt Lake Valley, Utah

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

How To Model A Shallow Foundation

By D. P. StewarP and M. F. Randolph z

Soil Behavior Type using the DMT

TECHNICAL Summary. TRB Subject Code:62-7 Soil Foundation Subgrades February 2003 Publication No.: FHWA/IN/JTRP-2002/30, SPR-2362

Statistical identification of homogeneous soil units for Venice lagoon soils

IN SITU GEOTECHNICAL TESTING USING LIGHTWEIGHT PLATFORMS. Peter Zimmerman, MSCE David Brown, P.G. Geoprobe Systems Salina, Kansas.

Hollow Cylinder Apparatus (GDS SS-HCA)

METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE. Prepared by

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

NORMALIZATION OF STRESS-STRAIN CURVES FROM CRS CONSOLIDATION TEST AND ITS APPLICATION TO CONSOLIDATION ANALYSIS

PREDICTING THE HYDRAULIC CONDUCTIVITY OF MAKASSAR MARINE CLAY USING FIELD PENETRATION TEST (CPTU) RESULTS

USE OF CONE PENETRATION TEST IN PILE DESIGN

ABSTRACT 2. TAILINGS TYPES AND TESTS 1. INTRODUCTION. the Ball Penetration Test (BPT) and the Field Vane Test (FVT).

LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils

Zhou Shengen, 1 Zhang Sumin 2

Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples

Use and Application of Piezocone Penetration Testing in Presumpscot Formation

SEISMIC DAMAGE ESTIMATION PROCEDURE FOR WATER SUPPLY PIPELINES

CPT interpretation in marine soils less than 5m depth examples from the North Sea

Soil Mechanics. Outline. Shear Strength of Soils. Shear Failure Soil Strength. Laboratory Shear Strength Test. Stress Path Pore Pressure Parameters

REPORT. Earthquake Commission. Christchurch Earthquake Recovery Geotechnical Factual Report Merivale

Ground improvement using the vibro-stone column technique

Pavements should be well drained both during and upon completion of construction. Water should not be allowed to pond on or near pavement surfaces.

T2: Reduce overall transport cost by cost effective road rehabilitation and maintenance

Determination of Thermal Conductivity of Coarse and Fine Sand Soils

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

Module5: Site investigation using in situ testing

Transcription:

6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Dynamic Penetration Test with Measurement of Pull Out Resistance S. Sawada 1 ABSTRACT The cone penetration test is one of the most important and convenient tools for soil investigations. In recent decades, many efforts have been made to extend its applications to various fields in geotechnical engineering. This paper presents a newly developed dynamic cone penetration test with measurement of the pull-out resistance, which is named Penetration & Pull-out Test (PPT). The PPT measures the dynamic penetration test and quasi-static pull-out resistance. N-value, the number of blows for penetration into soil under the undrained condition is measured from the dynamic penetration test, while the friction resistance of soil under the drained condition is measured from the quasi-static pull-out test. Validation test results indicate that PPT is highly useful for identification of liquefaction-induced problems. PPT is a robust device because it is has no electrical sensor at the tip of the cone. In addition, liquefaction risks such as the factor of safety can be evaluated from PPT in a short time. Therefore, liquefaction risks for a large area can be evaluated in a relatively short period. As the future direction of this study, we will develop a more economical and simpler in-situ apparatus for estimating the liquefaction susceptibility of soils. Introduction Many case histories on earthquake disasters have shown that significant damage occurs in soft ground around coastal urban areas in Japan due to the soil liquefaction. At present, the liquefaction potential can be evaluated only at limited points because the estimation of liquefaction susceptibility requires detailed data from laboratory cyclic loading tests on undisturbed samples. In particular, the liquefaction susceptibility in an area is based on sparse data. Past investigations on earthquake damages indicate, on the other hand, that degree of damage often varies significantly even in a small area. Therefore, a more precise evaluation is required for the reliable design against soil liquefaction. Past studies on soil liquefaction problems have focused mainly on the liquefaction resistance from the laboratory tests, while there have been few studies on in-situ estimation of the liquefaction potential. There has some research using the Piezo Drive Cone (PDC) proposed by Sawada (2009). However the investigation cost is relatively high, because the PDC uses a high performance pressure transducer. Dynamic penetration tests such as PDC, have been used in Japan because of good correlation with laboratory undrained cyclic strength data. 1 OYO Corporation, Saitama, Japan, sawada-shun@oyonet.oyo.co.jp

(a) Dynamic Penetration Test (b) Quasi-static Pull out Test Figure 1. Penetration & Pull-out Test (PPT) φ28.0mm 69.0mm φ36.6mm 90º (a) Dynamic Penetration Test (b) Cone apex Figure 2. View of Penetration & Pull out Test (PPT) in field

