CALMIP a Computing Meso-center for middle HPC academis Users



Similar documents
Kriterien für ein PetaFlop System

High Performance Computing, an Introduction to

Deploying and managing a Visualization Onera

Journée Mésochallenges 2015 SysFera and ROMEO Make Large-Scale CFD Simulations Only 3 Clicks Away

Performance Evaluation of Amazon EC2 for NASA HPC Applications!

Building a Top500-class Supercomputing Cluster at LNS-BUAP

A platform for research, training and development. Nicolas Ferré. 2013, April 10th

Multicore Parallel Computing with OpenMP

Overview of HPC systems and software available within

OpenMP Programming on ScaleMP

High Performance Computing in CST STUDIO SUITE

How To Build A Supermicro Computer With A 32 Core Power Core (Powerpc) And A 32-Core (Powerpc) (Powerpowerpter) (I386) (Amd) (Microcore) (Supermicro) (

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

1 DCSC/AU: HUGE. DeIC Sekretariat /RB. Bilag 1. DeIC (DCSC) Scientific Computing Installations

Kashif Iqbal - PhD Kashif.iqbal@ichec.ie

Mississippi State University High Performance Computing Collaboratory Brief Overview. Trey Breckenridge Director, HPC

HP ProLiant SL270s Gen8 Server. Evaluation Report

Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR

Relations with ISV and Open Source. Stephane Requena GENCI

HPC in Oil and Gas Exploration

Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer

Workshop on Parallel and Distributed Scientific and Engineering Computing, Shanghai, 25 May 2012

Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca

BSC - Barcelona Supercomputer Center

~ Greetings from WSU CAPPLab ~

High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/ CAE Associates

1 Bull, 2011 Bull Extreme Computing

JUROPA Linux Cluster An Overview. 19 May 2014 Ulrich Detert

Intel Cluster Ready Appro Xtreme-X Computers with Mellanox QDR Infiniband

Appro Supercomputer Solutions Best Practices Appro 2012 Deployment Successes. Anthony Kenisky, VP of North America Sales

The PHI solution. Fujitsu Industry Ready Intel XEON-PHI based solution. SC Denver

Supercomputing Resources in BSC, RES and PRACE

JuRoPA. Jülich Research on Petaflop Architecture. One Year on. Hugo R. Falter, COO Lee J Porter, Engineering

Parallel Programming Survey

Recent Advances in HPC for Structural Mechanics Simulations

A Crash course to (The) Bighouse

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

David Vicente Head of User Support BSC

Stovepipes to Clouds. Rick Reid Principal Engineer SGI Federal by SGI Federal. Published by The Aerospace Corporation with permission.

LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.

benchmarking Amazon EC2 for high-performance scientific computing

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS

Altix Usage and Application Programming. Welcome and Introduction

Qualified Apple Mac Workstations for Avid Media Composer v5.0.x

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK

High Performance Computing, an Introduction to

Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory. The Nation s Premier Laboratory for Land Forces UNCLASSIFIED

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes

(Toward) Radiative transfer on AMR with GPUs. Dominique Aubert Université de Strasbourg Austin, TX,

Cloud Computing through Virtualization and HPC technologies

SR-IOV In High Performance Computing

Designing and Building Applications for Extreme Scale Systems CS598 William Gropp

ALPS Supercomputing System A Scalable Supercomputer with Flexible Services

Turbomachinery CFD on many-core platforms experiences and strategies

Jean-Pierre Panziera Teratec 2011

High Performance Computing Facility Specifications, Policies and Usage. Supercomputer Project. Bibliotheca Alexandrina

High Performance Computing

The CNMS Computer Cluster

Retargeting PLAPACK to Clusters with Hardware Accelerators

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Trends in High-Performance Computing for Power Grid Applications

Cosmological simulations on High Performance Computers

YALES2 porting on the Xeon- Phi Early results

HPC-related R&D in 863 Program

Extreme Computing: The Bull Way

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures

HPC Update: Engagement Model

Accelerating CFD using OpenFOAM with GPUs

SGI High Performance Computing

Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015

Parallel Large-Scale Visualization

HPC and Big Data. EPCC The University of Edinburgh. Adrian Jackson Technical Architect

