Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015
|
|
|
- MargaretMargaret Crawford
- 10 years ago
- Views:
Transcription
1 Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015 Xian Shi 1 bio I am a second-year Ph.D. student from Combustion Analysis/Modeling Lab, Department of Mechanical Engineering. My research interests are solving fundamental thermal, fluid and chemical problems. Specifically, I am currently working on numerical simulation of flame stratification, trying to explore the physics when flame propagates through charge stratification. As one of most engineering students, I am well trained to solve common computational assignments through writing simple scripts, however, without considering its efficiency and productivity. Therefore first of all, I would like to learn fundamentals of professional programming and improve my programming skills from working with other people. Second, with regard to parallel computing, I hope that after taking this course I will be able to identify parallel-computing possibilities and implement corresponding algorithms, in the field of scientific computing. While expecting that I will work on relevant topics (see last section) to my research, I am open to any perspective of scientific-computing problems. 2 parallel application - openfoam 2.1 Introduction The OpenFOAM (Open Field Operation and Manipulation) CFD (Computational Fluid Dynamics) Toolbox is a free, open source CFD software package (C++), which has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics. The structure of OpenFOAM is showed in Figure 1 on the following page, which is also the standard procedure solving scientific problems. Almost everything (including meshing, and pre- and post-processing) runs in parallel as standard, enabling users to take full advantage of computer hardware at their disposal.[1] [email protected] 1
2 Parallel Application - OpenFOAM 2 Figure 1: Overview of OpenFOAM structure 2.2 Parallel Capability The method of parallel computing used by OpenFOAM is known as domain decomposition, in which the geometry and associated fields are broken into pieces and allocated to separate processors for solution. The process of parallel computation involves: decomposition of mesh and fields; running the application in parallel; and, post-processing the decomposed case. The parallel running uses the public domain openmpi implementation of the standard message passing interface (MPI). [2]. More details can be found in the referred user guide. 2.3 Performance Analysis I am not able to find a specific flame calculation case at this moment. For the purpose of performance analysis of OpenFOAM parallel capability, I selected the following example of water turbine simulation.[3] Water turbines are designed to extract energy from the water flowing through the water turbine runner. The available power is determined by the difference in the elevation of the tail water and head water multiplied with the water mass flow and gravity. In reaction turbines the flow enters the runner with a swirl and the runner is designed to remove that swirl before the water enters the draft tube. (Figure 2 on the next page) In the referred work both the runner and the draft tube were modeled in OpenFOAM. The results have been presented and validated in detail in [4]. As an example of result validation, the pressure coefficient at the upper and lower center lines of the draft tube are compared with both the experimental data and the CFX-5 computation in Figure 3 on page 4. The two computations are almost identical, and they are close to the experimental results. A parallel performance test has been made using the draft tube case, with about 10 6 cells. The decomposition of the domain into 2, 4, 8 and 16 subdomains were made using the automatic load-balanced decomposition (Metis) in OpenFOAM. The Linux cluster was a 4 node Dual socket AMD Opteron 280 (2.4 GHz, dual core) with 4GB DDR400 RAM, i.e. 4 cores (CPUs) per node and a total of 16 cores (CPUs). Two different interconnects were tested, a Gigabit Ethernet through an HP ProCurve 2824 Switch, and an Infiniband (PCI-X) through a Silverstorm 9024 Switch. The SuSE Linux Enterprise Server, Service pack 3 operating system was used. Figure 4 on page 5 (actually a table) shows that the execution time of the computations decreases as more CPUs are used. There is no significant difference between the paral-
3 More on Final Project 3 Figure 2: CAD model of the Holleforsen Kaplan turbine model and visualizations of the flow in the runner and draft tube lel runs using the different interconnects except when the computations are distributed on as many nodes as possible. 3 more on final project Currently I am working on one specific flame propagation scenario: opposed jet flame. The basic geometry is showed as Figure 5 on page 5 [5]. More details can be found in the referred paper. I have access to the original sequential code written in Fortran from the original authors. It runs well with small fuel species, such as hydrogen and methane. However, when it comes to heavier fuel species like n-heptane, the speed of calculation is not satisfactory. Therefore, I would like to work with someone who is interested, to add parallel-computing features into this existing code. Additionally, since there are two types of formulation to define this geometry of flame, it is also possible to write a parallel code from scratch. Please me if you are interested so that we can discuss more details. references [1] Features of OpenFOAM. [2] OpenFOAM: The Open Source CFD Toolbox - User Guide. Version (2014)
4 references 4 Figure 3: Computed integral quantities (a & b), and pressure coefficient distributions along the upper and lower centerlines (c & d). The only difference that can be seen is in (b), where OpenFOAM gives a slightly higher value at the end of the draft tube [3] Nilsson, Håkan. "Some experiences on the accuracy and parallel performance of OpenFOAM for CFD in water turbines." Applied Parallel Computing. State of the Art in Scientific Computing. Springer Berlin Heidelberg, [4] Nilsson, H.: Evaluation of OpenFOAM for CFD of turbulent flow in water turbines. In: Proceedings of the 23rd IAHR Symposium in Yokohama (2006) [5] Lutz, Andrew E., et al. "OPPDIF: A Fortran program for computing opposed-flow diffusion flames." Sandia National Laboratories Report SAND (1997).