Test Equipment and Procedures Figure 1 shows a schematic figure of the dynamic penetration test with measurement of the pullout resistance, proposed in this paper, which is named Penetration & Pull-out Test (PPT). This system consists of the dynamic penetration test and the pull-out resistance test. A light-weight dynamic penetration device which is named Mini Ram Sounding (MRS) is modified from the Swedish Ram Sounding test equipment. The sounding rods are 28 mm in diameter. The PPT-cone is 36.6 mm in diameter, 69 mm in length and 90 degree in apex angle. The penetration rods are driven down mechanically by a 30 kg hammer with free fall from the height of 35 cm. The penetration resistance is defined as the number of blow counts (N m ) required to drive the penetrometer 20 cm downwards assumed to be under the undrained conditions. SPT N-values (N spt ) are equal to a half of these blow counts (N m ) as follows, N spt = 1/2 N m (1) The MRS system can be easily brought into the fields without a vehicle and can be set up within 5 minutes. The dynamic penetration can be automatically driven by a hydraulic motor. Figure 2 shows the view of PPT-system during the dynamic penetration test in the field. The efficacy of this dynamic penetration method was mentioned by Ito et al. (2002) and Hasegawa et al. (2003). The PPT system consists of the dynamic penetration equipment such as displacement sensor, triggering sensor, pull-out equipment with load cells for pull-out resistance, handy terminal and data logger. Displacement Sensor A non-contact magnetostrictive transducer is used as the displacement sensor in the system. The depth of the cone tip is derived from the displacement of the top of sounding rod relative to the fixed point at the base of the equipment. The data acquisition system records only penetration displacements at the ground surface during the dynamic penetration. Trigger The proximity sensor at the anvil is used to trigger data recording. The trigger signals are transmitted via an electrical cable through the handy terminal to the data logger. Pull-out Equipment A view of the newly developed pull-out equipment is shown in Figure 3. The pull-out resistance is measured between the center rod clamp and two hydraulic cylinders. Two sets of load cells correct for any eccentric loading through bridge circuits. Because any impact load does not arise during the quasi static pull-out operation, high-precision static strain gauges are used for the load cells. The up-and-down motion of the hydraulic cylinders changes to the opposite direction when the stroke limit is reached. When the hydraulic cylinders are extending, the pull-out resistance is measured.

Data Acquisition System The data acquisition system includes analogue to digital converters, so that the analogue signals can be immediately converted to digital forms, allowing real-time inspection of the test results. Figure 3. Newly developed pull out equipment Data Processing The flow chart for data processing to evaluate the liquefaction susceptibility by PPT-method is shown in Figure 4. All data except the unit weight can be obtained by PPT consisting of the dynamic penetration test and the pull-out resistance test by the quasi-static pull-out operation. The unit weight is not a sensitive quantity for evaluating the liquefaction susceptibility. Unit weight of soil (a) Dynamic penetoration Penetrated displacement PPT measuring data (b) Quasi-static pull out Pull out displacement Pull out resistance Ground water table Depth Dynamic strength (Undrainage condition) Static strength (Drainage condition) Total vertical stress:σv Effective vertical stress:σ v Soil classification Fines content : Fc(%) Liquefaction resistance : R Figure 4. Flow chart of evaluating liquefaction strength using PPT

Test Site Conditions & Example Data by PPT The test site is located in the Kanto plains area along The Tone River, Japan. The soil profile, SPT N-values and fine content values of soils from the laboratory test are shown in Figure 5. The surface soil layer is an unsaturated fill, which mainly consists of dredged sandy soil, interbedded with several clays of 10-50 cm in thickness. The SPT N-value for the fill is 4, indicating relatively loose and non-uniform soils. The fill layer exists down to 2.0 m in depth above a natural sedimentary alluvial clay layer. The groundwater level is from 0.5 to 1.0 m below the ground surface. The sandy soil is deposited from 8.2 m to 16 m in depth. The uniform sand layer consists of the medium sand with some fine contents. The N-value for the sandy soil is about 20, indicating medium dense and relative uniform soils. Figure 5(c) illustrates the pull-out resistance profile of the specially-modified PPT, in which the load cell is mounted at the cone tip after the dynamic penetration. The modified PPT can take into account locally lower pull-out resistance in the sandy soil layer rather than in the clay layer during quasi-static pull-out operation. (a) (b) (c) N, Nd-value Fines content Pull out resistance Depth (m) Clay Sand Clay Fill Figure 5. Soil profile by SPT and pull-out resistance

Capability of Soil Classification using PPT Wroth (1984) suggested that CPT data should be normalized using the following parameters: Normalized penetrated cone resistance (Q t ) and normalized pull-out resistance (F t ) can be calculated from the following equation: Q F t t qt + σ = σ = q t v0 fs σ v0 v0 100 (2) (3) where q t = cone resistance corrected for the unequal end area effect, q t =392 N d (kn/m 2 ) f s = pull-out resistance at the cone tip (kn/m 2 ) σ v0 = total vertical stress (kn/m 2 ) σ' v0 = effective vertical stress, σ v0 u 0 (kn/m 2 ) Based on these normalized parameters and by using the extensive CPT database now available in published and unpublished sources, the modified soil behavior type classification charts have been proposed by Robertson (1990). Figure 6 shows the example chart for soil classification between normalized penetrated cone resistance (Q t ) and normalized pull-out resistance (F t ) based on PPT data. (COLORS) 色凡例 :0 F c <5% :5 F c <10% :10 F c <20% :20 F c <35% :35 F c <50% :50 F c <75% :75 F c <100% (SYMBOLS) Figure 6. Example for soil classification chart based on PPT