Visualization Cluster Getting Started

Parallel Computing with MATLAB

FLOW-3D Performance Benchmark and Profiling. September 2012

Lecture 1: the anatomy of a supercomputer

Formula One - The Engineering Race Evolution in virtual & physical testing over the last 15 years. Torbjörn Larsson Creo Dynamics AB

Cloud Computing. Alex Crawford Ben Johnstone

Using NeSI HPC Resources. NeSI Computational Science Team

CERN openlab III. Major Review Platform CC. Sverre Jarp Alfio Lazzaro Julien Leduc Andrzej Nowak

Performance of the JMA NWP models on the PC cluster TSUBAME.

Using the Windows Cluster

Big Data Visualization on the MIC

PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN

Informationsaustausch für Nutzer des Aachener HPC Clusters

Job Scheduling on a Large UV Chad Vizino SGI User Group Conference May Pittsburgh Supercomputing Center

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers

Clusters: Mainstream Technology for CAE

RWTH GPU Cluster. Sandra Wienke November Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

HPC technology and future architecture

Transcription:

CALMIP a Computing Meso-center for middle HPC academis Users CALMIP : Calcul en Midi-Pyrénées Méso-centre de Calcul Boris Dintrans, President Operational Board CALMIP, Laboratoire d Astrophysique de Toulouse Tarbes, Observatoire Midi-Pyrénées Pierrette Barbaresco, Toulouse University - Université Paul Sabatier Nicolas Renon, Toulouse University - Université Paul Sabatier Page 1

Region Midi-Pyrénées Space & Aeronautic Industry Food & Wine Toulouse Midi-Pyrénées Page 2

Summary : CALMIP : A Computing mesocenter Objectives Organisation / Fundings CALMIP : Academic community and regional SMEs CALMIP Figures CALMIP and SMEs Computing System Distributed Part / Shared Memory Part Performances Perspectives Page 3

Summary : CALMIP : A Computing mesocenter Objectives Organisation / Fundings CALMIP : Academic community and regional SMEs CALMIP Figures CALMIP and SMEs Computing System Distributed Part / Shared Memory Part Performances Perspectives Page 4

Scientific Grouping CALMIP : History Start in 1994 : 17 Labs. In Midi-Pyrénées region share computing resources Support of University of Toulouse (6 Universities) Purposes : Promote High Performance Computing training in parallel computing, code optimisation Exchanges experiences (Thematic Days) Access to a Competitive computing system Purchase a system Achieving performance/»easy to use»/stable Support Users Basics Developping parallel code Page 5

HPC Policy : Hierarchical Meshing European European Stage (PRACE): O(1000) TFLOP National National Stage (GENCI): O(100) TFLOP Toulouse Mesocentre Regional Stage : O(10) TFLOP Midi-Pyrénées CALMIP GENCI : Grands Equipements Nationaux en Calcul Intensif Page 6

HPC Policy : computing mesocenter European European Stage : O(1000) TFLOP National National Stage : O(100) TFLOP Mesocentre Regional Stage : O(10) TFLOP Midi-Pyrénées CALMIP Labs. Mesocenter : Interface National stage Labs. stage (nearness and propinquity ) CALMIP Scientific Grouping Constraints of Production Multi scientific domains Page 7

Scientific grouping CALMIP : Organisation governing Scientific Council Representing Universities Region Midi-pyrénées Local companies Granting resources Operationnal Board Scientific projects review Resource Attribution 2 calls/year Operation Toulouse University Université Paul Sabatier Purchase/Operate computing system User Support Training Communication Page 8

2010 : 3rd system in production 0,04 Tflop 64 cores / 72 Go ram 1,5 Tflop 512 cores / 256 Go ram 33 TF 2912 cores / 14 To ram 1999 2004 2007 2010 First System. #1 Renew. #2 upgrading Renew. #3 Fundings National + University Region(Local)+National+University 15% computation system devoted to SMEs Page 9

HYPERION, CALMIP computational system HYPERION 2912 cores Nehalem Intel 33,57 TF peak 223rd TOP 500 (november 2009) Page 10