5 references 5 Figure 4: Parallel performance using 1Gbit Ethernet (ETH) and Infiniband (IBA) interconnects. Packed vs. spread CPU distribution (the distribution of the processes on the nodes) Figure 5: Geometry of planar opposed flow flame
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Performance Comparison of ISV Simulation Codes on Microsoft Windows HPC Server 2008 and SUSE Linux Enterprise Server 10.2
Fraunhofer Institute for Algorithms and Scientific Computing SCAI Performance Comparison of ISV Simulation Codes on Microsoft HPC Server 28 and SUSE Enterprise Server 1.2 Karsten Reineck und Horst Schwichtenberg
Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
Introduction to CFD Analysis
Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures
11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the
Open Source CFD Solver - OpenFOAM
Open Source CFD Solver - OpenFOAM Wang Junhong (HPC, Computer Centre) 1. INTRODUCTION The OpenFOAM (Open Field Operation and Manipulation) Computational Fluid Dynamics (CFD) Toolbox is a free, open source
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN
1 PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN Introduction What is cluster computing? Classification of Cluster Computing Technologies: Beowulf cluster Construction
Clusters: Mainstream Technology for CAE
Clusters: Mainstream Technology for CAE Alanna Dwyer HPC Division, HP Linux and Clusters Sparked a Revolution in High Performance Computing! Supercomputing performance now affordable and accessible Linux
Introduction to CFD Analysis
Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
FLOW-3D Performance Benchmark and Profiling. September 2012
FLOW-3D Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: FLOW-3D, Dell, Intel, Mellanox Compute
1 DCSC/AU: HUGE. DeIC Sekretariat 2013-03-12/RB. Bilag 1. DeIC (DCSC) Scientific Computing Installations
Bilag 1 2013-03-12/RB DeIC (DCSC) Scientific Computing Installations DeIC, previously DCSC, currently has a number of scientific computing installations, distributed at five regional operating centres.
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
POLITECNICO DI MILANO Department of Energy
1D-3D coupling between GT-Power and OpenFOAM for cylinder and duct system domains G. Montenegro, A. Onorati, M. Zanardi, M. Awasthi +, J. Silvestri + ( ) Dipartimento di Energia - Politecnico di Milano
Simulation Platform Overview
Simulation Platform Overview Build, compute, and analyze simulations on demand www.rescale.com CASE STUDIES Companies in the aerospace and automotive industries use Rescale to run faster simulations Aerospace
Recent Advances in HPC for Structural Mechanics Simulations
Recent Advances in HPC for Structural Mechanics Simulations 1 Trends in Engineering Driving Demand for HPC Increase product performance and integrity in less time Consider more design variants Find the
ECLIPSE Best Practices Performance, Productivity, Efficiency. March 2009
ECLIPSE Best Practices Performance, Productivity, Efficiency March 29 ECLIPSE Performance, Productivity, Efficiency The following research was performed under the HPC Advisory Council activities HPC Advisory
GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS
ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli
CFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
Model of a flow in intersecting microchannels. Denis Semyonov
Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required
Kriterien für ein PetaFlop System
Kriterien für ein PetaFlop System Rainer Keller, HLRS :: :: :: Context: Organizational HLRS is one of the three national supercomputing centers in Germany. The national supercomputing centers are working
Comparing the performance of the Landmark Nexus reservoir simulator on HP servers
WHITE PAPER Comparing the performance of the Landmark Nexus reservoir simulator on HP servers Landmark Software & Services SOFTWARE AND ASSET SOLUTIONS Comparing the performance of the Landmark Nexus