Colors of the legend show the range of fine contents. The warm colors, for instance, from orange to red color indicate the high fine contents that is clayey soil, and cool colors, for instance, from yellow to blue color indicate the low fine contents that is sandy soil. The distribution of the relationship between normalized penetratation cone resistance (Q t ) and normalized pull-out resistance (F t ) based on PPT data shows that these data can be used for the soil classification. Correction of Pull-out Resistance The pull-out resistance data in Figure 6 have been obtained using the load cell at the tip of cone. The goal of this study will be achieved by measuring the pull-out resistance using the load cell at the pull-out equipment on the ground during the pull-out operation without an electrical cable pre-threaded down the hollow sounding rods. In order to convert the pull-out resistance from the data on the ground surface to tip of cone, a modified system including two load cells, one located in the tip of cone and the other at the of the pull-out equipment on the ground surface, has been developed. An example of the converted pull-out resistance at the tip of cone is illustrated in Figure 7. (a) (b) Fines content (c) Pull out resistance (d) Torque Profile N d- value F c f s M v (%) (kn/m 2 ) (N m) 0 10 20 30 40 50 0 20 40 60 80 100-500 0 500 1000 1500 0 20 40 60 80 0 F Tip of cone 1 On the ground Bc fs 2 (e) Defference of f s f s (kn/m 2 ) -500 0 500 1000 1500 Measurements Predictions (f) f s at cone tip f s (kn/m 2 ) -500 0 500 1000 1500 Measuremants Predictions 3 Bs 4 5 6 Depth (m) 7 8 Ac 9 10 11 12 As 13 14 Ac 15 Figure 7. Example of Soil profile and results of PPT The test site is located, as the same as at Figure 5, in the Kanto plains area along The Tone River, Japan. The soil profile, N d -values using PPT and fine content of soils using PDC, pull-out resistance, measured torque during the dynamic penetration, difference of resistance between the

anvil and the apex and converted resistance at the cone apex are shown in Figure 7. In order to obtain the point resistance with reasonable accuracy, side friction resistance was determined by measuring torques. The method measures the torque required to rotate the rods at the ground surface with torque wrench per 1meter of penetration, applied to the sounding rods. The fill layer exists down to 3.5 m in depth above a natural sedimentary alluvial clay layer. The groundwater level is 2.0 m below the ground surface. The sandy soil is deposited from 10.3 m to 12.4 m in depth. The uniformed sand layer consists of medium sand with about 20% of fine contents. Figure 7(e) shows the distribution of measured pull-out resistance with depth using the load cell which is located at the tip of cone. And these predicted differences of the pull-out resistance using two load cells which are located at pull-out equipment on the ground surface and the tip of cone are plotted in the figure. The predicted pull-out resistance which is converted using measured torque can be calculated from the following equation: f s =26 M v 390 (4) where f s = difference of pull-out resistance between the tip of cone and the ground M v = measured torque during the dynamic penetration The predicted difference of the pull-out resistance in this case is good agreement with the measurement. The reason why the proposed method using measured torque during the dynamic penetration by PPT has good agreement is that this issue is concerned with the rod friction. The measured torques just indicate the difference of the pull-out resistance between the tip of cone and the ground surface. Conclusions The following conclusions were obtained from a series of dynamic penetration and quasi-static pull-out resistance test results. (a) The distributions of the converted N d -values by a single blow can be used to identify the uniformity of layer and to find inter-bedded layers. (b) The distributions of the relationship between normalized penetrate cone penetration resistance (Q t ) and normalized pull out resistance (F t ) based on PPT data shows that these data can be used for the soil classification. (c) The difference of pull-out resistance between the tip of cone and the ground surface during quasi-static pull-out operation is significantly affected by the measured torques. This issue is not concerned with complicated soil type as mentioned above. (d) Information concerning the dynamic penetration and the combination quasi-static pull out resistance on the ground surface and measured torque can be used as essential correction factors for determining the soil classification and the liquefaction susceptibility. References Hasegawa, J., T. Takahara, S. Ishihara, T. Matsumoto & Y. Murata (2003). The influences of rod shape on the driving efficiency of penetration test. Proceedings 38th Japan National Conference on Geotechnical Engineering,

JGS, Akita, 115-116. (in Japanese) Ito, Y., S. Ogawa, Y. Iwasaki, Y. Murata & M. Satou (2002). A study of interpretation on soil properties using the light-weight dynamic probing. Proceedings 37th Japan National Conference on Geotechnical Engineering, JGS, Osaka, 103-104. (in Japanese) Sawada, S., (2009), Evaluation of differential settlement following liquefaction using. Piezo Drive Cone, 17th International Conference on Geotechnical Engineering, Alexandria, Egypt, 1064-1067. Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-158. Wroth, C. P. (1984). The interpretation of in situ soil test. 24th Rankine Lecture, Geotecnique, 34(4), pp449-489.