Summary : CALMIP : A Computing mesocenter Objectives Organisation / Fundings CALMIP : Academic community and regional SMEs CALMIP Figures CALMIP and SMEs Computing System Distributed Part / Shared Memory Part Performances Perspectives Page 11

CALMIP : figures evolutions Y2005-Y2011 +58% +50% +30% +7% +307% +50% Year 2005 2006 2007 2008 2009 2010 2011 * Cpu hour requested 760 000 1 200 000 1 800 000 2 345 000 2 520 000 10 279 000 15 073 000 Total available 400 000 800 000 800 000 1 600 000 1 600 000 17 000 000 18 000 000 Ratio (Avail./Request.) 52% 66% 44% 68% 64% 171% 120% * Only first call Y2011 Former System New System 33TF HYPERION Page 12

CALMIP : science distribution evolution Total Demand : Y2010 : 10 000 000 h Y2009 : 2 500 000 h Page 13

CALMIP and SMEs Y2007 : Regional Funding Main idea : give regional companies access to HPC resources Target : SMEs (special rates for SMEs) How : 15% CALMIP Computing System devoted 15% = 3 000 000 cpu hour in Y2011 Challenges to face : Clients out of the Academic community Lots SMEs need HPC, but don t know how to use it Is numerical simulation fully embedded in production process? Technical Challenges Data : safety, security, transfert, What kind of service? hardware, software(isv), expertise, Page 14

CALMIP and SMEs CALMIP and SMEs: Service for Parallel Scientific computations focus on SMEs in Space & Aerodynamics access to a better time-to-solution in their numerical simulation problem access to simulations they can t run on their systems give SMEs access to a full computation solution : cpu/ram/storage/graphic CALMIP : Three-cornered relationship Part. 1 : SME Part.3 : CALMIP Computing resource Part. 2 : Consulting, engineering services Page 15

Summary : CALMIP : A Computing mesocenter Objectives Organisation / Fundings CALMIP : Academic community and regional SMEs CALMIP Figures CALMIP and SMEs Computing System Distributed Part / Shared Memory Part Performances Perspectives Page 16

HYPERION Shared memory : Altix UV 96 cores 2,6 Ghz Nehalem EX 6-cores 1 TB ram ccnuma architecture Distributed Memory : Altix ICE 2816 cores 2,8 Ghz Nehalem EP Quad core 36 GB ram /nodes Interconnect : IB, Dual-Rail, DDR permanent storage: Enhanced NFS : 38TB Temporary Storage : Water cooling Lustre Remote Visualisation Solution : 2 MDS, 4 OSS 4 nodes : 3 Gbytes/s 8 cores NHM, 48 go ram 200 TB GPU nvidia FX 4800 Virtual GL/ Turbo VNC Page 17

Distributed memory example in CFD : Industrial fluidised bed Neptune_CFD : 3 000 000 cpu hours used in Y2010 on HYPERION Number of cores range in production : 68c - 512c Courtesy of : O Simonin, H. Neau, Laviéville - Institut de Mécanique des fluides de Toulouse - Université de Toulouse/ CNRS Page 18

Distributed memory example in CFD : Industrial fluidized bed Time-to-solution and speed-up HYPERION HYPERION C1 a : Altix ICE Harpertown, Intel_MPI C1 b : Altix ICE Harpertown, MPT C2 a : HYPERION Altix ICE NHM, Intel MPI C2 b : HYPERION Altix ICE NHM, MPT C3 : Cluster IB AMD Shanghaï, OpenMPI Courtesy of : O Simonin, H. Neau, Laviéville - Institut de Mécanique des fluides de Toulouse - Université de Toulouse/ CNRS Page 19

Share memory example in Theoretical Physics : N-body Physics Exact resolution of Schrödinger Equation => Eigenvalue problem N-Body physics Share-memory approach, need > 200 GB OpenMP Parallelized => 64 threads roughly 326 000 cpu hours used on HYPERION in Y2010 Courtesy of : Sylvain Capponi - Laboratoire de Physique Théorique - Université Paul Sabatier / CNRS Page 20

Runs on Shared memory part : Altix UV 100 N-body physics code DO36 scalability on AltixUV Page 21