ECLIPSE Performance Benchmarks and Profiling. January 2009
ECLIPSE Performance Benchmarks and Profiling January 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox, Schlumberger HPC Advisory Council Cluster
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 [email protected] THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833
Large-Scale Reservoir Simulation and Big Data Visualization
Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)
Fire Simulations in Civil Engineering
Contact: Lukas Arnold l.arnold@fz- juelich.de Nb: I had to remove slides containing input from our industrial partners. Sorry. Fire Simulations in Civil Engineering 07.05.2013 Lukas Arnold Fire Simulations
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and
Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing
Microsoft Windows Compute Cluster Server 2003 Partner Solution Brief Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing Microsoft Windows Compute Cluster Server Runs
IBM System Cluster 1350 ANSYS Microsoft Windows Compute Cluster Server
IBM System Cluster 1350 ANSYS Microsoft Windows Compute Cluster Server IBM FLUENT Benchmark Results IBM & FLUENT Recommended Configurations IBM 16-Core BladeCenter S Cluster for FLUENT Systems: Up to Six
LS DYNA Performance Benchmarks and Profiling. January 2009
LS DYNA Performance Benchmarks and Profiling January 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center The
Journée Mésochallenges 2015 SysFera and ROMEO Make Large-Scale CFD Simulations Only 3 Clicks Away
SysFera and ROMEO Make Large-Scale CFD Simulations Only 3 Clicks Away Benjamin Depardon SysFera Sydney Tekam Tech-Am ING Arnaud Renard ROMEO Manufacturing with HPC 98% of products will be developed digitally
A Swirl Generator Case Study for OpenFOAM
A Swirl Generator Case Study for OpenFOAM Olivier Petit Alin I. Bosioc Sebastian Muntean Håkan Nilsson Romeo F. Susan-Resiga Chalmers University Politehnica University of Timisoara Aim of the Timisoara
How System Settings Impact PCIe SSD Performance
How System Settings Impact PCIe SSD Performance Suzanne Ferreira R&D Engineer Micron Technology, Inc. July, 2012 As solid state drives (SSDs) continue to gain ground in the enterprise server and storage
Aerodynamic Simulation. Viscous CFD Code Validation
Aerodynamic Simulation using STAR-CCM+ Viscous CFD Code Validation 19 March 2013 CD-adapco STAR-CCM+ Code Validation Efforts Kenneth E. Xiques CRM Solutions 4092 Memorial Pkwy SW, Suite 200 Huntsville,
HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM
8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline
Building Clusters for Gromacs and other HPC applications
Building Clusters for Gromacs and other HPC applications Erik Lindahl [email protected] CBR Outline: Clusters Clusters vs. small networks of machines Why do YOU need a cluster? Computer hardware Network
Self service for software development tools
Self service for software development tools Michal Husejko, behalf of colleagues in CERN IT/PES CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it Self service for software development tools
Improved LS-DYNA Performance on Sun Servers
8 th International LS-DYNA Users Conference Computing / Code Tech (2) Improved LS-DYNA Performance on Sun Servers Youn-Seo Roh, Ph.D. And Henry H. Fong Sun Microsystems, Inc. Abstract Current Sun platforms
Eu-NORSEWInD - Assessment of Viability of Open Source CFD Code for the Wind Industry
Downloaded from orbit.dtu.dk on: Jun 28, 2016 Eu-NORSEWInD - Assessment of Viability of Open Source CFD Code for the Wind Industry Stickland, Matt; Scanlon, Tom; Fabre, Sylvie; Ahmad, Abdul; Oldroyd, Andrew;
Very special thanks to Wolfgang Gentzsch and Burak Yenier for making the UberCloud HPC Experiment possible.
Digital manufacturing technology and convenient access to High Performance Computing (HPC) in industry R&D are essential to increase the quality of our products and the competitiveness of our companies.
Computational Fluid Dynamic Modeling Applications
Computational Fluid Dynamic Modeling Applications Canadian Heavy Oil Conference Dr. Marvin Weiss What is CFD Computational Fluid Dynamics Colorful Fluid Dynamics Colors For Directors Carefully Fitted Data
Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC
HPC Architecture End to End Alexandre Chauvin Agenda HPC Software Stack Visualization National Scientific Center 2 Agenda HPC Software Stack Alexandre Chauvin Typical HPC Software Stack Externes LAN Typical
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION
TASK QUARTERLY 13 No 4, 403 414 OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION PAWEŁ SOSNOWSKI AND JACEK POZORSKI Institute of Fluid-Flow Machinery, Polish Academy of
Parallel Simplification of Large Meshes on PC Clusters
Parallel Simplification of Large Meshes on PC Clusters Hua Xiong, Xiaohong Jiang, Yaping Zhang, Jiaoying Shi State Key Lab of CAD&CG, College of Computer Science Zhejiang University Hangzhou, China April
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
ANSYS Computing Platform Support. July 2013
ANSYS Computing Platform Support July 2013 1 Outline Computing platform trends and support roadmap Windows Linux Solaris ANSYS 14.5 Platform Support By application Other Platform Related Issues MPI and
CFD SIMULATION OF NATURAL GAS COMBUSTION AND IST APPLICATION TO TUNNEL KILN FIRING
CFD SIMULATION OF NATURAL GAS COMBUSTION AND IST APPLICATION TO TUNNEL KILN FIRING. R. Obenaus-Emler University of Leoben Contents 1. Intoduction to combustion models in OpenFOAM 2. The Flamelet-Model
Performance Testing of a Cloud Service
Performance Testing of a Cloud Service Trilesh Bhurtun, Junior Consultant, Capacitas Ltd Capacitas 2012 1 Introduction Objectives Environment Tests and Results Issues Summary Agenda Capacitas 2012 2 1
CHAPTER FIVE RESULT ANALYSIS
CHAPTER FIVE RESULT ANALYSIS 5.1 Chapter Introduction 5.2 Discussion of Results 5.3 Performance Comparisons 5.4 Chapter Summary 61 5.1 Chapter Introduction This chapter outlines the results obtained from
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe
Appro Supercomputer Solutions Best Practices Appro 2012 Deployment Successes. Anthony Kenisky, VP of North America Sales
Appro Supercomputer Solutions Best Practices Appro 2012 Deployment Successes Anthony Kenisky, VP of North America Sales About Appro Over 20 Years of Experience 1991 2000 OEM Server Manufacturer 2001-2007
CONVERGE Features, Capabilities and Applications
CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE
LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.
LS-DYNA Scalability on Cray Supercomputers Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. WP-LS-DYNA-12213 www.cray.com Table of Contents Abstract... 3 Introduction... 3 Scalability
OpenMP Programming on ScaleMP
OpenMP Programming on ScaleMP Dirk Schmidl [email protected] Rechen- und Kommunikationszentrum (RZ) MPI vs. OpenMP MPI distributed address space explicit message passing typically code redesign
HPC and Big Data. EPCC The University of Edinburgh. Adrian Jackson Technical Architect [email protected]
HPC and Big Data EPCC The University of Edinburgh Adrian Jackson Technical Architect [email protected] EPCC Facilities Technology Transfer European Projects HPC Research Visitor Programmes Training
Recommended hardware system configurations for ANSYS users
Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range
Exploiting Remote Memory Operations to Design Efficient Reconfiguration for Shared Data-Centers over InfiniBand
Exploiting Remote Memory Operations to Design Efficient Reconfiguration for Shared Data-Centers over InfiniBand P. Balaji, K. Vaidyanathan, S. Narravula, K. Savitha, H. W. Jin D. K. Panda Network Based
Computational Fluid Dynamics in Automotive Applications
Computational Fluid Dynamics in Automotive Applications Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 1/15 Outline Objective Review the adoption of Computational
Packet Capture in 10-Gigabit Ethernet Environments Using Contemporary Commodity Hardware
Packet Capture in 1-Gigabit Ethernet Environments Using Contemporary Commodity Hardware Fabian Schneider Jörg Wallerich Anja Feldmann {fabian,joerg,anja}@net.t-labs.tu-berlin.de Technische Universtität
Computational infrastructure for NGS data analysis. José Carbonell Caballero Pablo Escobar
Computational infrastructure for NGS data analysis José Carbonell Caballero Pablo Escobar Computational infrastructure for NGS Cluster definition: A computer cluster is a group of linked computers, working
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
Parallel Large-Scale Visualization
Parallel Large-Scale Visualization Aaron Birkland Cornell Center for Advanced Computing Data Analysis on Ranger January 2012 Parallel Visualization Why? Performance Processing may be too slow on one CPU
Fast Multipole Method for particle interactions: an open source parallel library component
Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,
Overview of HPC systems and software available within
Overview of HPC systems and software available within Overview Available HPC Systems Ba Cy-Tera Available Visualization Facilities Software Environments HPC System at Bibliotheca Alexandrina SUN cluster
2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013
2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France [email protected]
Pushing the limits. Turbine simulation for next-generation turbochargers
Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for
Self Financed One Week Training
Self Financed One Week Training On Computational Fluid Dynamics (CFD) with OpenFOAM December 14 20, 2015 (Basic Training: 3days, Advanced Training: 5days and Programmer Training: 7days) Organized by Department
Kashif Iqbal - PhD [email protected]
HPC/HTC vs. Cloud Benchmarking An empirical evalua.on of the performance and cost implica.ons Kashif Iqbal - PhD [email protected] ICHEC, NUI Galway, Ireland With acknowledgment to Michele MicheloDo
Cluster Computing at HRI
Cluster Computing at HRI J.S.Bagla Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019. E-mail: [email protected] 1 Introduction and some local history High performance computing
2.1 CFD PROJECT PLANNING. 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
2.1 CFD PROJECT PLANNING 2006 ANSYS, Inc. All rights reserved. 2008 ANSYS, Inc. All rights reserved. 6-2 CFD PROJECT PLANNING Task definition Resources Timing and deliverables Design review Assumed part
Microsoft Compute Clusters in High Performance Technical Computing. Björn Tromsdorf, HPC Product Manager, Microsoft Corporation
Microsoft Compute Clusters in High Performance Technical Computing Björn Tromsdorf, HPC Product Manager, Microsoft Corporation Flexible and efficient job scheduling via Windows CCS has allowed more of
Cluster Grid Interconects. Tony Kay Chief Architect Enterprise Grid and Networking
Cluster Grid Interconects Tony Kay Chief Architect Enterprise Grid and Networking Agenda Cluster Grid Interconnects The Upstart - Infiniband The Empire Strikes Back - Myricom Return of the King 10G Gigabit
How To Run A Cdef Simulation
Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation
OpenFOAM Opensource and CFD
OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD
Advanced discretisation techniques (a collection of first and second order schemes); Innovative algorithms and robust solvers for fast convergence.