CALMIP and new HPC users Example in Life Science Fish population fragmentation studies Counting in fish in two Rivers near by Toulouse fish population fragmentation studies 12 000 cpu hour used mostly data set exploring (code in C! Good!) Chevaine Gandoise Vairon Page 22

CALMIP Perspectives CALMIP and EQUIP@MESO Project Rouen Paris Reims Strasbourg Saclay Lyon Grenoble Toulouse Marseille CALMIP(Toulouse) Partner of GENCI in project EQUIP@MESO 10 partners amplify with a global coherency the HPC capacities of 10 regional centres carry on training actions and to allow reciprocal transfers of knowledge among regional centres and their universities relay at the regional level, the national initiative HPC for SME set up by GENCI, INRIA, OSEO (www.initiativehpc-pme.org) to help SME to use HPC to improve their competitiveness. GENCI : Grands Equipements Nationaux en Calcul Intensif Page 23

CALMIP and EQUIP@MESO Project CALMIP(Toulouse) Partner of GENCI in project EQUIP@MESO Upgrading Share-memory Part (Altix UV) 1 SSI with 400 cores (westmere EX) + 3 To shared RAM 2 TF GPU (NVIDIA) Meet users needs and beyond their needs Big Memory : Plasma Physics, Physics Theory, Astrophysic DATA processing Increase time to solution for middle parallel jobs «Easy to use» Developping environnement renon@uvcalmip:~> qstat -a @uvcalmip Job ID Username Queue Jobname NDS TSK Memory Time S Time --------------- -------- -------- ---------- ------ --- --- ----- --- ------- 103089.service0 hubert uv BiH.runCC4 1 1 225gb 230:0 R 41:27 103519.service0 roudier uv cst 1 8 200gb 100:0 R 13:25 103584.service0 capponi uv in.80.0-0. 1 48 560gb 140:0 Q -- 103600.service0 didierp uv peps 1 8 100gb 240:0 R 16:02 103638.service0 capponi uv in.80.0-0. 1 48 600gb 140:0 Q -- Page 24

CALMIP Perspectives Y2013 Shared facilities : «Espace Clément Ader» Building Partners : University of Toulouse / French Weather Forecast (Meteo-France)/ Midi-Pyrénées Region Different computing systems One Single Plant : 3,5 MW in Y2013, 1000m2 /floor Page 25

CALMIP : Science Y2010 Scientific Topics (Operational Board) Theoretical & Molecular Physics Biology & Molecules Material Chemistry and Physics CFD Quantum Chemistry Numerical Algorithm Astrophysics, Earth Science ~30 labs 150 Scientific Projects Page 26

Magnitude des changements CALMIP Projet #2 : fragmentation des populations de poissons (P1003 / 12 000h, Paz / Loot / Blanchet, EdB) 1500-9000 ans 1500-9000 ans 1500-6300 2000-9000 3000-4000 ans ans ans 1500-6300 2000-9000 3000-4000 ans ans ans Non fragmentée Fragmentée Ne correspondent pas à la fragmentation Correspondent aux colonisations postglaciaires!! Page 27

Altix UV 100 and MKL-DGEMM scalability Scalability : tests on DGEMM multithreaded (MKL, ifort : v11), size matrix = 10000 x 10000 (DP) Nhm 2,8 Ghz, EP, bi-socket node (ICE node) NHM 2,6 Ghz, EX, 16-socket node (UV node) Itanium 1,5 Ghz, 128 -socket node (Altix3700) -DGEMM-SCSL HYPERTHREADING Page 28

Distributed memory example : Atmospheric Model MésoNH code Méso-NH: non-hydrostatic mesoscale atmospheric model of the French research community. developpement and maintenance at : Laboratoire d Aérologie CNRS/University of Toulouse (Université Paul Sabatier/ UMR 5560 ) CNRM-GAME URA 1357 CNRS/Météo-France (French Weather Forecast) Page 29

MesoNH Performance on HYPERION HYPERION performance Courtesy of : JP Pinty & J. Escobar Laboratoire Aérologie - Observatoire Midi-Pyrénées Université Paul Sabatier/ CNRS Page 30