New generation CFD Software APUS-CFD APUS-CFD is a fully interactive Arbitrary Polyhedral Unstructured Solver. APUS-CFD is a new generation of CFD software for modelling fluid flow and heat transfer in
Simulation of Fluid-Structure Interactions in Aeronautical Applications
Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing [email protected] December 2003 3 rd FENET Annual Industry
Cloud Computing through Virtualization and HPC technologies
Cloud Computing through Virtualization and HPC technologies William Lu, Ph.D. 1 Agenda Cloud Computing & HPC A Case of HPC Implementation Application Performance in VM Summary 2 Cloud Computing & HPC HPC
EVALUATION OF PHOENICS CFD FIRE MODEL AGAINST ROOM CORNER FIRE EXPERIMENTS
EVALUATION OF PHOENICS CFD FIRE MODEL AGAINST ROOM CORNER FIRE EXPERIMENTS Yunlong Liu and Vivek Apte CSIRO Fire Science and Technology Laboratory PO Box 31 North Ryde, NSW 167, Australia TEL:+61 2 949
CFD: What is it good for?
CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas
Best practices for efficient HPC performance with large models
Best practices for efficient HPC performance with large models Dr. Hößl Bernhard, CADFEM (Austria) GmbH PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana,
Wind-Tunnel Simulation using TAU on a PC-Cluster: Resources and Performance Stefan Melber-Wilkending / DLR Braunschweig
Wind-Tunnel Simulation using TAU on a PC-Cluster: Resources and Performance Stefan Melber-Wilkending / DLR Braunschweig Folie 1 > Vortrag > Stefan Melber-Wilkending Wind-Tunnel Simulation using TAU on
Simulation of Water-in-Oil Emulsion Flow with OpenFOAM using Validated Coalescence and Breakage Models
Simulation of Water-in-Oil Emulsion Flow with OpenFOAM using Validated Coalescence and Breakage Models Gabriel G. S. Ferreira*, Jovani L. Favero*, Luiz Fernando L. R. Silva +, Paulo L. C. Lage* Laboratório
Enabling Technologies for Distributed Computing
Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies
Using the Windows Cluster
Using the Windows Cluster Christian Terboven [email protected] aachen.de Center for Computing and Communication RWTH Aachen University Windows HPC 2008 (II) September 17, RWTH Aachen Agenda o Windows Cluster
ABAQUS High Performance Computing Environment at Nokia
ABAQUS High Performance Computing Environment at Nokia Juha M. Korpela Nokia Corporation Abstract: The new commodity high performance computing (HPC) hardware together with the recent ABAQUS performance
Performance Guide. 275 Technology Drive ANSYS, Inc. is Canonsburg, PA 15317. http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494
Performance Guide ANSYS, Inc. Release 12.1 Southpointe November 2009 275 Technology Drive ANSYS, Inc. is Canonsburg, PA 15317 certified to ISO [email protected] 9001:2008. http://www.ansys.com (T) 724-746-3304
COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY
COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY FEBRUARY 2012 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury
Marine CFD applications using OpenFOAM
Marine CFD applications using OpenFOAM Andrea Penza, CINECA 27/03/2014 Contents Background at CINECA: LRC experience CFD skills Automatic workflow Reliability workflow OpenFOAM solvers for marine CFD analysis
